低压无功补偿技术交流(CL)
- 格式:ppt
- 大小:7.35 MB
- 文档页数:52
低压电网中的无功补偿技术一、低压电网功率因数低的主要因素功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。
异步电动机和电力变压器是耗用无功功率的主要设备。
异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。
供电电压超出规定范围也会对功率因数造成很大影响。
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快。
据有关资料统计,当供电电压为额定值的110%时,一般电网的无功将增加35%左右。
电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响。
二、低压电网中无功补偿的意义低压电网中进行无功补偿的意义表现在以下两个方面:1、提高供电设备的利用率在供电设备的容量(视在功率)S一定的情况下,因P=Scos,显然cos越高,有功功率P越大,设备的容量越能得到充分利用。
例如,某一供电系统的供电容量S=1000KV·A,当cos=0.5时,输出的有功功率P=500KW;如果cos=0.9时,则输出的功率P可达900KW。
可见,低压电网进行无功补偿提高功率因数,可使供电设备得到充分的利用。
2、减少了供电设备和输电线路的功率损耗,达到降损节能的效果由P=UIcos可得I=P/Ucos。
在负载消耗的有功功率P和电压U一定时,功率因数cos越高,供电线路电流I越小,使供电设备和输电线路的功率损耗减小,也减小了供电设备和线路的发热。
三、低压电网中无功补偿提高功率因数的一般方法进行无功补偿提高功率因数而又不改变负载两端的工作电压,通常的方法是:1、提高用电设备本身的功率因数。
提高用电设备的功率因数,主要是合理选用异步电动机和电力变压器的容量,即不要用大容量的电动机带小功率负载,因为它们轻载或空载时,功率因数低,满载时功率因数高,所以选用变压器和电动机的容量不宜过大,应尽量减少空载或长期处于低负载运行状态。
2、并联补偿法。
常采用在电感性负载两端并联电容器的方法来提高电路的功率因数。
论低压配电网的无功补偿技术摘要:现代生活我们已经离不开“电”了,电是通过电网传送至我们每家每户的,而无功补偿是电力系统中不可缺少的一种装置。
随着城乡电网改造的发展,电网的安全可靠性要求不断提高,供电环境有了很大的改善。
无功补偿技术作为低压电网的重要因素,在低压电网被广泛应用。
本文重点介绍低压配电网无功补偿方面的现状及办法。
关键词:无功功率无功补偿无功控制策略一、无功功率的定义、无功补偿的作用及无功功率的产生1、无功功率的定义:是建立交变磁场和感应磁通而需要的电功率,无功功率不是无用功率,它的用处很大,没有无功功率,电动机就不会转动,变压器也不能变压,交流接足器不会吸合。
2、无功补偿的作用:无功补偿可以收到下列的效益:①提高用户的功率因数,从而提高电工设备的利用率;②减少电力网络的有功损耗;③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力;④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性;⑤装设静止无功补偿器(SVS)还能改善电网的电压波形,减小谐波分量和解决负序电流问题。
对电容器、电缆、电机、变压器等,还能避免高次谐波引起的附加电能损失和局部过热。
3、无功功率如何产生:在低压配电网中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。
电能的用户(负荷)在需要有功功率的同时还需要无功功率,其大小和负荷的功率因数有关;由此可见,无功功率在输电线、变压器中的流动会增加有功功率损耗和无功功率损耗以及电压降落;由于变压器、高压架空线路中电抗值远远大于电阻值,所以无功功率的损耗比有功功率的损耗大,并且引起电压降落的主要因素是无功功率的流动。
一般情况下,电力系统中发电机所发的无功功率和输电线的充电功率不足以满足负荷的无功需求和系统中无功的损耗,并且为了减少有功损失和电压降落,不希望大量的无功功率在网络中流动,所以在负荷中心需要加装无功功率电源,以实现无功功率的就地供应、分区平衡的原则。
实用标准文档低压自动无功补偿装置技术要求1、总则1.1、本技术规范书适用于变电所内配置的RNT低压动态无功功率补偿装置,它提出了该动态无功功率补偿装置本体及附属设备的功能设计、结构、性能、调试和试验等方面的技术要求。
1.2本技术规格书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,供方须提供一套满足本技术规格书和相关标准规范要求的高质量产品及其相应服务,以保证的安全可靠运行。
1.3、供方须执行现行国家标准和电力行业标准。
有矛盾时,按技术要求较高的标准执行。
主要的标准如下:GB/T 15576-2008 《低压成套无功功率补偿装置》GB50227-95 《并联电容器成套装置设计规范》JB5346-1998 《串联电抗器》GB191 《包装贮运标准》GB11032-2000 《交流无间隙金属氧化锌避雷器》GB/T 2681-1981 《电工成套装置中的导体颜色》GB/T 2682-1981 《电工成套装置中的指示灯和按钮的颜色》GB1028 《电流互感器》GB10229 《电抗器》DL/T620-1997 《装置过电压保护和绝缘配合》GB 4208-93 《外壳防护等级》(IP代码)GB/T14549-93 《电能质量-公用电网谐波》另外,尚应符合本技术规格书规定的技术要求和买方的要求。
1.4、未尽事宜,供需双方协商确定。
2、设备环境条件2.1、周围空气温度最高气温:38.4℃最低气温: -29.3℃年平均气温: 6.8~10.6℃2.2、海拔高度:不大于1500米2.3、地震烈度: 6度区,动峰值加速度:0.05g2.4、安装地点:户内3、电容补偿柜技术参数1)额定电压:400V额定绝缘电压:AC 660V1min 额定工频耐受电压:2500V冲击耐压:8kV2)主母线:TMYPE母线:TMY3)系统容量与无功补偿设备等应达到设计要求;4)外形尺寸:具体见附图5)无功功率补偿全部采用动态补偿方式:采用380V电压等级下的动态电容无功补偿柜,补偿容量具体见附表。
无功补偿技术在低压电网中的应用无功补偿技术不仅可以很好的提升供电系统电网的功率参数,还可以有效降低电力变压器及输送线路的消耗。
因此本文对无功补偿技术在低压电网中的应用进行分析和探讨。
标签:无功补偿技术;低压电网;应用1无功补偿的具体特征1.1低压电网无功补偿原理非线性电力设备基于电磁感应原理在低压电网中运行,在能量转换的过程中建立交变磁场、生成感性负荷,在一个周期内完成功率的吸收与释放。
在此过程中,电源能量依靠无功功率的形式进行电能转化,在负荷与电源间做周期性往复转换运动。
当电流在配电网中对电感元件做功时,将会导致电流比电压超前90°C;当其对电容元件做功时,将会使电流较电压滞后90°C,导致电流与电压出现不同相。
在同一电路内,电感电流与电容电流的相位相差180°C,倘若选取无功补偿装置安装在电磁元件电路中,可以促使两种电流相互抵消,使电流、电压矢量夹角显著减小,从而有效优化电网做功性能。
但在运用无功补偿技术时需克服以下三项问题:(1)电网容量不足问题,在用电高峰期极易产生有功负荷、无功负荷缺额情况,造成局部电压不稳,影响电网整体运行效果;(2)技术与设备的缺陷,例如在含有真空断路器的线路中,在合闸时易产生瞬时过高电压,无法起到无功补偿作用;(3)单一化配置模式,难以结合负荷特性选取适合配置方法,对此还需进行控制设备、保护设备的合理选择,以此提高设备利用率。
1.2无功服务的特点1.2.1分析较为繁琐在商业化运行的电力系统中,电力设备运行产生的电压由各参与者一起承担,使用者与发电厂都要清楚自己电压数值和功率因素的限制条件,并且无功调整过程中受到地域因素的影响较大,所以无功运行出现的问题比有功运行出现的问题要繁琐得多。
1.2.2来源多种多样有功运行状态下功率仅由发电机提供,无功运行状态下的功率不仅来源于发电机,还来源于静止无功补偿器和调节器,输电电路设备也可以产生。
1.2.3控制较为分散频率控制需要进行有功平衡,电压控制时需要进行无功平衡。
低压无功补偿计算公式在电力系统中,无功功率是指在交流电路中,电压和电流之间存在一定的相位差,导致电能来回转换而没有实际的功率输出。
而无功功率对于电网的稳定运行和功率因数的控制具有重要意义。
为了解决电网中无功功率的问题,可以采用无功补偿装置来调节电路中的无功功率,提高功率因数,减少能源损耗。
低压无功补偿是指在低压电网中采用无功功率补偿装置来改善电网的无功功率问题。
在实际应用中,我们需要根据电路参数和运行情况来计算需要补偿的无功功率,进而确定无功补偿装置的容量和工作模式。
下面我们来介绍一下低压无功补偿计算公式。
在低压电网中,无功功率的补偿可以采用静态无功功率补偿装置,比如无功功率补偿电容器。
静态无功功率补偿装置的容量大小需要根据电网的无功功率需求来确定,而无功功率的计算公式可以通过电压、电流和功率因数之间的关系来进行推导。
一般来说,低压电路中的无功功率可以通过以下公式来计算:无功功率=电压×电流×sin(相位角),其中电压和电流是指电路中的有效值,相位角是电压和电流之间的相位差。
根据这个公式,我们可以计算出电路中的实际无功功率值。
在实际应用中,为了提高电网的功率因数,我们需要补偿一定量的无功功率,使得整个电路的功率因数接近于1。
因此,根据实际的无功功率值,我们可以计算出需要补偿的无功功率量,进而确定无功功率补偿装置的容量大小。
总的来说,低压无功补偿计算公式是根据电路中的电压、电流和功率因数之间的关系来进行推导的。
通过计算出电路中的实际无功功率值,我们可以确定需要补偿的无功功率量,进而确定静态无功功率补偿装置的容量。
通过合理配置无功功率补偿装置,可以有效改善电网的功率因数,提高电网的稳定性和可靠性。
低压配网无功补偿技术[摘要]介绍电力系统的无功优化和无功补偿是提高系统运行电压,减少网损,提高系统稳定水平的有效手段。
对目前无功补偿和优化存在的问题进行了一定的探讨和研究。
[关键词]无功优化、无功补偿,静止无功补偿技术。
中图分类号:b841.1 文献标识码:a 文章编号:1009-914x(2013)23-0268-01随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。
电力系统中,电压和频率是衡量电能质量的两个最重要的指标。
降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。
为确保电力系统的正常运行,供电电压和频率必须稳定在一定的范围内,频率的控制与有功功率的控制密切相关,电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。
1、无功优化和补偿的原则在无功优化和无功补偿中,首先要确定合适的补偿点。
无功负荷补偿点一般按以下原则进行确定:1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制;2)根据无功就地平衡原则,选择无功负荷较大的节点。
3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。
4)网络中无功补偿度不应低于部颁标准0.7的规定。
2、无功优化和补偿的类型电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。
在超高压输电线路中(500kv及以上),由于线路的容性充电功率很大,据统计在500kv每公里的容性充电功率达1.2mvar/km。
这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。
2.1 减少输电线路及变压器的损耗pn=3i2·r=3i2p·r+3i2q·r式中 pn--有功功率损失r--每项输电线路的电阻(含输电线路及变压器)输电线路电阻r=kl/a式中 k--电阻系数a--导线截面积l--导线长度,m变压器电阻r=yku2/sn式中 yk--变压器短路阻抗,ωu--系统电压,vsn--变压器额定容量,kva2.2 增加变压器及输电线路的利用率所增加的利用率为:(p2-p1)/p1=[(cos1-cos2)-1]×100%式中 cosφ1--改善前的功率因数cosφ2--改善后的功率因数2.3 提高系统的端电压减少系统的电压降du(%)=qc/sn×xk(%)式中 du(%)--电压提高百分比qc--补偿电容器的容量,kvarsn--变压器容量,kvaxk(%)--变压器阻抗百分比理论上而言,无功补偿最好的方式是在哪里需要的无功,就在哪里补偿,整个系统将没有无功电流的流动。
低压无功补偿技术及其应用[摘要]:无功补偿可降低电能损耗,文章论述了异步电动机无功就地补偿及低压无功集中补偿技术及其应用。
提倡大力推广低压无功补偿,以达到节能降耗的目的。
[关键词]:低压无功补偿;技术;应用交流异步电动机应用广泛,所需无功功率最大,未经补偿的综合负荷的自然功率因数为0.6~0.9,异步电动机比例较高的负荷的功率因数为0.6。
低压用户点多量广、比较分散,很多异步电动机都未装设无功补偿装置,低压电网功率因数较低,线路损耗及变压器损耗比较大。
针对目前对低压电网的无功补偿不重视的现状,本文大力提倡推广异步电动机无功就地补偿及低压电网无功集中补偿,以达到较明显的节能降耗效果。
低压补偿无功功率,可采用并联电容器的方法,可分散装设或集中使用,能做到就地补偿无功功率以降低电网的电能损耗。
电容本身并不节电,但电容电流可抵消电感电流,从而减少输配电线路中流动的电流,从而减少电流引起的损耗及电压降。
下面先介绍无功补偿降低电能损耗的原理。
设R为线路的单相电阻, I1、U1分别为线路原来的电流、电压,I2、U2分别为功率因数提高的线路电流、电压。
P为线路输送的有功功率,△P1为线路原损耗,△P2为功率数提高后线路的损耗,则线路损耗减少为ΔP=△P1- △P2 =3R(I12- I22)比原来损耗减少的百分数为(ΔP/△P1)×100%=[1-( I2/ I1 ) 2] ×100%式中I1=P/( 3 U1cosφ1) ,I2=P/( 3 U2cosφ2 )补偿后,由于功率因数提高,U2> U1,为分析方便,可认为U2≈U1,则(ΔP/△P1)×100%=[1-( cosφ1 /cosφ2) 2]×100%cosφ1为原功率因数, cosφ2为无功补偿提高后功率因数。
例如: 原功率因数为0.7,提高至0.85后,线路损耗减少计算为:(ΔP/△P1)×100%=[1-( 0.7/ 0.85 ) 2] ×100%=33%变压器损耗由铁损和铜组损成,功率因数提高后,铁损基本不变,铜损也同线路一样与电流平方成正比,功率因数提高后,电流减少了,所以铜损也减少了,变压器损耗也减少了。
低压无功补偿是一种电力系统中常用的电力调节技术,它主要通过对电流的调整来改善电网的功率因数和电压质量。
其作用和原理如下:作用:1. 改善功率因数:低压无功补偿可以通过提供并吸收无功功率来改善电网的功率因数。
当功率因数低于标准值时,无功补偿设备可以注入无功功率,降低系统的无功功率,从而提高功率因数。
2. 提高电压稳定性:无功补偿设备可以通过调整电网中的无功功率来控制电压水平。
当电压低于标准值时,无功补偿设备可以注入无功功率,提高电网的电压水平,从而提高电网的稳定性。
3. 减少线路和设备的损耗:由于无功补偿可以改善功率因数,从而减少了系统中的无效功率流动,使得电网中的线路和设备的损耗减少。
原理:低压无功补偿通常采用电容器和电抗器来实现。
电容器用于提供无功功率,而电抗器用于吸收无功功率。
1. 电容器:电容器可以存储和释放电荷,当系统需要额外的无功功率时,电容器可以通过释放电荷来提供所需的无功功率。
这样可以减少系统中的无功功率需求,改善功率因数。
2. 电抗器:电抗器是一种能够吸收无功功率的装置。
当系统中存在过多的无功功率时,电抗器可以吸收部分无功功率,从而降低系统中的无功功率,改善功率因数。
低压无功补偿通常通过控制电容器和电抗器的开关状态来实现对无功功率的调节。
根据电网的需求,可以使用静态补偿装置(如电容器和电抗器组)或动态补偿装置(如STATCOM和SVC)来实现无功功率的补偿。
总的来说,低压无功补偿的作用和原理是通过调节无功功率来改善功率因数、提高电压稳定性,减少线路和设备的损耗,从而优化电力系统的运行和效率。
刍议低压配电网中无功补偿技术摘要:本文阐述了无功补偿技术的基本状况和其对电网的影响,整合提出低压配电网的无功补偿方式和无功补偿时应注意的问题。
关键词:配电无功补偿电网一、无功补偿技术的研究现状和发展1.同步调相机同步调相机实际上是一台空载运行的同步电动机,专门向电网输送无功功率。
它不带机械负荷也可以进行过励磁或欠励磁运行。
如果电网电压偏低,同步调相机处于过励磁运行状态供给无功功率,此时可调高系统电压;如果电网电压偏高,同步调相机则处于欠励磁运行状态吸收无功功率,此时可调低系统电压。
故这种自动调节的励磁装置能够在电力系统端电压波动变化时对无功功率进行自动调节,从而维持系统电压,提高系统运行的稳定性。
2.并联电容补偿并联电容补偿就是将固定的电容器与感性负载相并联,改变负载的相位角,从而提高负载的功率因数,实现对负载侧的无功补偿。
它既可被安装于配电变压器侧,又可对负载进行就地补偿。
和调相机相比,其优点是结构简单、经济实用,但由于其阻抗是不变的,所以无功输出的大小不可调节,不能实时适应负荷的无功功率变化,即不能实现动态的无功补偿。
3.静止无功补偿静止无功补偿装置简称静止补偿器(英文缩写为SVC),主要有断路器和电力电子开关两种,由于用断路器作为接触器的开关速度较慢,不能及时跟踪负荷的无功功率变化,所以应用较少。
随着电力电子技术的发展,交流无触点的投切开关开始被大量应用于电力系统中。
这种静止无功补偿装置主要包括晶闸管控制抗器和晶闸管投切电容器,通过用不同的静止开关投切电容器或电抗器,使得它能吸收或发出无功功率,进而增大系统的功率因数,提高系统的稳定性。
SVC与一般并联电容器补偿装置的区别在于其能够实时跟踪电网和负荷的无功变化,对系统的无功功率进行动态补偿。
4.静止无功发生器在低压供电无功补偿领域中,~Esvc更为先进的现代补偿装置是静止无功发生器(sVG),由于采用高频电力电子开关器件和特殊的电力电子电路结构,通过对控制算法的改进,使得它不仅可以实时、精确地补偿无功功率,而且能够起到滤波和抑制谐波的作用,因此静止无功发生器日益成为无功功率补偿的重要手段。