平曲线的详细测设—切线支距法
- 格式:docx
- 大小:8.15 KB
- 文档页数:1
绘制平曲线时(按支距法)1.无缓和曲线的单曲线曲线测设:34223242;6R l R l y Rl l x -=-= 2.带有缓和曲线的单曲线缓和曲线部分的测设:33732253366;40s s sl R l Rl l y l R l l x -=-= 圆曲线部分的测设 x=q+Rsin m ϕ;y=p+R(1-cos m ϕ)m ϕ=28.6479)2(RLsl m + q=2Ls -R Ls 242; p=R Ls 2403-342384RLs m l ----圆曲线上任意点m 至缓和曲线终点HY (或YH )的弧长 逐桩坐标计算::不设缓和曲线--)14.390cos()14.390sin(21R lA R l R x x zy ξ+⋅+= )14.390sin()14.390sin(21RlA R l R y y zy ξ+⋅+=设缓和曲线曲线上任意点的切线横距22540SL R l l x -=;:l 缓和曲线上任意点至ZH (或HZ )点的曲线长;2S L :缓和曲线长度第一缓和曲线任意点坐标(ZH-HY ))30sin()30cos(/);30cos()30cos(/212212SS zh S S zh L l A RL l x y Y L l A RL l x x X πξππξπ+⋅+=+⋅+=圆曲线内任意点坐标(HY--YH )))(90sin()90sin(2:))(90cos()90sin(211RL l A R l R y Y R L l A R l R x X S hy S hy πξππξπ++⋅+=++⋅+=第二缓和曲线任意点坐标(HZ-YH ))30180sin()30cos(/);30180cos()30cos(/222222SS hz S S hz L l A RL l x y Y L l A RL l x x X πξππξπ-+⋅+=-+⋅+=方位角的计算:平曲线内任意点点的方位角 1.无缓和曲线的圆曲线圆曲线内任意点的方位角 (ZY-YZ ) A=A1+ξRl 2.带有缓和曲线的单曲线(1) 缓和曲线任意点的方位角(ZH —HY ) A=A1+ξX β=A1+ξsRL l 22l ---缓和曲线任意点至ZH 点的弧长(2) 圆曲线内任意点点的方位角(HY-YH ) A=A1+ξ(0β+Rl m) m l ----圆曲线上任意点m 至缓和曲线终点HY 的弧长(3)缓和曲线部分任意点的方位角(HZ —YH )A=A2-ξX β=A2-ξsRL l 22l ---缓和曲线任意点至HZ 点的弧长其中A1---第一条边的方位角 A2---第二条边的方位角ξ-----右转为“+”,左转为“—”1. 导线的绘制a . 坐标法------高等级公路(有坐标网格的图纸)b.正切法------一般公路(1).先确定一条导线边定出交点。
473.4.5 切线支距法敷设曲线计算方法①用切线支距法敷设回旋线公式:式中:l ——回旋线上任意点m 至缓和曲线终点的弧长(m )。
②切线支距法敷设带有回旋线的圆曲线公式:x = q + R sin ϕm (m) y = p + R (1 - cos ϕm ) (m)式中: l m ——圆曲线上任意点m 至缓和曲线起点的弧长(δ——l m 所对应的圆心角(rad )例题:已知平原区某二级公路有一弯道,JD=K2+536.48,偏角α右=15°28′30″,半径R=600m ,缓和曲线长度Ls=70m 。
要求:(1)计算曲线主点里程桩号;(2)计算曲线上每隔25m 整桩号切线支距值。
解:(1)曲线要素计算:48J=2T-L=2×116.565-232.054=1.077(2)主点里程桩号计算:以交点里程桩号为起算点:JD = K2+536.48ZH = JD – T =K2+536.48 - 116.565 = K2+419.915HY = ZH + Ls = K2+419.915 +70 = K2+489.915QZ = ZH + L/2= K2+419.915+232.054/2 =K2+535.942HZ = ZH + L = K2+419.915 +232.054 =K2+651.969YH = HZ – Ls = K2+651.97 –70=K2+581.969(3)计算切线支距值:①缓和曲线段:ZH=K2+419.915②圆曲线段:HY=K2+489.915 ,YH =K2+581.969LCZ=K2+500,l m= 2500 - 2489.915 = 10.085=34.996+250sin4.3053=80.038(m)x = q + Rsinϕmy = p + R(1-cosϕ) = 0.34+250(1-cos4.3053)=2.033(m)m③计算曲线上每隔25m整桩号的切线支距值:列表计算曲线25m整桩号:ZH= K2+419.915,K2+425,K2+450,K2+475,K2+500 …49。
铁路曲线要素的测设、计算与精度分析1-1 圆曲线的测设铁路线路平面曲线分为两种类型:一种是圆曲线,主要用于专用线和行车速度不高的线路上;另一种是带有缓和曲c线的圆曲线,铁路干线上均用此种曲线。
铁路曲线测设一般分两步进行,先测设曲线主点,然后依据主点详细测设曲线。
铁路曲线测设常用的方法有:偏角法、切线支距法和极坐标法。
圆曲线(圆曲线段长度)(circular curve)线路平面方向改变时,在转向处所设置的曲率不变的曲线。
圆曲线线型由一个圆曲线组成的曲线称为单曲线;由两个或两个以上同向圆曲线组成的称为复曲线。
转向相同的两相邻曲线连同其间的直线段所组成的曲线称为同向曲线;转向相反的两相邻曲线连同其间的直线段所组成的曲线称为反向曲线。
圆曲线铁路由于复曲线会增加勘测设计、施工和养护维修的困难,降低列车运行的平稳性和旅客舒适条件,因此新建铁路一般不应设置复曲线;在困难条件下,为减少改建工程,改建既有线可保留复曲线;增建与之并行的第二线,如有充分的技术经济依据,也可采用复曲线圆曲线长度在圆曲线地段,为了克服列车在曲线上运行而产生的离心力,需设置外轨超高(参见曲线超高),当曲线半径较小时,为保证列车按强制自由内接形式通过曲线,需进行必要的轨距加宽;为了平顺地过渡曲线率、外轨超高和轨距加宽,保证行车平稳与旅客舒适,在圆曲线的两端需设置一定长度的缓和曲线;同时圆曲线的最小长度受、曲线测设、养护维修、行车平稳和旅客舒适等条件控制,因确定圆曲线和夹直线长度的理论与计算方法在力学上无大的差别,故圆曲线最小长度与夹直线最小长度采用同一标准。
圆曲线要素曲线偏角的大小影响列车在曲线上的运行阻力。
曲线半径、外轨超高、缓和曲线长度和圆曲线长度对行车速度起限制作用(参见曲线限速),因此,这此要素要根据行车速度拟定。
曲线偏角(转向角)、曲线半径R、缓和曲线长度lo、切线长度T和曲线长度L统称为曲线要素。
这些要素的确定及各曲线主点里程的推算是曲线设计的主要内容。
切线支距法
切线支距法是一种用于计算曲线弯曲半径的方法,它基于曲线上某一点的切线长度和曲率半径的关系。
在切线支距法中,首先要找到曲线上某一点的切线方向,这可以通过计算曲线在该点处的导数来实现。
一旦知道了切线方向,就可以将其延长,直到它与曲线相切。
此时,可以通过计算切线长度和曲线弯曲程度来确定曲线的弯曲半径。
具体来说,假设曲线上某一点处,切线向量为t,法向量为n,曲率半径为r。
则可以通过以下公式计算切线支距d:d=r*sin(θ),其中,θ是切线向量和法向量之间的夹角。
切线支距法可以用于计算任意曲线的弯曲半径,包括圆弧、椭圆等。
在工程和科学领域中得到广泛应用,例如可以用于计算道路和铁路的弯曲半径,以确保车辆能够安全通过。
中文词条名:切线支距法英文词条名:method of tangent offsets1、切线支距原理切线支距法是以曲线的起点或终点为坐标原点,原点至交点的切线方向为X轴,坐标原点至圆心的半径为Y 轴。
曲线上任一点P即可用坐标值X和Y来设置。
2、切线支距的计算X=R SINΦY=R(1-COSΦ)Φ=L/R×(1800/Π)3、切线支距法的测设方法其测设步骤如下:1)根据曲线桩的计算资料P I(X I,Y I)从ZY(YZ)点开始用钢尺或皮尺沿切线方向量取P I点的横坐标X I得垂足N I;2)在垂足点N I用方向架(或经纬仪)定出切线的垂线方向,沿此方向量出纵坐标Y I,即可定出曲线上P I点位置。
3)校核方法:丈量所定各桩点间的弦长来进行校核,如果不符或超限,应查明原因。
切线支距法简单,各曲线点相互独立,无测量误差累积。
但由于安置仪器次数多,速度较慢,同时检核条件较少,故一般适用于半径较大、Y值较小的平坦地区曲线测设。
如果您认为本条内容需要改进,请点击这里编辑修改第一条缓和曲线部分:X=L- L 5/(40×R2×L 02)Y=L3/(6×R×L 0)这是以ZH点为坐标原点测设到YH点的计算公式圆曲线部分X=R×sina+mY=R×(1-cosa)+pa=( L i- L)×1800/(R×π)+β0m = L 0/2- L 03/(240×R2)P= L 02/(24×R)- L 04/(2688×R3)δ0= L 0×1800/(6×R×π)β0= L 0×1800/(2×R×π)T=(R+P)×tg(a/2)+mL= R×(a-2β0)×π/1800+2L 0切线角的计算β= L2×1800/(2×R×L0 ×π)缓和切线角的弧度计算:β= L2/(2×R×L0)圆曲线切线角的弧度计算:a=( L i- L 0) /R+ L 0/(2×R)上式中:m表示切垂距。
公路工程平曲线测量方法优选蒋李陵;闫志;赵忠梅【摘要】公路建设时有经过高山、峡谷、河流、森林等地形条件,公路弯道经过此类障碍时,单一平曲线放样方法往往会出现不通视、虚交点、双交点等特殊情况.介绍了目前常用的4种平曲线测量放样方法的测量原理,分析了4种测量放样方法的现场应用情况.结果表明,通过多种测量方法的综合应用,可以有效地解决测设过程遇障碍的问题,置镜交点的极坐标放样法、长弦偏角法等各点独立测设的方法精度准确,测设效率高.【期刊名称】《石油工业技术监督》【年(卷),期】2016(032)009【总页数】3页(P56-58)【关键词】公路工程;测量方法;测量原理;平曲线【作者】蒋李陵;闫志;赵忠梅【作者单位】中国石油吐哈油田分公司监督中心新疆鄯善838200;中国石油西部钻探吐哈钻井公司新疆鄯善838202;中国石油吐哈油田分公司监督中心新疆鄯善838200【正文语种】中文公路施工,测量先行。
测量是施工的基础与先导,是设计意图的最直接体现,测量的准确性关系到整个工程的成败。
新疆幅员辽阔,地貌复杂,公路建设跨越或穿越高山、峡谷、河流、森林等地形条件的情况比较常见。
公路平曲线经过此类障碍时,由于单一平曲线放样方法出现不通视、虚交点、双交点等特殊情况,造成测量困难,需要综合采用不同的测量方法。
目前常用的平曲线测量放样方法有切线支距法、偏角法、极坐标法和长弦偏角法等,对4种平曲线测量方法的适用条件、效率、精度等方面进行探讨。
1.1 偏角法采用偏角法[1]详细测设曲线,如图1所示,需要分别置镜于四大主点(直缓点、缓圆点、圆缓点、缓直点)之一,相对于置镜点处曲线的切线方向,正拨或反拨待测点到置镜点与切线方向的偏角,同时相对于已测定点位丈量距离,视线定向与钢尺量距相交即可测设出曲线上的待测点。
1.2 切线支距法切线支距法测设原理如图2所示,根据放样元素公式推算曲线上各点的纵横坐标,然后根据坐标对曲线上的点进行量测定位的一种测量方法[2]。
第十二章 平曲线测设公路路线平曲线测设是公路工程测量的重要组成部分。
平曲线基本形式有:圆曲线、缓和曲线、复曲线和回头曲线等。
本章主要介绍平曲线的常规测设原理与方法,以及单曲线遇障碍的测设。
通过本章的学习,学生应能够:会用切线支距法和偏角法详细测设园曲线;理解遇障碍时曲线的测设方法;描述缓和曲线;能用切线支距法和偏角法测设带有缓和曲线段的园曲线;第一节 圆曲线主点测设在路线平曲线测设中,圆曲线是路线平曲线的基本组成部分,且单圆曲线是最常见的曲线形式。
圆曲线的测设工作一般分两步进行,先定出曲线上起控制作用的点,称为曲线的主点测设,然后在主点基础上进行加密,定出曲线上的其它各点,完整地标定出圆曲线的位置,这项工作称为曲线的详细测设。
一、圆曲线测设元素的计算在图12-1中:图 12-1P 点——公路路线测量中所测定的交点JD 位置;α——路线转角;R ——圆曲线半径;A 点和B 点——直线与圆曲线的切点,即圆曲线的起点ZY 和终点YZ ; M 点——分角线与圆曲线的相交点,即圆曲线的中点QZ ; T ——圆曲线的切线长; L ——圆曲线的曲线长; E ——交点JD 至圆曲线中点M 的距离,称为外距。
根据图中的几何关系,单圆曲线元素按下列公式计算:切线长: 2tanαR T =曲线长: R L απ︒=180 (12-1)外距: )12(sec-=αR E另外,为了计算里程和校核,还应计算切曲差(超距),即两切线长与曲线长的差值。
切曲差(超距) D=2T-L二、圆曲线的主点测设单圆曲线有三个主点,即曲线起点(ZY )、曲线中点(QZ )和曲线终点(YZ )。
它们是确定圆曲线位置的主要点位。
在其点位上的桩称为主点桩,是圆曲线测设的重要桩志。
1.主点里程桩号的计算在中线测时中,路线交点(JD )的里程桩号是实际丈量的,而曲线主点的里程桩号是根据交点的里程桩号推算而得的。
其计算步骤如下:交点 JD 里程 -) T 圆曲线起点 ZY 里程 +) L 圆曲线终点 YZ 里程 -) L /2 圆曲线中点 QZ 里程 +) D /2 校核 JD 里程2.主点的测设 如图12-1所示,自路线交点JD 分别沿后视方向和前视方向量取切线长T ,即得曲线起点ZY 和曲线终点YZ 的桩位。
切线支距法
摘要:
1.切线支距法简介
2.切线支距法的应用
3.切线支距法在实际问题中的应用案例
4.总结
正文:
切线支距法是一种在数学和物理学中常用的方法,它可以用来解决曲线运动、力学和电磁学等领域的问题。
这种方法利用切线的概念,通过计算切线与坐标轴的交点,可以确定曲线运动物体的位置和速度。
切线支距法的应用十分广泛。
在物理学中,它可以用来解决平抛运动、圆周运动等问题。
在数学中,它可以用来解决微积分、线性代数等问题。
此外,在计算机图形学、工程学和天文学等领域,切线支距法也发挥着重要作用。
以平抛运动为例,假设一个物体在水平方向上以初速度v0投掷,竖直方向上受到重力加速度g的作用。
我们可以通过切线支距法来计算物体在空中的运动轨迹。
首先,我们需要计算物体在水平方向和竖直方向上的速度。
水平方向上的速度始终保持不变,即v0。
竖直方向上的速度可以通过公式vy = gt来计算,其中t为时间。
接下来,我们需要计算物体在各个时刻的切线方程。
根据初速度和加速度,我们可以得到物体在时刻t的切线方程为:y - y0 = v0t - 0.5gt^2。
与x 轴相交的点即为物体在时刻t的水平位置。
通过计算这个交点,我们可以得到
物体在空中的运动轨迹。
在实际问题中,切线支距法的应用可以帮助我们更好地理解物体的运动规律,从而为实际问题提供解决方案。
例如,在导弹轨迹规划中,通过使用切线支距法,可以预测导弹的飞行轨迹,从而提高导弹的命中精度。
总之,切线支距法是一种在多个领域具有重要应用价值的数学方法。
利用切线支距法测设非对称型平曲线摘要:该文结合工程实例演示了用切线支距法测设非对称型缓和曲线的公式推导与坐标计算过程。
关键词:公路?平曲线?切线支距法?敷设公路平面线形由直线、圆曲线以及缓和曲线三种要素组成,基本的平曲线线型组合是缓和曲线+标准圆曲线+缓和曲线,曲线两端的缓和曲线通常参数相同,整个曲线以过QZ点的半径呈对称布置,基本型缓和曲线的计算和敷设相对简单,在实际应用中较为普遍。
但在公路改建施工中,由于受地理条件、周围环境和旧路线形的限制,往往会大量应用非对称型缓和曲线。
非对称型缓和曲线的计算较为复杂,在一般资料中有关这方面的内容介绍很少,且所述方法不够直观。
该文结合工程实例就此利用切线支距法进行计算阐述。
1 概况省道S263线某路段进行路面改建,设计线形需与旧路拟合,在某交点处设置非对称复合曲线。
已知参数为:交点桩号为K7+932.560,半径R=772.976?m,转角α=14?°57′17.5″(本例所涉及角度均以弧度计算:0.261011566),第一缓和曲线长度L1=60?m,第二缓和曲线长度L2=70?m。
根据施工条件,拟采用切线支距法对该曲线进行实地放样。
切线支距法的支距计算是以曲线的起、终点为坐标原点,切线方向为x轴,过原点垂直于切线的方向为y轴。
切线支距法的实质是以路线切线(直线段)为基线,在该基线上(或其延长线上)的某一点处(x值控制)向外偏移某一距离(y值控制),从而定确定曲线上某一桩号的实地位置。
使用切线支距法进行中桩放样操作快捷,工作效率高,是勘测设计外业工作中的首选。
2 计算原理及公式公路设计中通常采用回旋曲线做为缓和曲线,其性质满足ρL=C,C为常量,称之为回旋参数。
如图1所示,曲线由两段缓和曲线L1和L2及半径为R的标准圆曲线Lc组成。
由于L1≠L2,因此两段缓和曲线终点处的圆曲线的内移值不相等,此时的圆心O已经不在内夹角的平分线上,圆曲线部分相对于切线是不对称的。
切线支距法计算公式
切线支距法是一种常用的测量方法,用于计算两个平行线之间的距离。
该方法通过测量两个平行线上的任意一点到另一个平行线上的切线的长度来确定距离。
切线支距法的计算公式如下:
切线支距 = 切线长度× (1/切线斜率)
其中,切线长度是从任意一点到切线的长度,切线斜率是切线与水平方向的夹角的正切值。
在实际应用中,切线支距法经常用于测量建筑物之间的间距、道路宽度等。
下面以测量建筑物之间的间距为例进行详细说明。
首先,选择两个平行线上的任意一点,分别为点A和点B。
然后,通过测量从点A和点B到另一个平行线上的切线的长度来确定距离。
假设从点A到另一个平行线上的切线的长度为L1,从点B到另一个平行线上的切线的长度为L2。
另外,假设点A的切线斜率为k1,点B的切线斜率为k2。
根据切线支距法的计算公式,可以得到:
切线支距 = L1 × (1/k1) = L2 × (1/k2)
通过测量L1和L2,并计算k1和k2的值,可以求得两个平行线之间的距离。
需要注意的是,为了保证测量结果的准确性,需要选择切线点A和点B时,尽量使切线斜率k1和k2的值较大,以减小测量误差。
总结起来,切线支距法是一种通过测量切线长度和切线斜率来计算两个平行线之间距离的方法。
它在测量建筑物间距、道路宽度等应用中具有广泛的实用性。
利用切线支距法测设非对称型平曲线非对称型平曲线是一种自然地形或人工地形,它不具有对称性,而是沿着一条曲线有较大的变化。
在建设道路、管道、铁路、水利等工程时,需要对非对称型平曲线进行测量。
本文将讨论利用切线支距法测设非对称型平曲线的方法、步骤及注意事项。
一、切线支距法测设非对称型平曲线的原理切线支距法是利用实测数据计算出各点处曲线的切线倾角和弯矩,最后推算出各点的高程值。
该方法将曲线近似为若干条等距离线段的连续整体,将曲线上任意一点处的曲率半径表示为其斜率之倒数。
根据平面几何的相关公式求出曲线上任意一点处的切线倾角。
最终利用解析公式把曲线的横截面轮廓用多项式函数来表示,得到曲线的高程等参数。
二、切线支距法测设非对称型平曲线的步骤1. 建立原始数据。
依据现场实测数据,建立起“距离-X”、“到中线的偏差-Y”,及该点对称轴的坡度变化值的“曲率-C”三个序列。
2. 计算弯矩值。
由原始数据中的距离和偏差,利用微积分计算得到当前段弯矩值。
3. 拟合函数。
根据得到的曲率和弯矩值,采用最小二乘法,建立各个点的拟合函数,进行各点的弯矩值的计算。
4. 计算切线倾角。
如果该段曲线形态已知,则可以根据已知的形态参数计算出切线角。
如果曲线形态未知,则需要根据拟合函数计算出弯矩值以进行切线角计算。
5. 推算高程值。
最后根据多项式式提取能得出每个点的高程值。
三、切线支距法测设非对称型平曲线的注意事项1. 周围环境:在测设非对称型平曲线时,需要注意周围环境是否干扰测量结果,应选择平坦的场地并及时清除障碍。
2. 测量仪器:选择准确、精确、稳定、易于操作的测量仪器进行测量,保证数据精确性和可靠性。
3. 测量过程:在测量过程中必须采用严格的步骤,确保各项数据的准确性和一致性。
4. 数据处理:数据处理要准确、快捷、简便,并采取科学、合理的处理方法,以保证数据的可靠性,避免人为错误的出现。
5. 算法应用:测量数据按照步骤进行处理,根据各种公式和计算方法进行算法应用,以便得到正确的结果。