1-概率与统计
- 格式:docx
- 大小:161.50 KB
- 文档页数:27
考研数学⼀-概率论与数理统计(⼀)考研数学⼀-概率论与数理统计(⼀)(总分:100.00,做题时间:90分钟)⼀、选择题(总题数:10,分数:40.00)1.设随机变量X服从正态分布N(1,σ2 ),其分布函数为F(x),则对任意实数x,有______(分数:4.00)A.F(x)+F(-x)=1.B.F(1+x)+F(1-x)=1.√C.F(x+1)+F(x-1)=1.D.F(1-x)+F(x-1)=1.解析:[解析] 由于X~N(1,σ2 ),所以X的密度函数f(x)的图形是关于x=1对称的,⽽可知正确答案是B.2.设X~P(λ),P 1,P 2分别为随机变量X取偶数和奇数的概率,则______(分数:4.00)A.P1=P2.B.P1<P2.C.P1>P2.√D.P1,P2⼤⼩关系不定.解析:[解析] 若X~P(λ),则,其中X取偶数的概率为X取奇数的概率为于是应选C.3.设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对于任意实数a,有______ A.B.C.F(-a)=F(a).D.F(-a)=2F(a)-1.(分数:4.00)A.B. √C.D.解析:[解析] 概率密度f(x)为偶函数,于是对于任意实数a,有F(-a)=1-F(a)成⽴;利⽤区间可加性得结合上⾯的等式,于是得应选B.4.设⼆维随机变量(X,Y)在区域D:x 2 +y 2≤9a 2 (a>0)上服从均匀分布,p=P{X 2 +9Y 2≤9a 2 },则A.p的值与a⽆关,且B.p的值与a⽆关,且C.p的值随a值的增⼤⽽增⼤.D.p的值随a值的增⼤⽽减⼩.(分数:4.00)A.B. √C.D.解析:[解析] 因为(X,Y)在区域D:x 2 +y 2≤9a 2上服从均匀分布,所以(X,Y)的联合密度函数为故选B.5.设随机变量X与Y服从正态分布N(-1,2)与N(1,2),并且X与Y不相关,aX+Y与X+by亦不相关,则______(分数:4.00)A.a-b=1.B.a-b=0.C.a+b=1.D.a+b=0.√解析:[解析] X~N(-1,2),Y~N(1,2),于是D(X)=2,D(Y)=2.⼜Cov(X,Y)=0,Cov(aX+Y,X+bY)=0,由协⽅差的性质有故选D.6.已知总体X的期望E(X)=0,⽅差D(X)=σ2.X 1,…,X n是来⾃总体X的简单随机样本,其均值为,则下⾯可以作为σ2⽆偏估计量的是______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析] 由于E(X)=0,D(X)=E(X 2 )=σ2,则所以选择C.对于A,B选项,由E(S 2 )=σ2,知均不是σ2的⽆偏估计量.7.设随机变量序列X 1,…,X n,…相互独⽴,则根据⾟钦⼤数定律,当n→∞时,于其数学期望,只要{X n,n≥1}满⾜______(分数:4.00)A.有相同的数学期望.B.服从同⼀离散型分布.C.服从同⼀泊松分布.√D.服从同⼀连续型分布.解析:[解析] ⾟钦⼤数定律的应⽤条件为:“独⽴同分布且数学期望存在”,选项A缺少同分布条件,选项B、D虽然服从同⼀分布但不能保证期望存在,只有C符合该条件.故选C.8.设X 1,X 2,…,X n是来⾃总体X的简单随机样本,是样本均值,C为任意常数,则______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析故选C.9.设总体X服从正态分布N(0,σ2 ),X 1,X 2,…,X 10是来⾃X的简单随机样本,统计量从F分布,则i等于______(分数:4.00)A.4.B.2.√C.3.D.5.解析:[解析] 因为X 1,X 2,…,X 10是来⾃X的简单随机样本,故独⽴同分布于N(0,σ2 )因此,则有⼜与相互独⽴,故故选B.10.在假设检验中,如果待检验的原假设为H 0,那么犯第⼆类错误是指______(分数:4.00)A.H0成⽴,接受H0.B.H0不成⽴,接受H0.√C.H0成⽴,拒绝H0.D.H0不成⽴,拒绝H0.解析:[解析] 直接应⽤“犯第⼆类错误”=“取伪”=“H 0不成⽴,接受H 0”的定义,选择B.⼆、解答题(总题数:10,分数:60.00)11.每次从1,2,3,4,5中任取⼀个数,且取后放回,⽤b i表⽰第i次取出的数(i=1,2,3),三维列向量b=(b 1 ,b 2 ,b 3 ) T,三阶⽅阵,求线性⽅程组Ax=b有解的概率.(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:对增⼴矩阵作初等⾏变换有于是Ax=b有解的充要条件是,即b 3 -2b 2 +b 1 =0,其中b 1,b 2,b 3相互独⽴,且分布律相同:,k=1,2,3,4,5,i=1,2,3.所以Ax=b有解的概率为甲、⼄两个⼈投球,甲先投,当有任⼀⼈投进之后便获胜,⽐赛结束.设甲、⼄命中率分别为p 1,p 2,0<p 1,p 2<1.求:(分数:6.00)(1).甲、⼄投球次数X 1与X 2的分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:每次投篮是相互独⽴的与其他⼏次⽆关.事件X 1 =n表⽰“甲投了n次”,即“甲、⼄各⾃在前n-1次没有投进,在第n次时甲投进或⼄投进”,所以P{X 1 -n}=(q 1 q 2 ) n-1 (p 1 +q 1 p 2 ),n=1,2,…其中:q i =1-p i,i=1,2.事件“X 2=m”表⽰“⼄投了m次”,即“甲、⼄前m-1次均没有投进,甲在第m次也没有投进,⼄在第m 次投进”,或“甲、⼄前m次均没有投进,甲在第m+1次投进”.特殊地,当m=0时,表⽰甲第⼀次就投中,所以P{X 2 =m}=(q 1 q 2 ) m-1 (q 1 p 2 +q 1 q 2 p 1 )=q 1 (p 2 +q 2 p 1 )(q 1 q 2 ) m-1,m=1,2,…(2).若使甲、⼄两⼈赢得⽐赛的概率相同,则p 1,p 2满⾜什么条件?(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:设事件A表⽰“甲获胜”,则总投篮次数为奇数.当X 1 +X 2 =2n-1时,意味着甲、⼄前n-1次都未投进,甲在第n次投进,于是有P{X 1 +X 2 =2n-1}=p 1 (q 1 q 2 ) n-1,则若甲、⼄两⼈赢得⽐赛的概率相同,则12.设随机变量X在区间(0,1)上服从均匀分布,⼜求Y的概率密度f Y (y)与分布函数F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:解法⼀:应⽤单调函数公式法先求Y的概率密度f Y (y).由于X在(0,1)内取值所以的值域为(0,+∞),且y=g(x)在(0,1)单调.因此其反函数在(0,+∞)内单调可导,其导数h"(y)=2e -2y,在其定义域(0,+∞)内恒不为零.⼜因为X的概率密度所以Y的概率密度因此可见Y服从参数为2的指数分布,其分布函数为解法⼆:⽤分布函数法先求出Y的分布函数F Y (y).当y≤0时,F Y (y)=0;当y>0时,0<x=1-e -2y<1,最后⼀步是由于X服从(0,1)上的均匀分布.故所求Y的分布函数为将F Y (y)对y求导,得设随机变量(X,Y)的概率密度为试求:(分数:6.00)(1).(X,Y)的分布函数;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:①当x≤0或y≤0时,f(x,y)=0,故F(x,y)=0.②当0<x≤1,0<y≤2时,③当0<x≤1,y>2时,④当x>1,0<Y≤2时,⑤当x>1,y>2时,综上所述,分布函数为(2).(X,Y)的边缘分布密度;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当0≤x≤1时,当0≤y≤2时,(3).概率P{X+Y>1},P{Y>X} 2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,如下图所⽰,所以设(X,Y)服从D={(x,y)|y≥0,x 2 +y 2≤1}上的均匀分布,定义(分数:6.00)(1).求(U,V)的联合分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由题设可知,故(U,V)的可能值为(0,0),(0,-1),(0,1),(1,-1),(1,0),(1,1).则(U.V)的联合分布律为(2).求关于V的边缘分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由(U,V)的联合分布律得V的边缘分布律为(3).求在U=1的条件下V的分布律.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:,所以所以所求V的分布律为13.设随机变量X的概率密度为,求随机变量 F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:记如下图所⽰,φ(x)在[0,+∞)内最⼩值为-1,⽆最⼤值,在[0,+∞)左端点处的值为0.y=-1,0将y轴分成(-∞,-1),[-1,0),[0,+∞)三个区间.当y∈(-∞,-1)时,F Y (y)=0.当y∈[-1,0)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴上的投影与[0,+∞)的交集为F Y (y)=f X (x)在上的积分为当y∈[0,+∞)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴的投影与[0,+∞)的交集为,此时F Y (y)=f X (x)在上的积分为综上所述,y的分布函数为设随机变量X在区间(0,2)上随机取值,在X=x(1<x<2)条件下,随机变量Y在区间(1,x)上服从均匀分布.(分数:6.00)(1).求(X,Y)的联合概率密度,并问X与Y是否独⽴;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:根据题设X在(0,2)上服从均匀分布,其密度函数为⽽变量Y,在X=x(1<-x<2)的条件下,在区间(1,x)上服从均匀分布,所以其条件概率密度为再根据条件概率密度的定义,可得联合概率密度⼜所以由于f X (x)f Y(y)≠f(x,y),所以X与Y不独⽴.(2).求P{3Y≤2X};(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,(3).记Z=X-Y,求Z的概率密度f Z (z).(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:已知(x,y)~f(x,y),则Z=X-Y的取值范围为0<Z<1.当0<z<1时,Z=X-Y的分布函数为则故设随机变量X与Y相互独⽴,X的概率分布为,Y的概率密度函数为Z=X+Y.求:(分数:6.00)3.00)__________________________________________________________________________________________ 正确答案:()(2).Z的概率密度函数.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:F Z(z)=P{Z≤z}=P{X+Y≤z}=P{X=-1,Y≤z+1}+P{X=0,Y≤z}+P{X=1,Y≤z-1}.因为X与Y相互独⽴,故①当z+1<0(z-1<-2),即z<-1时,f Y (y)=0,从⽽F Z (z)=0;②当0≤z+1<1(-2≤z-1<-1),即-1≤z<0时,③当-1≤z-1<0(1≤z+1<2),即0≤z<1时,④当0≤z-1<1(2≤z+1<3),即1≤z<2时,⑤当1≤z-1(3≤z+1),即z≥2时,综上故设⼆维连续型随机变量(X,Y)的联合概率密度为U=X+Y,V=X-Y.求:(分数:6.00)(1).U的分布函数F 1 (u);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当u<0时,F 1 (u)=0;当u≥0时,故U的分布函数F 1 (u)为(2).V的分布函数F 2 (v);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当v<0时,F 2 (v)=0;当v≥0时,故V的分布函数F 2 (v)为(3).P{U≤u,V≥v}(u>v>0),并判断U与V是否独⽴.(分数:2.00)__________________________________________________________________________________________ 正确答案:()当u>0,v>0时,P{U≤u}P{V≥v}=F 1(u)·[1-F 2 (v)]=e -2v (1-e -u ) 2≠P{U≤u,V≥v},从⽽可知,U与V不独⽴.设⼆维随机变量(X,Y)在矩形区域D={(x,y)|0≤x≤2,0≤y≤2}上服从⼆维均匀分布,随机变量求:(分数:6.00)(1).U和V的联合概率分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:(U,V)的可能取值为(-1,-1),(-1,1),(1,-1,),(1,1),如下图.依题意知,X与Y的联合概率密度为则有同理类似地可以计算出其他P ij的值:(2).讨论U和V的相关性和独⽴性.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:从(U,V)的联合分布与边缘分布可以计算出所以E(UV)=E(U)·E(V),U与V不相关;⼜因为P{U=u,V=v}=P{U=u}·P{V=v},所以U与V相互独⽴.。
统计与概率的关系统计与概率是数学中两个重要的概念,它们有着紧密的关系。
统计是通过对已有的数据进行收集、整理和分析,从中得出结论或推断的一门学科。
而概率则是用来描述事件发生的可能性的一种数学工具。
在实际生活和科学研究中,统计与概率常常相互依存,相互补充,共同帮助我们理解和解决问题。
统计与概率之间的关系体现在统计学中的概率论部分。
概率论是研究随机现象的数学理论,它是统计学的理论基础之一。
通过概率论,我们可以计算事件发生的可能性,从而对未知的事物进行预测和推断。
例如,我们可以通过概率论来计算掷骰子时每个点数出现的概率,或者计算在一批产品中出现次品的概率。
这些概率计算是统计学中常用的方法,可以帮助我们做出合理的决策。
统计与概率之间的关系还体现在统计推断中。
统计推断是通过对样本数据进行分析和推断,来对总体特征进行估计的方法。
在进行统计推断时,我们需要根据样本数据的分布情况,结合概率论的知识,对总体参数进行估计。
例如,在进行调查时,我们可以通过对一部分人的调查结果进行统计推断,来估计整个人群的特征。
这其中就涉及到了概率论中的概率分布和抽样分布等知识。
统计与概率的关系还可以从实际问题的解决中得到体现。
在现实生活中,我们经常需要通过统计和概率来解决问题。
例如,在医学研究中,我们可以通过统计方法来分析一种药物的疗效,或者预测某种疾病的发生概率。
在金融领域,我们可以通过统计方法来分析股票的涨跌概率,或者估计某种投资产品的风险。
在工程领域,我们可以通过统计方法来分析产品的可靠性,或者预测设备的寿命。
这些实际问题的解决都离不开统计与概率的知识和方法。
统计与概率是数学中两个紧密相关的学科,它们相互依存,相互补充,共同帮助我们理解和解决问题。
统计通过对已有数据的收集和分析,可以得出结论和推断;概率则是描述事件发生可能性的数学工具。
统计与概率在统计学中的概率论部分以及统计推断中起着重要的作用,并在实际问题的解决中得到广泛应用。
统计与概率的关系统计与概率是数学中两个相关但又有所区别的概念。
统计是通过收集和分析数据来描述和解释现象的科学,而概率则是研究随机事件发生的可能性的数学工具。
虽然它们在方法和应用上有所不同,但统计与概率之间存在着密切的联系和相互依赖关系。
统计和概率都是用来研究和描述现实世界中的不确定性的工具。
统计学通过收集、整理和分析大量的数据,从而得出关于总体特征和规律的结论。
而概率则是通过数学模型和统计推断来研究和计算随机事件发生的可能性。
统计和概率都涉及到随机变量和概率分布的概念。
在统计中,随机变量是指在一定条件下可能取到不同值的变量,而概率分布则是描述这些随机变量取值的规律。
通过统计分析,我们可以了解和预测某个随机变量的分布情况,从而得出相关的结论。
而概率则是通过数学模型和计算来描述和计算随机变量的分布情况。
统计和概率都涉及到样本和总体的概念。
在统计中,样本是指从总体中选取的一部分个体或观测值,通过对样本进行分析和推断,我们可以得出关于总体的结论。
而概率则是通过样本来估计总体的参数和分布情况。
统计和概率都是从观测数据中推断未知信息的工具。
在统计中,我们通过收集和分析数据来推断总体的特征和规律。
而概率则是通过已知的信息和假设,计算和推断未知事件发生的可能性。
统计和概率都是基于数据和假设进行推断和预测的工具。
统计和概率在实际应用中经常相互结合。
在很多实际问题中,我们需要通过统计分析来估计概率分布的参数和分布情况。
而在概率计算中,我们也常常需要依赖统计数据来计算和估计概率值。
统计和概率的结合可以更好地解决实际问题,并提供更准确的结果和预测。
统计与概率之间存在着密切的联系和相互依赖关系。
统计是从数据中推断总体特征和规律的科学,而概率则是研究随机事件发生的可能性的数学工具。
统计和概率的结合可以更好地解决实际问题,并提供更准确的结果和预测。
通过学习和应用统计和概率,我们可以更好地理解和描述现实世界中的不确定性,为决策和问题解决提供科学的依据。
概率与统计知识点总结概率与统计是数学中的重要分支,广泛应用于各个领域。
它们是研究随机现象的规律性和统计规律的数学方法。
本文将对概率与统计的基础知识点进行总结,并介绍其应用领域。
一、概率1. 概率的基本概念概率是事件发生的可能性大小的度量。
其中,随机试验是指具有不确定性的实验,样本空间是指该实验的所有可能结果的集合,事件是样本空间的子集。
2. 概率的计算规则概率的计算通常使用频率来估计,频率是指在大量重复试验中某一事件发生的次数与总试验次数之比。
根据频率计算概率的规则有加法规则和乘法规则。
3. 条件概率与独立事件条件概率是指事件A在事件B发生条件下发生的概率,表示为P(A|B)。
独立事件是指两个事件互不影响,其概率的乘积等于各自概率的积。
4. 事件的组合与排列组合是指从n个不同元素中取出m个元素(m≤n)的方式数,用C(n,m)表示。
排列是指从n个不同元素中按一定顺序取出m个元素(m≤n)的方式数,用P(n,m)表示。
二、统计1. 统计的基本概念统计是指通过收集、整理和分析数据来描述和推断总体的方法。
其中,总体是指研究对象的全体,样本是从总体中抽取的一部分。
2. 数据的表示与整理数据可以使用表格、图表等形式进行表示。
常用的图表有条形图、饼图、折线图等。
数据的整理包括频数分布、频率分布等。
3. 统计指标统计指标是对数据进行度量和描述的工具,常用的统计指标有均值、中位数、众数、标准差等。
均值是指一组数据的算术平均值,中位数是指一组数据中居于中间位置的数值,众数是指一组数据中出现频次最高的数值。
4. 抽样与推断抽样是从总体中随机抽取样本的方法。
通过对样本的分析,可以对总体进行推断。
常用的推断方法有参数估计和假设检验。
三、概率与统计的应用领域1. 自然科学概率与统计在物理学、化学、生物学等自然科学中有广泛应用。
例如,在物理学中,概率与统计可以用来描述微粒的运动规律;在化学中,可以用来研究物质反应的速率与产率;在生物学中,可以用来研究生物种群的数量与分布。
高中二年级数学概率与统计初步概率与统计是高中数学中的一门重要课程,它涵盖了概率和统计两个方面。
概率是用来描述事件发生的可能性,而统计则是通过对数据进行收集、分析和解释,来给出结论。
本文将从概率和统计两个角度来介绍高中二年级数学中的初步内容。
一、概率1.1 概率的基本概念概率是描述随机事件发生可能性的数值。
在实际生活中,我们经常会遇到概率的问题,比如投掷一枚硬币正面朝上的概率是多少,抽一张扑克牌时抽到黑桃的概率是多少等等。
1.2 事件与样本空间在概率问题中,事件是指某个具体结果的集合,样本空间是指所有可能结果的集合。
例如,投掷一枚硬币,事件可以是正面朝上,样本空间可以是{正面,反面}。
1.3 概率的计算方法在概率的计算中,有两种主要的方法:频率法和古典概型法。
频率法是通过做大量的实验来计算概率,古典概型法是通过确定每个结果出现的可能性来计算概率。
二、统计2.1 数据的收集与整理统计的第一步是收集数据,并对数据进行整理和分类。
我们可以使用表格、图表等形式来展示数据,以便更好地进行分析。
2.2 数据的描述性统计描述性统计是用来对收集到的数据进行概括和描述的方法。
常用的描述性统计方法包括平均数、中位数、众数、标准差等。
2.3 样本与总体在统计学中,我们通常会采集一部分数据作为样本,用来对整个总体进行推断。
样本的选择要具有代表性,以确保结果的可靠性。
2.4 统计推断统计推断是通过对样本数据进行分析,来推断总体的特征和性质。
常用的统计推断方法包括假设检验、置信区间等。
结论概率与统计是高中数学中的一门重要课程,它们在实际生活和各个领域中都有广泛的应用。
通过学习概率与统计,学生可以培养逻辑思维能力,提高数据分析和决策能力,为将来的学习和工作打下坚实的基础。
希望本文对读者对高中二年级数学概率与统计初步有所帮助。
考研数学一-概率论与数理统计假设检验(总分:23.00,做题时间:90分钟)一、选择题(总题数:12,分数:12.00)1.在假设检验中,显著性水平α是(分数:1.00)A.第一类错误概率.B.第一类错误概率的上界.C.第二类错误概率.D.第二类错误概率的上界.2.在假设检验中,显著性水平α的意义是(分数:1.00)A.原假设H0成立,经检验被拒绝的概率.B.原假设H0成立,经检验被接受的概率.C.原假设H0不成立,经检验被拒绝的概率.D.原假设H0不成立,经检验被接受的概率3.对正态总体的数学期望μ进行假设检验,如果在显著性水平α=0.05下接受H0:μ=μ0,H1:μ>μ0,则在显著性水平α=0.01下(分数:1.00)A.必接受H0.B.必拒绝H0,接受H1.C.可能接受也可能拒绝H0.D.拒绝H0,可能接受也可能拒绝H1.4.在假设检验中,如果待检验的原假设为H0,那么犯第二类错误是指(分数:1.00)A.H0成立,接受H0.B.H0不成立,接受H0.C.H0成立,拒绝H0.D.H0不成立,拒绝H0.5.假设总体X服从正态分布N(μ,1),关于总体X的数学期望μ有两个假设H0:p=0;H1:μ=1.已知X1,…,X9是来自总体X uα表示标准正态分布上α分位数,H0的4个否定域分别取为1.00)A.B.C.D.6.假设某种元件寿命(单位:千小时)原来服从正态分布N(5,0.32),现采用新工艺加工,所得的产品寿命服从正态分布N(μ,0.32).为检验这种工艺是否提高元件的使用寿命,为此需要做统计检验,如果检验者对新工艺持保守态度,将元件寿命没有提高作为原假设H0,那么原假设,备择假设应该是(分数:1.00)A.H0:μ=5;H1:μ≠5.B.H0:μ=5;H1:μ>5.C.H0:μ=5;H1:μ<5.D.H0:μ≤5;H1:μ>5.7.对取显著性水平为α的假设检验问题,犯第一类错误(弃真)的概率为p,则(分数:1.00)A.p≤1-α.B.p≥1-α.C.p≤α.D.p≥α.8.假设总体X H0:μ=μ0;H1:μ>μ0.如果取H0的否定域为(x1,…,x n)C 1.00)A.B.C.D.9.自动装袋机装出的物品每袋重量服从正态分布N(μ,σ2),规定每袋重量的方差不超过a.为了检验自动装袋机的生产是否正常,对它生产的产品进行抽样检查,取零假设H0:σ2≤a,显著性水平α=0.05,则下列说法正确的是(分数:1.00)A.如果生产正常,则检验结果也认为生产是正常的概率为95%.B.如果生产不正常,则检验结果也认为生产是不正常的概率为95%.C.如果检验结果认为生产正常,则生产确实正常的概率为95%.D.如果检验结果认为生产不正常,则生产确实不正常的概率为95%.10.假设总体X服从正态分布N(μ,σ2),其中μ,σ2均为未知参数,则下列统计假设中属于简单假设的是(分数:1.00)A.H0:μ:0,σ>1.B.H0:μ=0,σ=1.C.H0:μ<3,σ=1.D.H0:0<μ<3.11.设X1,…,X n是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ和σ2未知,样本均值与方差分S2,则假设H0:μ=μ0选用的检验统计量为1.00)A.B.C.D.12.在产品质量检验时,原假设H0:产品合格.为了使次品混入正品的可能性很小,则在样本容量n固定的条件下,显著性水平α(0<α<1)(分数:1.00)A.应取大些.B.应取小些.C.应取定数.D.可以取(0,1)中的任意数.二、填空题(总题数:4,分数:6.00)13.假设总体Xσ0=0.3.基于来自总体X的容量为9的简单随机样本,2.00)填空项1:__________________14.假设总体X~N(μ,1),关于总体X的数学期望μ的假设H0:μ=0;基于来自总体X的容量为9的简单1.00)填空项1:__________________15.假设总体X~N(μ,σ2),且X1,X2,…,X n是来自总体X的简单随机样本,设1.00)填空项1:__________________16.已知总体X服从正态分布N(μ,1),关于期望μ的待检假设H0:μ=0,H1:μ=1.已知X1,…,X9是来自总体X H0的否定域为 2.00)填空项1:__________________三、解答题(总题数:1,分数:5.00)17.某工厂生产零件长度X服从正态分布N(μ,σ2),根据其精度要求,零件长度标准差不得超过0.9,现从该产品中取出19个样本,测得样本标准差S=1.2.问在显著性水平α=0.01下能否认为这批零件标准差显著偏大.如果α=0.05,结论又如何α 5.00)__________________________________________________________________________________________。
NO.1 概率论基本概念一、随机试验1.确定性现象:必然发生或必然不发生的现象。
2.随机现象:在一定条件下我们事先无法准确预知其结果的现象,称为随机现象.3.随机现象的特点:人们通过长期实践并深入研究之后,发现这类现象在大量重复试验或观察下,它的结果却呈现出某种统计规律性.概率论与数理统计是研究随机现象统计规律性的一门学科.4.随机试验:为了对随机现象的统计规律性进行研究,就需要对随机现象进行重复观察, 我们把对随机现象的观察称为随机试验, 并简称为试验,记为E .随机试验具有下列特点:(1)可重复性: 试验可以在相同的条件下重复进行;(2)可观察性: 试验结果可观察,所有可能的结果是明确的;(3)随机性(不确定性): 每次试验出现的结果事先不能准确预知. ,但可以肯定会出现所有可能结果中的一个.二、样本空间、随机事件1.样本点:随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ω.2.样本空间:全体样本点组成的集合称为这个随机试验的样本空间,记为∧.(或S ).即∧={ω1 ,ω2 ,!,ωn ,!}3.随机事件:我们称试验E 的样本空间∧的子集为E 的随机事件,简称事件,在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性.一般用A, B, C,,…等大写字母表示事件.设A 为一个事件,当且仅当试验中出现的样本点ω∈A 时,称事件 A 在该次试验中发生.注: 要判断一个事件是否在一次试验中发生,只有当该次试验有了结果以后才能知道.(1)基本事件:仅含一个样本点的随机事件称为基本事件.(2)必然事件:样本空间∧本身也是∧的子集,它包含∧的所有样本点,在每次试验中∧必然发生,称为必然事件.即必然发生的事件.(3)不可能事件:.空集Φ也是∧的子集,它不包含任何样本点,在每次试验中都不可能发生,称为不可能事件.不可能发生的事件是不包含任何样本点的.三、事件间的关系与运算记号概率论集合论∧ 样本空间,必然事件全集∅ 不可能事件空集ω 基本事件元素A 事件子集A A的对立事件A的余集A ⊂B 事件A发生导致B发生A是B的子集A =B 事件A与事件B相等A与B的相等A ! B事件A与事件B至少有一个发生A与B的并集AB 事件A与事件B同时发生A与B的交集A -B 事件A发生而事件B不发生A与B的差集AB =∅ 事件A和事件B互不相容A与B没有相同的元素1.子事件、包含关系A ⊂B事件A是事件B的子事件含义:事件A发生必然导致事件B发生, ∅⊂A ⊂∧2.相等事件A =B :若事件A发生必然导致事件B 发生,且若事件B 发生必然导致事件A 发生,即B ⊃A且A ⊃B ⇔A=B注:事件 A 与事件 B 含有相同的样本点3.和事件或并事件A !B = { x x ∈A或x∈B },事件A ! B是事件A和事件B的和事件事件A ! B 发生⇔ 事件A 发生或事件B 发生⇔ 事件A 与B 至少有一个发生n称" A k 为n 个事件A 1,A 2,!,A n 的和事件k =1∞称" A k 为可列个事件A 1 , A 2 ,!, A n ,!的和事件k =14. 积事件或交事件A !B = {x x ∈ A 且x ∈ B }, 事件A ! B 是事件A 与事件B 的积事件事件A ! B 发生⇔ 事件A 与事件B 同时发生积事件A ! B 可简记为ABn称" A k 为n 个事件A 1,A 2,!,A n 的积事件k =1∞称" A k 为可列个事件A 1 , A 2 ,!, A n ,!的积事件.k =15. 事件的差A -B = {x x ∈ A 且x ∉ B }, 事件A - B 称为事件A 与事件B 的差事件事件A - B 发生⇔ 事件A 发生而事件B 不发生.注: A - B = A - AB6. 互斥或互不相容A !B = Φ 则称事件A 与事件B 是互不相容的,或互斥的.A !B = Φ ⇔事件 A 和随机 B 不能同时发生.注: 任一个随机试验E 的基本事件都是两两互不相容的.推广:设事件 A 1,A 2,!,A n 满足 A i A jA 1,A 2,!,A n 是两两互不相容的. 7. 对立事件或互逆事件= Φ (i , j = 1, 2,!, n , i ≠ j ) 称事件若事件 A 和事件 B 中有且仅有一个发生,即 A ! B = ∧, AB = Φ则事件 A 和事件 B 为互逆事件或对立事件。
2006年普通高等学校招生全国统一考试数学分类汇编第十一章《概率统计》一、选择题(共11题) 1.(安徽卷)在正方体上任选 概率为 A .-7324个顶点上可得三个(即正方体的一边与过此点的一条面对角线),共有24个,得,故G2.(福建卷)在一个口袋中装有 5个白球和3个黑球,这些球除颜色外完全相同, 从中摸出3个球,至少摸到 2个黑球的概率等于 A.2B.3C?7 8 7解析:在一个口袋中装有 5个白球和3个黑球,这些球除颜色外完全相同。
至少摸到2个黑球的概率等于 P = C 3C 5 3 C 3 =-,选A 。
C 83 73. (湖北卷)甲:A 1、A 2是互斥事件;乙:A 2是对立事件,那么解:两个事件是对立事件,则它们一定互斥,反之不成立。
故选 B4.(江苏卷)某人5次上班途中所花的时间(单位:分钟)分别为x , y , 10, 11, 9•已知这组数据的平均数为10,方差为2,则| x -y 丨的值为 (A ) 1( B ) 2( C ) 3(D ) 4【思路】本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法【正确解答】由题意可得:x+y=20,(x-10) 2+(y-10) 2=8,解这个方程组需要用一些技巧, 因为不要直接求出x 、y ,只要求出 x - y ,设x=10+t, y=10-t, x-y=2t=4,选D 5. (江苏卷)右图中有一个信号源和五个接收器。
接收器与信 号源在同一个串联线路中时, 就能接收到信号,否则就不能接收到信号。
若将图中左端的六个接线点随机地平均分成三组, 将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接, 则这五个接收器能同时接收到 信号的概率是3个顶点连成三角形,则所得的三角形是直角非等腰三角形的解:在正方体上任选 3个顶点连成三角形可得 C 8个三角形,要得直角非等腰 三角形,则每C 8D.—28从中摸出3个球,A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件, 也不是乙的必要条件信号源【思路点拨】本题主要考查平均分组问题及概率问题器能同时接收到信号的概率是—,选D15【解后反思】概率问题的难点在于分析某事件所有可能出现的结果及其表示方法, 率部分的性质、公式求某事件概率只是解决问题的工具而已解析:从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除。
所有的三位数有 A 3)- A 2 =648个,将10个数字分成三组,即被 3除余1的有{1 ,4, 7}、被3除余2的有{2 , 5, 8},被3整除的有{3 , 6, 9, 0},若要求所得的三位数被 3 32民=12个;②若三(A)45(B)36(c )箱【正确解答】将六个接线点随机地平均分成三组,共有C 6L C 4_C 2 =15种结果,五个接收器能同时接收到信号必须全部在同一个串联线路中,有clLclLG 1 =8种结果,这五个接收而运用概6. 为 A. (江西卷)将7个人(含甲、乙)分成三个组,一组a ,甲、乙分到同一组的概率为 5 p=B.a=105 p=21a=105 3人,另两组2人,不同的分组数 p ,则a 、p 的值分别为( ) 4 5 C.a=210 p=D.a=210 p=212121解:选A , a = c 7c%2a - ------------ =105,甲、乙分在同一组的方法种数有2!(1)若甲、乙分在3人组,有C 5C 4C 2 - 15种2!(2)若甲、乙分在2人组,有C 5 = 10种,故共有25种,所以P =——10521袋中有40个小球,其中红色球 16个、蓝色球12个,白色球8个,黄色球47.(江西卷) 个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为B.c :c 8C i ;C i ;C.D.C 4C 8C 2G 26C 10解:依题意,各层次数量之比为 4 32 1,即红球抽抽一个,故选A& (四川卷)从0到9这10个数字中任取 不能被3整除的概率为—、1935(A )( B )54 544个,蓝球抽3个,白球抽 2个,黄球3个数字组成一个没有重复数字的三位数, 38 (C )5441 (D)60这个数整除,则可以分类讨论:①三个数字均取第一组,或均取第二组,有个数字均取自第三组,则要考虑取出的数字中有无数字0,共有A?-A 3" =18个;③若三组各取一个数字,第三组中不取0,有C3C3C3 As =162个,④若三组各取一个数字, 第三组中取0,有C3C3 2 A2 =36个,这样能被3整除的数共有228个,不能被3整除420 35的数有420个,所以概率为=35,选B。
648 549. (四川卷)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生(A) 30 人,30 人,30 人(B) 30人,45 人,15 人(C) 20 人,30人,10 人(D) 30人,50人,10 人解析:甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生30人,45人,15人,选B.10. (重庆卷)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5 岁一18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是(A)20 (B)30 (C)40 (D) 50解析:根据该图可知,组距为2,得这100名学生中体重在56.5,64.5的学生人数所占的频率为(0.03+0.05+0.05+0.07) X 2=0.4,所以该段学生的人数是40,选C.11. (重庆卷)某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家。
为了掌握各商店的营业情况,要从中抽取一个容量为20的样本。
若采用分层抽样的方法,抽取的中型商店数是(A ) 2 ( B) 3 (C) 5 ( D) 13解:各层次之比为:30 75 195= 2 5 13,所抽取的中型商店数是5,故选C二、填空题(共9题)12. (福建卷)一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是___________________ 解析:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标44p ( =0)3 戏3CCC 1C 1+C 1C 2_ 19,=1,% 切=gP (丄369 9 36以数2。
将这个小正方体抛掷2次,向上的数之积可能为E =Q 1 , 2 , 4 ,则13. (湖北卷)接种某疫苗后,出现发热反应的概率为0. 80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为_____________ 。
(精确到0. 01)解:P= cl(0.80)3(0.20)2+ C55(0.80)4 0.20+(0.80)5= 0.9414. ________________________________ (湖南卷)某高校有甲、乙两个数学建模兴趣班•其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是分•解析:某高校有甲、乙两个数学建模兴趣班•其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是40 90 50 81 = 85分.9015. (全国II )一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如右图)•为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500, 3000)(元)月收入段应扌由出_____________________ 人.解析:由直方图可得[2500,3000)(元)月收入段共有按分层抽样应抽出250025人1000016. (山东卷)某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 ____________ .10解:抽取教师为160-150=10人,所以学校教师人数为2400 X =150人。
16017. (上海卷)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本•将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是__________________ (结果用分数表示).解:分为二步完成:1)两套中任取一套,再作全排列,有C1L P4种方法;2)剩下的一套全排列,有P4种方法;所以,所求概率为:C 2 P4 P4 1P s "35 ;18. ___________________________________________________ (上海卷)在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是______________________________________________ (结果用分数表示)。
解:在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是p旦WC:33 .19.(四川卷)设离散型随机变量■可能取的值为1, 2, 3, 4。
P「=k)=ak(k=1.2, 3, 4)。
又©的数学期望E: =3,贝y a + b=解:设离散性随机变量•可能取的值为1,2,3,4, P 二k二ak • b k =1,2,3,4 ,所以(a b) (2a b) (3a b) (4a b) =1,即10a 4b =1,又的数学期望E = 3,1则(a+b)+2(2a+b)+3(3a+b)+4(4a+b) =3,即30a+10= 3 a =丄,b=0,「.10a b —.1020. (上海春)同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高•这两个事实可以用数学语言描述为:若有限数列a「a2,…,a n满足a<j m a2一…-a n,贝V __________________ _____________________________________________________________ (结论用数学式子表示) 解:女口果在有限数列中,按顺序去掉一些高分U+-…「,那么有不三、解答题(共27题)21. (安徽卷)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。