概率论与数理统计第一章
- 格式:doc
- 大小:581.50 KB
- 文档页数:11
一、选择题1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ⋃⋃ (B )C A B A ⋃ (C ) ABC (D ))(C B A ⋃ 2.对于任意二事件A 和B ,与B B A =⋃不等价的是 (A )B A ⊂ (B )A ⊂B (C )φ=B A (D )φ=B A3.设A 、B 是任意两个事件,A B ⊂,()0P B >,则下列不等式中成立的是( ).A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ).A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.对于任意两事件A 与B ,()P A B -=( ).A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()()P A P A P AB +-6.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ).A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A =7.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A =( ).A .B .C .D8.设A ,B 是两个随机事件,且0<P(A)<1,P(B)>0,)|()|(A B P A B P =,则必有 ( )(A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠9.设A,B,C 是三个相互独立的随机事件,且0<P(C)<1。
则在下列给定的四对事件中不相互独立的是( )(A )B A +与C (B )AC 与C (C )B A -与C (D )AB 与C10.设A, B, C 三个事件两两独立,则A, B, C 相互独立的充要条件是( ) (A )A 与BC 独立 (B )AB 与A+C 独立 (C )AB 与AC 独立 (D )A+B 与A+C 独立11.将一枚均匀的硬币独立地掷三次,记事件A=“正、反面都出现”,B=“正面最多出现一次”,C=“反面最多出现一次”,则下面结论中不正确的是( ) (A )A 与B 独立 (B )B 与C 独立 (C )A 与C 独立 (D )C B ⋃与A 独立 12.进行一系列独立重复试验,每次试验成功的概率为p ,则在成功2 次之前已经失败3次的概率为( )(A )3)1(4p p - (B )3225)1(p p C - (C )3)1(p - (D )32)1(4p p - 二、选择题 1.设A,B,C为三个事件,且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____.2. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______.4. 设随机事件A, B 及其和事件AB 的概率分别是, , , 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______. 5. 某市有50住户订日报, 有65住户订晚报, 有85住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为, , , 则这三台机器中至少有一台发生故障的概率________.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立,且它们损坏的概率依次为, , , 则电路断路的概率是________.8. 甲乙两人投篮, 命中率分别为, , 每人投三次, 则甲比乙进球多的概率______.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.10.设A ,B 是任意两个随机事件,则=++++)})()()({(B A B A B A B A P 11.已知A 、B 两事件满足条件()()P AB P AB =,且()P A p =,则()_______P B =12.已知13()()(),()()0,()416P A P B P C P AB P BC P AC ======,则,,A B C 都不发生的概率为__________ 三、计算题1. 一袋中装有10个球,其中3个黑球7个白球,每次从中任取一球,然后放回,求下列事件的概率:(1) 若取3次,A={3个球都是黑球};(2) 若取10次,B={10次中恰好取到3次黑球},C={10次中能取到黑球}; (3) 若未取到黑球就一直取下去,直到取到黑球为止, D={恰好取3次}, E={至少取3次}.2. 有两箱同种类的零件, 第一箱内装50只, 其中10只一等品, 第二箱内装30只, 其中18只一等品. 今从两箱中任意挑出一箱, 然后从该箱中取零件2次,每次任取一只,作不放回抽样. 求 (1) 第一次取到的零件是一等品的概率;(2) 已知第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.3. 设10件产品中有3件次品, 7件正品, 现每次从中任取一件, 取后不放回.试求下列事件的概率. (1) 第三次取到次品; (2) 第三次才取到次品;(3) 已知前两次没有取到次品, 第三次取到次品;4. 从过去的资料得知,在出口罐头导致索赔事件中,有50%是质量问题,30%是数量短缺问题,20%是包装问题。
又知在质量问题争议中,经过协商解决的占40%;数量短缺问题争议中,经过协商解决的占60%;包装问题争议中,经过协商解决的占75%.如果一件索赔事件在争议中经过协商得到解决了,那么这一事件不属于质量问题的概率是多少?5. 轰炸机要完成它的使命,驾驶员必须要找到目标,同时投弹员必须要投中目标。
设驾驶员甲、乙找到目标的概率分别为、;投弹员丙、丁在找到目标的条件下投中的概率分别、.现在要配备两组轰炸人员,问甲、乙、丙、丁怎样配合才能使完成使命有较大的概率(只要有一架飞机投中目标即完成使命)?求此概率是多少?6. 已知A ,B 是两个随机事件,()01P B <<且AB AB = ,证明:()()||P A B P A B +=2答案一、选择题1.(A ) 2.(D ) 3.(B) 4.(B) 5.(C) 6.(D) 7.(B) 8.(C) 9.(B) 10.(A) 11.(B) 12.(D) 二、填空题 1.设A,B,C为三个事件,且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____.解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= - =2. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______.解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a k D Y X P π, k 为比例系数. 所以22ak π=假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积.4. 设随机事件A, B 及其和事件AB 的概率分别是, , , 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______. 解. =+-+=)()()()(B A P B P A P AB P + - = 3.01.04.0)()()(=-=-=AB P A P B A P . 5. 某市有50住户订日报, 有65住户订晚报, 有85住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = , P(B) = , P(C) = .所以 P(AB) = P(A) + P(B)-P(A + B) = + - = .6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为, , , 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = , P(A 2) = , P(A 3) = ,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-××=.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为, , , 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = , P(B) = , P(C) = . 事件线路完好 = A(B + C) = AB + AC. P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C)= × +×-×× = . 所以 P(电路断路) = 1- = .8. 甲乙两人投篮, 命中率分别为, , 每人投三次, 则甲比乙进球多的概率______.解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0)+ P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅ ++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c = + + + + + = .9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P .P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC) = P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C)=53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.10.0 11.1-p 12.7/16 三、计算题1. 一袋中装有10个球,其中3个黑球7个白球,每次从中任取一球,然后放回,求下列事件的概率:1) 若取3次,A={3个球都是黑球};2) 若取10次,B={10次中恰好取到3次黑球},C={10次中能取到黑球}; 3) 若未取到黑球就一直取下去,直到取到黑球为止, D={恰好取3次}, E={至少取3次}. 解:还原有序抽样。