超晶格第四章半导体超晶格
- 格式:pdf
- 大小:2.39 MB
- 文档页数:108
半导体超晶格材料及其应用引言:半导体超晶格材料是一种由多个不同材料交替堆叠而成的晶格结构,具有独特的物理和化学性质。
它们在电子学、光电子学和能源领域等多个应用中具有巨大的潜力。
本文将介绍半导体超晶格材料的基本概念和制备方法,并重点探讨其在光电子器件和能源转换领域的应用。
一、半导体超晶格材料的基本概念半导体超晶格材料是由两种或更多种不同晶格常数的半导体材料交替堆叠而成的复合材料。
由于晶格常数的不匹配,材料界面形成了一系列的晶格失调和应变区域。
这些晶格失调和应变区域对电子结构和输运性质产生了显著影响,从而使半导体超晶格材料具有特殊的性质。
二、半导体超晶格材料的制备方法主要有两种方法用于制备半导体超晶格材料:一是分子束外延(MBE)方法,二是金属有机化学气相沉积(MOCVD)方法。
这些方法可以通过精确控制材料的堆叠顺序和厚度来实现半导体超晶格材料的制备。
三、半导体超晶格材料在光电子器件中的应用1. 光电二极管:半导体超晶格材料的能带结构和电子输运性质可通过调控晶格常数和材料组分来实现。
这使得半导体超晶格材料在光电二极管中具有优异的性能,如高效率和高速度。
因此,半导体超晶格材料被广泛应用于高速光通信和激光器等领域。
2. 太阳能电池:半导体超晶格材料的晶格失调和应变区域对电子结构和光吸收特性的调控具有重要意义。
通过合理设计半导体超晶格材料的结构和组分,可以实现更高的光电转换效率和更宽的光谱响应范围,从而提高太阳能电池的性能。
3. 光电导体:半导体超晶格材料的能带对称性和输运性质的调控使其成为优秀的光电导体。
半导体超晶格材料在光电导体领域的应用包括光电传感器、光电调制器和光电晶体管等。
四、半导体超晶格材料在能源转换中的应用1. 热电材料:半导体超晶格材料的晶格失调和应变区域对热电性能的调控具有重要意义。
通过设计合适的结构和组分,可以实现更高的热电转换效率,从而将热能转化为电能。
2. 催化剂:半导体超晶格材料的界面和晶格缺陷可提供更多的活性位点,从而提高催化剂的活性和稳定性。
半导体超晶格材料的制造、设计是以固体能带结构的量子力学理论为基础的,也就是说,人为地改变晶体的周期势,做出具有新功能的人工超晶格结构材料。
半导体超晶格材料具有一般半导体材料不能实现的许多新现象,可以说是超薄膜晶体制备技术,量子物理和材料设计理论相结合而出现的第三种类的半导体材料。
利用这种材料,不仅可以显著提高场效应晶体管和半导体激光器等的性能,也可以制备至今还没有的功能更优异的新器件和发现更多的新物理现象,使半导体器件的设计和制造由原来的“杂质工程”发展到“能带工程”。
因此,半导体超晶格是属于高科技范畴的新型功能材料。
电子亲和势是指元素的气态原子得到一个电子时放出的能量,叫做电子亲和势。
(曾用名:电子亲和能EA)单位是kJ/mol或eV。
电子亲和势的常用符号恰好同热力学惯用符号相反。
热力学上把放出能量取为负值,例如,氟原子F(g)+e→F-(g),△H=-322kJ/mol。
而氟的电子亲和势(EA)被定义为322kJ/mol。
为此,有人建议元素的电子亲和势是指从它的气态阴离子分离出一个电子所吸收的能量。
于是,氟离子F-(g)-e→F(g),△H=322kJ/mol。
两者所用符号就趋于统一。
可以认为,原子的电子亲和势在数值上跟它的阴离子的电离能相同。
根据电子亲和势数据可以判断原子得失电子的难易。
非金属元素一般具有较大的电子亲合势,它比金属元素容易得到电子。
电子亲和势由实验测定,但目前还不能精确地测得大多数元素的电子亲和势。
元素的电子亲和势变化的一般规律是:在同一周期中,随着原子序数的增大,元素的电子亲和势一般趋于增大,即原子结合电子的倾向增强,或它的阴离子失去电子的能力减弱。
在同一族中,元素的电子亲合势没有明显的变化规律。
当元素原子的电子排布呈现稳定的s2、p3、p6构型时,EA值趋于减小,甚至ⅡA族和零族元素的EA都是负值,这表明它们结合电子十分困难。
在常见氧化物和硫化物中含有-2价阴离子。
从O-(g)或S-(g)结合第二个电子而变成O2-(g)或S2-(g)时,要受到明显的斥力,所以这类变化是吸热的。