超晶格第四章半导体超晶格
- 格式:pdf
- 大小:2.39 MB
- 文档页数:108
半导体超晶格材料及其应用引言:半导体超晶格材料是一种由多个不同材料交替堆叠而成的晶格结构,具有独特的物理和化学性质。
它们在电子学、光电子学和能源领域等多个应用中具有巨大的潜力。
本文将介绍半导体超晶格材料的基本概念和制备方法,并重点探讨其在光电子器件和能源转换领域的应用。
一、半导体超晶格材料的基本概念半导体超晶格材料是由两种或更多种不同晶格常数的半导体材料交替堆叠而成的复合材料。
由于晶格常数的不匹配,材料界面形成了一系列的晶格失调和应变区域。
这些晶格失调和应变区域对电子结构和输运性质产生了显著影响,从而使半导体超晶格材料具有特殊的性质。
二、半导体超晶格材料的制备方法主要有两种方法用于制备半导体超晶格材料:一是分子束外延(MBE)方法,二是金属有机化学气相沉积(MOCVD)方法。
这些方法可以通过精确控制材料的堆叠顺序和厚度来实现半导体超晶格材料的制备。
三、半导体超晶格材料在光电子器件中的应用1. 光电二极管:半导体超晶格材料的能带结构和电子输运性质可通过调控晶格常数和材料组分来实现。
这使得半导体超晶格材料在光电二极管中具有优异的性能,如高效率和高速度。
因此,半导体超晶格材料被广泛应用于高速光通信和激光器等领域。
2. 太阳能电池:半导体超晶格材料的晶格失调和应变区域对电子结构和光吸收特性的调控具有重要意义。
通过合理设计半导体超晶格材料的结构和组分,可以实现更高的光电转换效率和更宽的光谱响应范围,从而提高太阳能电池的性能。
3. 光电导体:半导体超晶格材料的能带对称性和输运性质的调控使其成为优秀的光电导体。
半导体超晶格材料在光电导体领域的应用包括光电传感器、光电调制器和光电晶体管等。
四、半导体超晶格材料在能源转换中的应用1. 热电材料:半导体超晶格材料的晶格失调和应变区域对热电性能的调控具有重要意义。
通过设计合适的结构和组分,可以实现更高的热电转换效率,从而将热能转化为电能。
2. 催化剂:半导体超晶格材料的界面和晶格缺陷可提供更多的活性位点,从而提高催化剂的活性和稳定性。
半导体超晶格材料的制造、设计是以固体能带结构的量子力学理论为基础的,也就是说,人为地改变晶体的周期势,做出具有新功能的人工超晶格结构材料。
半导体超晶格材料具有一般半导体材料不能实现的许多新现象,可以说是超薄膜晶体制备技术,量子物理和材料设计理论相结合而出现的第三种类的半导体材料。
利用这种材料,不仅可以显著提高场效应晶体管和半导体激光器等的性能,也可以制备至今还没有的功能更优异的新器件和发现更多的新物理现象,使半导体器件的设计和制造由原来的“杂质工程”发展到“能带工程”。
因此,半导体超晶格是属于高科技范畴的新型功能材料。
电子亲和势是指元素的气态原子得到一个电子时放出的能量,叫做电子亲和势。
(曾用名:电子亲和能EA)单位是kJ/mol或eV。
电子亲和势的常用符号恰好同热力学惯用符号相反。
热力学上把放出能量取为负值,例如,氟原子F(g)+e→F-(g),△H=-322kJ/mol。
而氟的电子亲和势(EA)被定义为322kJ/mol。
为此,有人建议元素的电子亲和势是指从它的气态阴离子分离出一个电子所吸收的能量。
于是,氟离子F-(g)-e→F(g),△H=322kJ/mol。
两者所用符号就趋于统一。
可以认为,原子的电子亲和势在数值上跟它的阴离子的电离能相同。
根据电子亲和势数据可以判断原子得失电子的难易。
非金属元素一般具有较大的电子亲合势,它比金属元素容易得到电子。
电子亲和势由实验测定,但目前还不能精确地测得大多数元素的电子亲和势。
元素的电子亲和势变化的一般规律是:在同一周期中,随着原子序数的增大,元素的电子亲和势一般趋于增大,即原子结合电子的倾向增强,或它的阴离子失去电子的能力减弱。
在同一族中,元素的电子亲合势没有明显的变化规律。
当元素原子的电子排布呈现稳定的s2、p3、p6构型时,EA值趋于减小,甚至ⅡA族和零族元素的EA都是负值,这表明它们结合电子十分困难。
在常见氧化物和硫化物中含有-2价阴离子。
从O-(g)或S-(g)结合第二个电子而变成O2-(g)或S2-(g)时,要受到明显的斥力,所以这类变化是吸热的。
第3章 半导体超晶格3.1 半导体超晶格基本结构3.2 超晶格的应用举例3.1 半导体超晶格基本结构所谓的超晶格,是由几种成分不同或掺杂不同的超薄层周期性地堆叠起来而构成地一种特殊晶体。
超薄层堆叠地周期(称为超晶格地周期)要小于电子的平均自由程,各超薄层的宽度要与电子的德布罗意波长相当。
其特点为在晶体原来的周期性势场之上又附加了一个可以人为控制的超晶格周期势场,是一种新型的人造晶体。
超晶格的分类(一)复合超晶格利用异质结构,重复单元是由组分不同的半导体薄膜形成的超晶格称为复合超晶格,又称为组分超晶格。
按照能带不连续结构的特点可将这个类型超晶格分为四类:第Ⅰ类超晶格、第Ⅱ类错开超晶格、第Ⅱ类倒转型超晶格和第Ⅲ类超晶格。
(1) 第Ⅰ类超晶格(GaAs/AlGaAs)GaAs 材料的见地完全包含在AlGaAs 的能隙之中,电子和空穴都位于窄带隙材料的势阱中v c g E E E ∆+∆=∆x 247.1E g =∆,与Al 的组分x 成正比。
(2) 第Ⅱ类 —— 错开型超晶格(GaSbAs/InGaAs )两个带隙互相错开,一个价带底在另一个价带底的下面。
电子和空穴分别处于两个不同的材料中形成了真实空间的间接带隙半导体(3) 第Ⅱ类 —— 倒转型超晶格(InAs/GaSb )一个导带底下降到另一个价带底之下。
电子和空穴可能并存于同一个能区中,形成电子-空穴系统Ec1与Ec2能量相差一个Es ,前者的导带与后者的价带部分重叠,从而可能发生从半导体到金属的转变(4) 第Ⅲ类超晶格(HgTe/CdTe)宽带隙半导体CdTe 和零带隙半导体HgTe 构成的超晶格。
只有当超晶格的周期小于某一定值时才具有半导体特性,否则具有半金属特性。
超晶格能隙差由最低导带子能带和价带子能带的间距决定,价带能量不连续值近似为零,导带能量不连续值近似等于两种材料能隙之差。
(二)掺杂超晶格利用超薄层材料外延技术(MBE 或MOCVD )生长具有量子尺寸效应的同一种半导体材料时,交替地改变掺杂类型的方法(即一层掺入N 型杂质,一层掺入P 型杂质),即可得到掺杂超晶格,又称为调制惨杂超晶格。
半导体超晶格及其量子阱的原理半导体超晶格及其量子阱:一、定义半导体超晶格(Semiconductor Superlattice,简称SSL)是一种合成多层半导体结构,其可调节电子结构和能带结构,从而提高材料的性能。
量子阱(Quantum Wells)是SSL结构中最重要的一种结构,可在量子阱内释放良好的量子效应,从而使许多物理和化学性能被调控。
二、结构特性(1)半导体超晶格一般由两种不同的半导体层组成,每层厚度可从几纳米到几微米不等,每一层都相互隔离,形成超级晶格结构。
(2)由于 SSL 各层局部电子结构,可以吸收和发射光子,使 SSL 具有一定的光学性质。
(3)在SSL结构中,量子阱由两层薄的半导体材料层隔开,其中夹层(Cladding)层的电子态更加有序,从而形成有序的电子波函数,从而形成特殊的量子效应。
三、物理效应(1)在量子阱中物理现象是由特殊的量子效应造成的,如量子隧穿效应、量子驱动效应、量子振荡效应等。
(2)其中量子隧穿效应指通过量子阱释放出的电子自由穿越两个不同类型半导体,这种作用可以降低材料阻抗,增加功率传递,使得系统性能更好。
(3)量子驱动效应是一种由内部量子效应驱动的电荷移动,其作用可以提高半导体的电子传输速率,提高半导体的速率效率。
四、应用(1)SSL 和量子阱在optoelectronic 和nanoelectronic 中有广泛的应用,如激光源、可调谐激光器、可控纳米开关、光存储器、高速照相机等等。
(2)量子阱可用于检测微弱的电信号,如开发低噪声电路、MRAM存储器和传感器等。
(3)SSL 和量子阱可以用于制备太阳能电池,纳米器件,密集型逻辑器件等技术。
五、结论半导体超晶格及其量子阱是一种高性能的技术材料,其性能的改善可以显著加强多种电子设备的性能和功能,这使得其在电子行业中得到了广泛的应用。