9东北师大附属中学高三第一轮复习导学案--对数与对数函数A
- 格式:docx
- 大小:122.78 KB
- 文档页数:7
学案8 对数与对数函数导学目标: 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y =a x与对数函数y =log a x 互为反函数(a>0,a ≠1),体会对数函数是一类重要的函数模型.自主梳理1.对数的定义如果________________,那么数x 叫做以a 为底N 的对数,记作__________,其中____叫做对数的底数,______叫做真数.2.对数的性质与运算法则 (1)对数的性质(a>0且a ≠1)①Na a log =____; ②1log a =____;③N a a log =____;④a a log =____.(2)对数的重要公式①换底公式:log b N =________________(a ,b 均大于零且不等于1); ②b a log =ab log 1,推广d c b c b a log log log ∙∙=________.(3)对数的运算法则如果a>0且a ≠1,M>0,N>0,那么①log a (MN)=___________________________;②log a MN =______________________;③log a M n=__________(n ∈R ); ④na M m log =n mlog a M . 34.反函数指数函数y =a x与对数函数____________互为反函数,它们的图象关于直线______对称. 自我检测1.(2010·四川)2log 510+log 50.25的值为( )A .0B .1C .2D .42.(2010·辽宁)设2a =5b=m ,且1a +1b=2,则m 的值为( ) A.10B .10C .20D .100 3.(2009·辽宁)已知函数f (x )满足:当x ≥4时,f (x )=⎝ ⎛⎭⎪⎫12x;当x <4时,f (x )=f (x+1).则f (2+log 23)的值为 ( )A.124B.112C.18D.384.(2010·安庆模拟)定义在R 上的偶函数f (x )在[0,+∞)上递增,f (13)=0,则满足)(log 81x f >0的x 的取值范围是 ( )A .(0,+∞)B .(0,12)∪(2,+∞)C .(0,18)∪(12,2)D .(0,12)5.(2011·台州期末)已知0<a <b <1<c ,m =log a c ,n =log b c ,则m 与n 的大小关系是______.探究点一 对数式的化简与求值 例1 计算:(1))32(log 32--;(2)12lg 3249-43lg 8+lg 245; (3)已知2lg x -y2=lg x +lg y ,求yx )223(log -.变式迁移1 计算:(1)log 2748+log 212-12log 242-1;(2)(lg 2)2+lg 2·lg 50+lg 25.探究点二 含对数式的大小比较 例2 (1)比较下列各组数的大小.①log 323与log 565;②log 1.10.7与log 1.20.7.(2)已知log 12b <log 12a <log 12c ,比较2b,2a,2c的大小关系.变式迁移2 (1)(2009·全国Ⅱ)设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a(2)设a ,b ,c 均为正数,且2a=a 21log ,(12)b =b 21log ,(12)c =log 2c ,则( )A .a <b <cB .c <b <a0C .c <a <bD .b <a <c探究点三 对数函数的图象与性质例3 已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈[13,2]都有|f (x )|≤1成立,试求a 的取值范围.变式迁移3 (2010·全国Ⅰ)已知函数f (x )=|lg x |,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是 ( )A .(22,+∞)B .[22,+∞)C .(3,+∞)D .[3,+∞)分类讨论思想的应用例 (12分)已知函数f (x )=log a (1-a x)(a >0,a ≠1).(1)解关于x 的不等式:log a (1-a x)>f (1);(2)设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是f (x )图象上的两点,求证:直线AB 的斜率小于0.【答题模板】(1)解 ∵f (x )=log a (1-a x),∴f (1)=log a (1-a ).∴1-a >0.∴0<a <1.∴不等式可化为log a (1-a x)>log a (1-a ).∴⎩⎪⎨⎪⎧1-a x >0,1-a x<1-a .,即⎩⎪⎨⎪⎧a x<1,a x >a .∴0<x <1. ∴不等式的解集为(0,1).[4分](2)证明 设x 1<x 2,则f (x 2)-f (x 1)=)1(log 2x a a --)1(log 1x a a -=1211log x x a a a --.∵1-a x>0,∴a x<1.∴a >1时,f (x )的定义域为(-∞,0);[6分]0<a <1时,f (x )的定义域为(0,+∞).当0<a <1时,∵x 2>x 1>0,∴2x a <1xa .∴1211x x a a -->1.∴1211log x x a aa --<0. ∴f (x 2)<f (x 1),即y 2<y 1.同理可证,当a >1时,也有y 2<y 1.[10分]综上:y 2<y 1,即y 2-y 1<0.∴k AB =y 2-y 1x 2-x 1<0.∴直线AB 的斜率小于0.[12分] 【突破思维障碍】解决含参数的对数问题,不可忽视对底数a 的分类讨论,即a >1或0<a <1,其次要看定义域,如果将函数变换,务必保证等价性.1.求解与对数函数有关的复合函数的单调性的步骤: (1)确定定义域;(2)弄清函数是由哪些基本初等函数复合而成的,将复合函数分解成基本初等函数y =f (u ),u =g (x );(3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”.2.用对数函数的性质比较大小 (1)同底数的两个对数值的大小比较例如,比较log a f (x )与log a g (x )的大小, 其中a >0且a ≠1.①若a >1,则log a f (x )>log a g (x )⇔f (x )>g (x )>0. ②若0<a <1,则log a f (x )>log a g (x )⇔0<f (x )<g (x ). (2)同真数的对数值大小关系如图:图象在x 轴上方的部分自左向右底逐渐增大,即0<c <d <1<a <b . 3.常见对数方程式或对数不等式的解法(1)形如log a f (x )=log a g (x )(a >0且a ≠1)等价于f (x )=g (x ),但要注意验根.对于log a f (x )>log a g (x )等价于0<a <1时,⎪⎩⎪⎨⎧<>>);()(,0)(,0)(x g x f x g x f a >1时,⎪⎩⎪⎨⎧>>>).()(,0)(,0)(x g x f x g x f(2)形如F (log a x )=0、F (log a x )>0或F (log a x )<0,一般采用换元法求解.(满分:75分)一、选择题(每小题5分,共25分)1.(2010·北京市丰台区高三一调)设M ={y |y =(12)x,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于 ( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1)2.(2010·全国Ⅰ)设a =log 32,b =ln 2,c =5-12,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a3.(2010·天津)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 4.(2011·济南模拟)设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有 ( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)5.(2011·青岛模拟)已知函数f (x )=a x+log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为 ( )A.12B.14 C .2 D .46.2lg 5+23lg 8+lg 5·lg 20+lg 22=________.7.(2011·湖南师大附中检测)已知函数f (x )=lg ax +a -2x在区间[1,2]上是增函数,则实数a 的取值范围是____________.8.已知f (3x )=4x log 23+233,则f (2)+f (4)+f (8)+…+f (28)=________. 三、解答题(共38分)9.(12分)已知f (x )=2+log 3x ,x ∈[1,9],求y =[f (x )]2+f (x 2)的最大值及y 取最大值时x 的值.10.(12分)(2011·北京东城1月检测)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集.11.(14分)(2011·郑州模拟)已知函数f (x )=lg(a x -b x)(a >1>b >0). (1)求y =f (x )的定义域;(2)在函数y =f (x )的图象上是否存在不同的两点,使得过这两点的直线平行于x 轴; (3)当a ,b 满足什么条件时,f (x )在(1,+∞)上恒取正值.答案 自主梳理1.a x=N(a >0,且a ≠1) x =log a N a N 2.(1)①N ②0 ③N ④1 (2)①log a N log a b②log a d (3)①log a M +log a N ②log a M -log a N ③nlog a M 3.(1)(0,+∞) (2)R (3)(1,0) 1 0 (4)y >0 y <0 (5)y <0 y >0 (6)增 (7)减 4.y =log a x y =x自我检测 1.C 2.A3.A [因为3<2+log 23<4,故f (2+log 23)=f (2+log 23+1)=f (3+log 23).又3+log 23>4,故f (3+log 23)=⎝ ⎛⎭⎪⎫123+log23=⎝ ⎛⎭⎪⎫123·13=124.]4.B [由题意可得:f (x )=f (-x )=f (|x |),f (|log 18x |)>f (13),f (x )在[0,+∞)上递增,于是|log 18x |>13,解得x 的取值范围是(0,12)∪(2,+∞).]5.m >n解析 ∵m <0,n <0,∵m n=log a c ·log c b =log a b <log a a =1,∴m >n .课堂活动区例1 解题导引 在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底和指数与对数互化.解 (1)方法一 利用对数定义求值:设)32(log )32(-+=x ,则(2+3)x =2-3=12+3=(2+3)-1,∴x =-1.方法二 利用对数的运算性质求解:)32(log )32(-+=)32(1log )32(++=1)32()32(log -++=-1.(2)原式=12(lg 32-lg 49)-43lg 812+12lg 245=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5 =12lg (2×5)=12lg 10=12. (3)由已知得lg(x -y 2)2=lg xy ,∴(x -y 2)2=xy ,即x 2-6xy +y 2=0.∴(x y)2-6(x y )+1=0.∴x y=3±2 2.∵⎩⎪⎨⎪⎧x -y >0,x >0,y >0,∴xy >1,∴x y=3+22,∴log (3-22)xy=log (3-22)(3+22)=log-2213-22=-1.变式迁移1 解 (1)原式=log 2748+log 212-log 242-log 22=log 27×1248×42×2=log 2122=log 22-32=-32.(2)原式=lg 2·(lg 2+lg 50)+lg 25 =21g 2+lg 25=lg 100=2.例2 解题导引 比较对数式的大小或证明等式问题是对数中常见题型,解决此类问题的方法很多,①当底数相同时,可直接利用对数函数的单调性比较;②若底数不同,真数相同,可转化为同底(利用换底公式)或利用对数函数图象,数形结合解得;③若不同底,不同真数,则可利用中间量进行比较.解 (1)①∵log 323<log 31=0,而log 565>log 51=0,∴log 323<log 565.②方法一 ∵0<0.7<1,1.1<1.2, ∴0>log 0.71.1>log 0.71.2.∴1log 0.71.1<1log 0.71.2, 由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y =log 1.1x 与y =log 1.2x 的图象,如图所示,两图象与x =0.7相交可知log 1.10.7<log 1.20.7.(2)∵y =log 12x 为减函数,且log 12b <log 12a <log 12c ,∴b >a >c .而y =2x 是增函数,∴2b >2a >2c.变式迁移2 (1)A [a =log 3π>1,b =12log 23,则12<b <1,c =12log 32<12,∴a >b >c .](2)A [∵a ,b ,c 均为正,∴log 12a =2a>1,log 12b =(12)b ∈(0,1),log 2c =(12)c∈(0,1).∴0<a <12,12<b <1,1<c <2.故a <b <c .]例3 解题导引 本题属于函数恒成立问题,即对于x ∈[13,2]时,|f (x )|恒小于等于1,恒成立问题一般有两种思路:一是利用图象转化为最值问题;二是利用单调性转化为最值问题.由于本题底数a 为参数,需对a 分类讨论.解 ∵f (x )=log a x ,则y =|f (x )|的图象如右图.由图示,可使x ∈[13,2]时恒有|f (x )|≤1,只需|f (13)|≤1,即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a ,亦当a >1时,得a -1≤13≤a ,即a ≥3;当0<a <1时,得a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是(0,13]∪[3,+∞).变式迁移3 C[画出函数f (x )=|lg x |的图象如图所示.∵0<a <b ,f (a )=f (b ),∴0<a <1,b >1,∴lg a <0,lg b >0.由f (a )=f (b ),∴-lg a =lg b ,ab =1.∴b =1a ,∴a +2b =a +2a ,又0<a <1,函数t =a +2a在(0,1)上是减函数,∴a +2a >1+21=3,即a +2b >3.]课后练习区1.C [∵x ≥0,∴y =(12)x∈(0,1],∴M =(0,1].当0<x ≤1时,y =log 2x ∈(-∞,0],即N =(-∞,0]. ∴M ∪N =(-∞,1].]2.C [∵1a =log 23>1,1b=log 2e>1,log 23>log 2e.∴1a >1b>1,∴0<a <b <1.∵a =log 32>log 33=12,∴a >12.b =ln 2>ln e =12,∴b >12.c =5-12=15<12,∴c <a <b .]3.C [①当a >0时,f (a )=log 2a ,f (-a )=a 21log ,f (a )>f (-a ),即log 2a >a 21log =log 21a,∴a >1a,解得a >1.②当a <0时,f (a )=)(log 21a -,f (-a )=log 2(-a ),f (a )>f (-a ),即)(log 21a ->log 2(-a )=a-1log 21, ∴-a <1-a,解得-1<a <0,由①②得-1<a <0或a >1.]4.C [由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).]5.C [当x >0时,函数a x ,log a x 的单调性相同,因此函数f (x )=a x+log a x 是(0,+∞)上的单调函数,f (x )在[1,2]上的最大值与最小值之和为f (1)+f (2)=a 2+a +log a 2,由题意得a 2+a +log a 2=6+log a 2.即a 2+a -6=0,解得a =2或a =-3(舍去).]6.3 7.(1,2)解析 因为f (x )=lg ⎝ ⎛⎭⎪⎫a +a -2x 在区间[1,2]上是增函数,所以g (x )=a +a -2x在区间[1,2]上是增函数,且g (1)>0,于是a -2<0,且2a -2>0,即1<a <2. 8.2 008解析 令3x=t ,f (t )=4log 2t +233,∴f (2)+f (4)+f (8)+…+f (28)=4×(1+2+…+8)+8×233=4×36+1 864=2 008.9.解 ∵f (x )=2+log 3x ,∴y =[f (x )]2+f (x 2)=(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6=(log 3x +3)2-3.……(4分)∵函数f (x )的定义域为[1,9],∴要使函数y =[f (x )]2+f (x 2)有意义,必须⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,∴1≤x ≤3,∴0≤log 3x ≤1,(8分)∴6≤(log 3x +3)2-3≤13.当log 3x =1,即x =3时,y max =13.∴当x =3时,函数y =[f (x )]2+f (x 2)取最大值13.………………………………………(12分)10.解 (1)f (x )=log a (x +1)-log a (1-x ),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数f (x )的定义域为{x |-1<x <1}.………………………………………………(4分)(2)由(1)知f (x )的定义域为{x |-1<x <1}, 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.………………………………………………………………(8分)(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数,所以f (x )>0⇔x +11-x>1.解得0<x <1.所以使f (x )>0的x 的解集是{x |0<x <1}.…………………………………(12分)11.解 (1)由a x -b x>0,得(a b)x>1,且a >1>b >0,得a b>1,所以x >0,即f (x )的定义域为(0,+∞).…………………………………………………………………………………………(4分)(2)任取x 1>x 2>0,a >1>b >0,则1xa >2xa >0,21x x b b<,所以11x x b a ->22x x b a ->0,即)lg(11xxb a ->)lg(22xxb a -.故f (x 1)>f (x 2).所以f (x )在(0,+∞)上为增函数.………………………………………………………(8分)假设函数y =f (x )的图象上存在不同的两点A (x 1,y 1)、B (x 2,y 2),使直线平行于x 轴,则x 1≠x 2,y 1=y 2,这与f (x )是增函数矛盾.故函数y =f (x )的图象上不存在不同的两点使过两点的直线平行于x 轴.…………(10分)(3)因为f(x)是增函数,所以当x∈(1,+∞)时,f(x)>f(1).这样只需f(1)=lg(a-b)≥0,即当a≥b+1时,f(x)在(1,+∞)上恒取正值.……………………………………………(14分)。
吉林省东北师范大学附属中学2020学年高中数学 1.2.2.1对数学案新人教A版必修1课时目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.掌握对数的基本性质,会用对数恒等式进行运算.1.对数的概念如果a(a>0,a≠1)的b次幂等于N,即________,那么就称b是以a为底N的对数,记作__________.其中a叫做__________,N叫做______.2.常用对数与自然对数通常将以10为底的对数叫做________,以e为底的对数叫做________,log10N可简记为________,loge N简记为________.3.对数与指数的关系若a>0,且a≠1,则a x=N⇔log a N=____.a=____;log a a x=____(a>0,且a≠1).对数恒等式:log a N4.对数的性质(1)1的对数为____;(2)底的对数为____;(3)零和负数________.一、填空题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为________.2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是________.(填序号)3.在b =log (a -2)(5-a )中,实数a 的取值范围是_____________________________.4.方程3log 2x=14的解集是________.5.若log a 5b =c ,则下列关系式中正确的是________.①b =a 5c ;②b 5=a c ;③b =5a c ;④b =c 5a.6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为________.7.已知log 7[log 3(log 2x )]=0,那么12x -=________. 8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a=________. 二、解答题10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log26=2.585 0;②log30.8=-0.203 1;③lg 3=0.477 1.11.已知log a x=4,log a y=5,求A=12x⎡⎢⎢⎢⎣的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n的值是________. 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a=8,试用a 表示下列各式: ①log 68;②log 62;③log 26.解析 ∵lg 10=1,∴lg(lg 10)=0,故①正确;∵ln e =1,∴ln(ln e)=0,故②正确;由lg x =10,得1010=x ,故x ≠100,故③错误;由e =ln x ,得e e =x ,故x ≠e 2,所以④错误. 3.2<a <3或3<a <5解析 由对数的定义知⎩⎪⎨⎪⎧ 5-a >0,a -2>0,a -2≠1⇒⎩⎪⎨⎪⎧a <5,a >2,a ≠3⇒2<a <3或3<a <5.4.{x |x =19}解析 ∵3log 2x=2-2,∴log 3x =-2,∴x =3-2=19.5.①解析 由log a 5b =c ,得a c=5b ,∴b =(a c )5=a 5c. 6.8解析 0.51log 412-+⎛⎫ ⎪⎝⎭=(12)-1·12log 412⎛⎫ ⎪⎝⎭=2×4=8.7.24解析 由题意得:log 3(log 2x )=1,即log 2x =3,转化为指数式则有x =23=8, ∴128-=1218=18=122=24. 8.3解析 由题意得:log x 9=2,∴x 2=9,∴x =±3, 又∵x >0,∴x =3.9.110解析 依据a x=N ⇔log a N =x (a >0且a ≠1),有a =102.431 0,b =101.431 0,∴b a =101.431 0102.431 0=101.431 0-2.431 0=10-1=110. 10.解 (1)①lg 11 000=-3;②log 0.50.125=3;③log 2-1(2+1)=-1.(2)①22.585 0=6;②3-0.203 1=0.8;③100.477 1=3.11.解 A =12x ·11622xy -⎛⎫ ⎪ ⎪ ⎪⎝⎭=51213x y .又∵x =a 4,y =a 5,∴A =5353a a=1.12.45解析 由log a 3=m ,得a m=3,由log a 5=n ,得a n=5. ∴a 2m +n =(a m )2·a n =32×5=45.13.解 (1)①因为log 2x =-25,所以x =252-=582.②因为log x 3=-13,所以x -13=3,所以x =3-3=127.(2)①log 68=a .②由6a =8得6a=23,即36a =2,所以log 62=a3.③由36a =2得32a=6,所以log 26=3a.。
对数式与对数函数[学习目标]1. 掌握对数的预算法则2. 理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,3.了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用.[学习重难点]①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点;③知道对数函数是一类重要的函数模型;④了解指数函数x=与对数函数log ay ay x=互为反函数()a o a≠,1[自主学习]1.对数:,那么称为,记(1) 定义:如果Na b=)1,0a且>a(≠作,其中a称为对数的底,N称为真数.①以10为底的对数称为常用对数,Nlog记作___________.10②以无理数)log记作e为底的对数称为自然对数,N ee.271828(=_________.(2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③1log =a a ;④ 对数恒等式:N a N a =log .(3) 运算性质:① log a (MN)=___________________________;② log a N M=____________________________;③ log a M n = (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)⑤ log m n a a nb b m = .2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为 __________________;2) 函数的值域为 _____________________;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数 )1,0(≠>=a a a y x 且互为反函数.② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当10<<a 时,图象向上无限接近y轴;当1>a 时,图象向下无限接近y 轴);3) 函数y =log a x 与 的图象关于x 轴对称.③ 函数值的变化特征及函数图像与性质:注:(1)同底的指数函数x y a =与对数函数log a y x =互为反函数(2)底大图低[典型例析]例1 计算: (1))32(log 32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;(3)21lg 4932-34lg 8+lg 245.变式训练1:化简求值.(1)log 2487+log 212-21log 242-1; (2)(lg2)2+lg2·lg50+lg25;(3)(log 32+log 92)·(log 43+log 83).例2已知函数f (x )=log 2(x 2-ax-a)在区间(-∞, 1-3]上是单调递减函数.求实数a 的取值范围.例3.对于)32(log )(221+-=ax x x f ,(1)函数的“定义域为R ”和“值域为R ”是否是一回事;(2)结合“实数a 的取何值时)(x f 在),1[+∞-上有意义”与“实数a 的取何值时函数的定义域为),3()1,(+∞⋃-∞”说明求“有意义”问题与求“定义域”问题的区别;(3)结合(1)(2)两问,说明实数a 的取何值时)(x f 的值域为]1,(--∞(4)实数a 的取何值时)(x f 在]1,(-∞内是增函数。
对数及对数函数复习导学案【高考要求】对数函数(B )【教学目标】1. 理解对数的概念及其运算性质;了解对数换底公式,知道一般对数可以转化成自然对数或常用对数.2.了解对数函数模型的实际案例;了解对数函数的概念;理解对数函数的性质,会画对数函数的图象.3.了解指数函数y =a x 与对数函数y =log a x 互为反函数(a > 0,a ≠1)(不要求一般地讨论反函数的定义,不要求求已知函数的反函数).【教学重难点】对数函数的性质及其应用【知识梳理】1.对数(1)对数的定义:(2)指数式与对数式的等价关系为: .两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )= ②log aNM = ③log a M n = (M >0,N >0,a >0,a ≠1)④对数换底公式:log b N = (a >0,a ≠1,b >0,b ≠1,N >0).(4)特别的 a a log = 1log a =2.对数函数(1)对数函数的定义(2)对数函数的图象※底数互为倒数的两个对数函数的图象关于 轴对称.(3)对数函数的性质:①定义域:②值域:③过点 ,即当x = 时,y = .④当a >1时,在 上是增函数;当0<a <1时,在 上是减函数.【自学质疑】1. 已知35,a b m ==且112,a b+=则m =2. 已知()log (1)(0,1),a f x x a a =->≠那么()f x 的定义域为 ,当(0,1)a ∈时,()f x 为 (填增、减函数);当(0,1)a ∈,且x ∈ 时,()0f x <3. 已知[]732log log (log )0,x =则1x -=4. 设函数2log (1),2()1()1,22x x x f x x -≥⎧⎪=⎨-<⎪⎩,若0()1f x >,则0x ∈ 【交流展示与互动探究】例1、(1)求值11lg 9lg 24021;2361lg 27lg 35+-+-+(2)已知23log 3,log 7,m n ==求42log 56变式:计算:15log 25= ;1lg9lg 22100-= 例2、当(1,2)x ∈时,不等式2(1)log a x x -≤恒成立,则a ∈【迁移应用】1、若0.70.7 1.1log 0.8,log 0.8, 1.1,a b c ===则,,a b c 的大小关系是2、若函数22()log f x x =的值域是[]0,1,则()f x 的定义域是3、设0,1,a a >≠函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为4、若函数2()lg(21)f x ax x =++的定义域是R ,则实数a 的取值范围 ;若函数2()lg(21)f x ax x =++的值域是R ,则实数a 的取值范围 ;5、(20XX 年陕西数学文3)若a 、b 、c 均为不等于0的实数,则下列等式恒成立的是( )A .b a log b c log =a c log B. b a log a c log =b c logC .)(log bc a =b a log c a log D. )(log c b a +=b a log +c a log。
课题:对数与对数运算(3)课时:008课 型:新授课教学目标:能较熟练地运用对数运算性质解决实践问题,加强数学应用意识的训练,提高解决应用问题的能力.教学重点:用对数运算解决实践问题.教学难点:如何转化为数学问题教学过程:一、复习准备:1. 提问:对数的运算性质及换底公式?2. 已知 2log 3 = a , 3log 7 = b, 用 a, b 表示42log 563. 问题:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿? (答案:12(10.0125)14x ⨯+= →71.01256x =→ lg7lg612.4lg1.0125x -=≈) 二、讲授新课:1.教学对数运算的实践应用:让学生自己阅读思考P 67~P 68的例5,例6的题目,教师点拨思考:① 出示例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(Ⅰ)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(Ⅱ)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)② 分析解答:读题摘要 → 数量关系 → 数量计算 → 如何利用对数知识?③ 出示例2 当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题:(Ⅰ)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(Ⅱ)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(Ⅲ)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代? ④分析解答:读题摘要 → 寻找数量关系 → 强调数学应用思想⑤探究训练:讨论展示并分析自己的结果,试分析归纳,能总结概括得出什么结论?结论:P 和t 之间的对应关系是一一对应;P 关于t 的指数函数x P )21(5730=;1、 例题选讲例1、已知:45log ,518,8log 3618求==b a (用含a ,b 的式子表示)例2、计算91log 81log 251log 532∙∙例3,)2lg(2lg lg y x y x -=+已求yx 2log的值三、巩固练习:1. 计算: 0.21log 35-; 44912log 3log 2log 32⋅-2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在1999年的基础上翻两翻?3 . P 68、4四、小结:初步建模思想(审题→设未知数→建立x 与y 之间的关系→); 用数学结果解释现象五、作业P 749、11、12后记:。
函数的图象(1)一、知识梳理:函数的图象是函数的直观表达,形象地显示了函数的性质,借助函数的图象,我们可以方便地研究函数的性质,加深对函数性质的理解和认识,而且分析函数图象是运用“数形结合”思想解决一些综合问题的有力工具,它一方面能启发我们发现解题思路,另一方面能够简化解题过程。
(一)、作图象作函数的图象通常有以下两种办法:(1)、描点法:其步骤①、确定函数的定义域。
②、化简函数的表达式。
③、列表。
④、描点。
⑤、连线。
(2)、图象的变换:主要有以下四种形式:①、平移变化:(a)左右平移:(>0) 的图象可由的图象向左或向右平移a个单位得到;(b)上下平移:(>0) 的图象可由的图象向上或向下平移a个单位得到。
(c)的图象按向量②、对称变换:主要有:的图象与的图象关于轴对称;的图象与的图象关于轴对称;的图象与的图象关于对称。
③、伸缩变换:主要有:(a)、的图象可将的图象上每点的横坐标不变,纵坐标变为原来的倍而得到;(b)、的图象可将的图象上每点的纵坐标不变,横坐标变为原来的倍而得到;④、翻折变换:主要有:(a)、图象可将的图象位于x轴下方的部分以x轴为对称轴翻折,x轴及其上方的图象保持不变;(b)、图象是先画出在y轴及右侧的图象再将y轴右侧的图象以y轴为对称轴翻折到左侧而得到左边的图象(右侧部分保持不动);(二)、识图象对于给定的函数的图象,要能从图象的左右上下分布范围、变化趋势,来研究函数的定义域、值域、单调性、奇偶性、周期性、对称性等性质;(三)、用图象函数的图象形象对显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题图径、获得问题结果的重要工具。
(四)、图象对称性的证明证明函数的图象的地称性,即证明图象上任意一点关于对称中心(或对称轴)对称点仍在图象上;有关对称问题有以下三个重要结论:(1)若=对于定义域内任意x都成立,则函数的图象关于直线x= 成轴对称图形;(2)若的图象关于直线x=m及x=n对称,则周期函数,2|m-n|是它的一个周期;(3)若的图象关于点(m,0)(n,0)对称,则周期函数,2|m-n|是它的一个周期。
函数的概念与表示(教案)一、知识梳理:(阅读教材必修1第15页—第26页) 1、 函数 (1)、函数的定义: (2)、构成函数的三要素:函数的定义含有三个要素,即定义域A ,值域C ,对应法则f ,当定义域A ,对应法则f 相同时,两个函数表示是同一个函数,解决一切函数问题必须认真确定函数的定义域,函数的定义域包含四种形式: 自然型;限制型;实际型;抽象型;(3)函数的表示方法:解析式法,图象法,列表法 2、 映射映射的定义: 函数与映射的关系:函数是特殊的映射 3、分段函数分段函数的理解:函数在它的定义域中对于自变量x 的不同取值上的对应关系不同,则可以用多个不同的解析式来表示该函数,这种形式的函数叫分段函数,分段函数是一个函数而不是多个函数。
4、函数解析式求法求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.二、题型探究探究一:求函数的定义域1.(郑州模拟)函数0()A.{x|x<0}B.{x|x>0}C.{x|x<0且x ≠-1}D.{x|x ≠0且x ≠-1,x ∈R} 解析:依题意有x+1≠0|x|-x>0,解得x<0且x ≠-1,故定义域是{x|x<0且x ≠-1}.答案:C2、若函数f(x+1)的定义域是[1,2],则函数)的定义域为________.解析:∵f(x+1)的定义域是[1,2],∴f(x)的定义域为[2,3],对于函数)满足23,∴4≤x ≤9.∴的定义域为[4,9]. 答案:[4,9] 3、函数y=253x x --的值域是{y|y ≤0或y ≥4},则此函数的定义域为________. 解析:∵y ≤0或y ≥4,∴253x x --≤0或253x x --≥4.∴52≤x<3或3<x ≤72. 答案:52≤x<3或3<x ≤72.探究二:求函数的解析式 例2.(1)已知3311(f x x xx +=+,求()f x ; (2)已知2(1)lg f x x+=,求()f x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知()f x 满足12()(3f x f x x+=,求()f x .解:(1)∵3331111()(3()f x x x x x x x x+=+=+-+,∴3()3f x x x =-(2x ≥或2x ≤-).(2)令21t x +=(1t >),则21x t =-,∴2()lg 1f t t =-,∴2()lg (1)1f x x x =>-. (3)设()(0)f x ax b a =+≠,则3(1)2(1)3332225217f x f x ax a b ax a b ax b a x +--=++-+-=++=+, ∴2a =,7b =,∴()27f x x =+.(4)12()()3f x f x x += ①, 把①中的x 换成1x ,得132()()f f x x x+=②,①2⨯-②得33()6f x x x =-,∴1()2f x x x=-.注:第(1)题用配凑法;第(2)题用换元法;第(3)题已知一次函数,可用待定系数法;第(4)题用方程组法.三、方法提升1、判断一个对应是否为映射关键在于是否“取值任意性,成象唯一性;判断是否为函数“一看是否为映射,二看A ,B 是否为非空的数集”2、函数是中学最重要的概念之一,学习函数的概念首先要掌握函数的三要素基本内容与方法,由给定的函数的解析式求其定义域是这类问题的代表,实际上是求使函数有意义的x 有取值范围;求函数定义域一般有三类问题:(1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合; (2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义;(3)已知()f x 的定义域求[()]f g x 的定义域或已知[()]f g x 的定义域求()f x 的定义域:①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知()f x 的定义域[],a b ,其复合函数[]()f g x 的定义域应由()a g x b ≤≤解出.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;(5)应用题求函数解析式常用方法有待定系数法等.四、 反思感悟五、课时作业课时训练 函数的解析式与定义域【说明】 本试卷满分100分,考试时间90分钟. 一、选择题(每小题6分,共42分) 1.(2010江苏南京一模,2)函数y=322--x x +log 2(x+2)的定义域为( )A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.(-2,-1]∪[3,+∞) 答案:D解析:⎩⎨⎧->-≤⇒⎩⎨⎧>+≥--,2,1,02,0322x x x x x 或x ≥3⇒-2<x ≤-1或x ≥3.2.若f(x+1)=21f(x),则下列函数中f(x)为( ) A.2x B.x+21C.2-xD.21log x 答案:C3.g(x)=1-2x,f [g(x)]=221x x -(x ≠0),则f(21)等于( )A.1B.3C.15D.30答案:C解析:令g(x)=21,则x=41,∴f(21)=22)41()41(1-=15. 4.设函数f(x)=lgx,g(x)=4x -2x+1-3,则函数f [g(x)]的定义域是( ) A.(-∞,2) B.(2,+∞) C.(log 23,+∞) D.(-∞,log 23) 答案:C解析:f [g(x)]=lg [g(x)]=lg(4x -2x+1-3),由4x -2x+1-3>0,得(2x +1)(2x -3)>0,又2x +1>0,∴2x >3,即x>log 23,故选C.把上表反映的数据关系,用一个函数来近似地表达出,其中数据最接近的一个是( ) A.S=1+2t-3 B.S=23log 2t C.S=21(t 2-1) D.S=-2t+5.5 答案:B解析:分别取近似数对(2,1.5),(3,2),(4,3),(8,4.5)代入验证即可选B. 6.已知函数y=f(x)的图象如下图,那么f(x)等于( )A.122+-x x B.1||22+-x x C.|x 2-1|D.x 2-2|x|+1 答案:B解析:C 、D 表示二次函数故首先排除.又∵f(-1)=0,故排除A ,故选B. 7.(2010全国大联,8)已知函数y=f(2x )的定义域是[-1,1],则函数y=f(log 2x)的定义域是( )A.(0,+∞)B.(0,1)C.[1,2]D.[2,4] 答案:D解析:∵x ∈[-1,1],∴2x ∈[21,2],故log 2x ∈[21,2],∴x ∈[2,4]. 二、填空题(每小题5分,共15分) 8.函数f(x)=xx -++211的定义域为_______________. 答案:[-1,2)∪(2,+∞) 解析:∵⎩⎨⎧≠-≥+.02,01x x ∴x ≥-1且x ≠2.9.已知f(x+1)的定义域是[1,2],那么函数f(x )的定义域为___________________.答案:[4,9]解析:∵x ∈[1,2],∴x+1∈[2,3]. ∴f(x )中的x 满足2≤x ≤3,即4≤x ≤9.10.设函数f(x)=log a x(a>0且a ≠1),函数g(x)=-x 2+bx+c 且f(2+2)-f(2+1)=21,g(x)的图象过点A (4,-5)及B (-2,-5),则a=____________;函数f [g(x)]的定义域为_______________. 答案:2 -1<x<3解析:log a (2+2)-log a (2+1)=21⇒log a 2=21,a=2. 由g(4)=g(-2)=-5,知g(x)+5=-(x-4)(x+2),故⎩⎨⎧==.3,2c b∴f [g(x)]=log 2(-x 2+2x+3),由-x 2+2x+3>0,得-1<x<3.三、解答题(11—13题每小题10分,14题13分,共43分) 11.已知函数f(x+a)=|x-2|-|x+2|,且f [f(a)]=3,求a 的值. 解析:令x=0,f(a)=|-2|-|2|=0. ∴f [f(a)]=f(0)=|-a-2|-|-a+2|=3. ∴|a+2|-|a-2|=3.当a>2时,有a+2-(a-2)=3无解; 当-2≤a ≤2时,有a+2+(a-2)=3⇒a=23; 当a ≤-2时,有-(a+2)+(a-2)=3无解. ∴a=23. 12.已知函数f(x)=34723++-ax ax x 的定义域为R ,求a 的取值范围.解析:当a=0时,函数定义域为R . 当a ≠0时,要使ax 2+4ax+3≠0对一切x ∈R 恒成立,其充要条件是Δ<0,即16a 2-12a<0,∴0<a<43.因此a 的取值范围为[0,43). 13.如下图,用长为l 的木条围成上部分是半圆下部分是矩形的窗框,中间有2根横档,要使透光效果最好,应如何设计?解析:设半圆的半径为x,则窗户的面积y=21πx 2+2x ·)26(26ππ+-=--x x l x 2+l x, 由⎪⎩⎪⎨⎧>-->,026,0x x l x π解得0<x<π+6l .∴y=-(6+2π)x 2+lx(0<x<π+6l ).当x=π+12l 时y 有最大值.这时半圆的直径为π+122l ,大矩形的另一边长为π+123l.14.已知函数f(x)=lg(x+1),g(x)=2lg(2x+t)(t 为参数). (1)写出函数f(x)的定义域和值域;(2)当x ∈[0,1]时,求函数g(x)解析式中参数t 的取值范围; (3)当x ∈[0,1]时,如果f(x)≤g(x),求参数t 的取值范围. 解析:(1)函数f(x)的定义域为(-1,+∞),值域为R . (2)∵2x+t>0,x ∈[0,1],∴t>0. (3)当0≤x ≤1时,f(x)≤g(x)⇔⎩⎨⎧+≤+>+⇔,21,02t x x t x t ≥1+x -2x(0≤x ≤1)⇔t ≥(1+x -2x)max . 设U=-+1x 2x,m=1+x ,则1≤m ≤2,x=m 2-1, ∴U=m-2(m 2-1)=-2m 2+m+2=-2(m-41)2+81+2. ∴当m=1(x=0)时,U max =1.∴t ≥1.附加题:1.已知2()f x 的定义域为[1,1]-,则(2)xf 的定义域为(,0]-∞.2.函数1sin 21sin 2xy x +=-的定义域为{|(1),}6k x x k k Z ππ≠+-∈. 3、我国是水资源比较贫乏的国家之一,各地采取价格调控等手段来达到节约用水的目的,某地用水收费的方法是:水费=基本费+超额费+损耗费.若每月用水量不超过最低限量a 3m 时,只付基本费8元和每月每户的定额损耗费c 元;若用水量超过a3m 时,除了付同上的基本费和定额损耗费外,超过部分每3m 付b 元的超额费.已知每户每月的定额损耗费不超过5元.解:设每月用水量为x 3m ,支付费用为y 元,则有8,0(1)8(),(2)c x ay b x a c x a+≤≤⎧=⎨+-+>⎩由表知第二、第三月份的水费均大于13元,故用水量153m ,223m 均大于最低限量a 3m ,于是就有198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩,解之得2b =,从而219 (3)a c =+再考虑一月份的用水量是否超过最低限量a 3m ,不妨设9a >,将9x =代入(2)式,得982(9)a c =+-+,即217a c =+,这与(3)矛盾.∴9a ≤. 从而可知一月份的付款方式应选(1)式,因此,就有89c +=,得1c =. 故10a =,2b =,1c =.4.(2010山东理)(11)函数y =2x-的图像大致是2x5.山东卷理)函数的图像大致为 ( ).答案 A解析 函数有意义,需使,其定义域为,排除C,D,又因为,所以当时函数为减函数,故选A.【命题立意】:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.x xx xe e y e e--+=-0xxe e--≠{}0|≠x x 22212111x x x x x x x e e e y e e e e --++===+---0x >A。
函数与方程一、知识梳理:(阅读教材必修1第85页—第94页)1、方程的根与函数的零点(1)零点:对于函数,我们把使0的实数x叫做函数的零点。
这样,函数的零点就是方程0的实数根,也就是函数的图象与x轴交点的横坐标,所以方程0有实根。
(2)、函数的零点存在性定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在c,使得=0,这个C 也就是方程0的实数根。
(3)、零点存在唯一性定理:如果单调函数在区间[a,b]上的图象是连续不断的一条曲线,并且有那么,在区间(a,b)内有零点,即存在唯一c,使得=0,这个C 也就是方程0的实数根。
(4)、零点的存在定理说明:①求在闭间内连续,满足条件时,在开区间内函数有零点;②条件的函数在区间(a,b)内的零点至少一个;③间[a,b]上连续函数,不满足,这个函数在(a,b)内也有可能有零点,因此在区间[a,b]上连续函数,是函数在(a,b)内有零点的充分不必要条件。
2、用二分法求方程的近似解(1)、二分法定义:对于区间[a,b]连续不断且的函数通过不断把区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法。
(2)、给定精确度()用二分法求函数的零点近似值步骤如下:①确定区间[a,b],验证给定精确度();②求区间(a,b)的中点c;③计算(I)若=0,则c就是函数的零点;(II)若则令b=c,(此时零点);(III)若则令a=c,(此时零点);④判断是否达到精确度,若|a-b|,则得到零点的近似值a(或b),否则重复②--④步骤。
函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解,由于计算量较大,而且是重复相同的步骤,因此,我们可以通过设计一定的程序,借助计算器或者计算机来完成计算。
二、题型探究[探究一]:考察零点的定义及求零点例1:已知函数(1)m为何值时,函数的图象与x轴只有一个公共点?(1或1/3)(2) 如果函数的一个零点为2,则m 的值及函数的另一个零点。
第六节 对数与对数函数[考纲传真] (教师用书独具)1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(对应学生用书第22页)[基础知识填充]1.对数的概念如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中a 叫作对数的底数,N 叫作真数. 2.对数的性质与运算法则(1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n =n mlog a M (m ,n ∈R 且m ≠0). (2)对数的性质①a log a N =N ;②log a a N=N (a >0,且a ≠1). (3)对数的重要公式①换底公式:log b N =log a N log a b (a ,b >0,a ,b ≠1,N >0);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的定义、图像与性质定义 函数y =log a x (a >0且a ≠1)叫作对数函数图像a >1 0<a <1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图像关于直线y=x对称.[知识拓展] 对数函数的图像与底数大小的比较多个对数函数图像比较底数大小的问题,可通过比较图像与直线y=1交点的横坐标进行判定.如图261,作直线y=1,则该直线与四个函数图像交点的横坐标为相应的底数.故0<c<d<1<a<b.图261[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.( )(2)log2x2=2log2x.( )(3)当x>1时,log a x>0.( )(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.( )(5)对数函数y=log a x(a>0且a≠1)的图像过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图像不在第二、三象限.( )[答案](1)×(2)×(3)×(4)√(5)√2.(log29)·(log34)=( )A .14 B .12 C .2D .4D [原式=lg 9lg 2·lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4.]3.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD [∵0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C .⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D .⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.函数y =log a (x -1)+2(a >0,a ≠1)的图像恒过的定点是________.(2,2) [当x =2时,函数y =log a (x -1)+2(a >0,a ≠1)的值为2,所以图像恒过定点(2,2).](对应学生用书第23页)对数的运算(1)设2a =5b=m ,且1a +1b=2,则m 等于( )A .10B .10C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. 【导学号:79140049】(1)A (2)-20 [(1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.(2)原式=(lg 2-2-lg 52)×10012=⎝ ⎛⎭⎪⎫lg 122·52×10=(lg 10-2)×10=-2×10=-20.][规律方法] 对数运算的一般思路 1拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并. 2合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算. 3转化:a b=N ⇔b =log a N a >0,且a ≠1是解决有关指数、对数问题的有效方法,在运算中应注意互化.[跟踪训练] (1)(2018·云南二检)已知函数f (x )=lg(1+4x 2-2x )+1,则f (3)+f (-3)=( ) A .-1 B .0 C .1D .2(2)计算:(log 32+log 92)·(log 43+log 83)=________.(1)D (2)54 [(1)f (3)+f (-3)=lg(37-6)+lg(37+6)+2=lg[(37-6)(37+6)]+2=lg 1+2=2,故选D .(2)原式=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9·⎝ ⎛⎭⎪⎫lg 3lg 4+lg 3lg 8=⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3·⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54.]对数函数的图像及应用(1)(2017·广东韵关南雄模拟)函数f (x )=x a满足f (2)=4,那么函数g (x )=|log a (x +1)|的图像大致为( )(2)(2017·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x-a =0有且只有一个实根,则实数a 的取值范围是________.【导学号:79140050】(1)C (2)(1,+∞) [(1)法一:∵f (2)=4,∴2a=4,解得a =2,∴g (x )=|log 2(x+1)|=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,-log 2(x +1),-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减.故选C .法二:由f (2)=4,即2a=4得a =2,∴g (x )=|log 2(x +1)|,函数g (x )是由函数y =|log 2x |向左平移一个单位得到的,只有C 项符合,故选C .(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图像,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.][规律方法] 利用对数函数的图像可求解的两类问题 1对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性单调区间、值域最值、零点时,常利用数形结合思想求解.2一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. a 则下列结论成立的是( )图262A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由该函数的图像通过第一、二、四象限知该函数为减函数,∴0<a <1,∵图像与x 轴的交点在区间(0,1)之间,∴该函数的图像是由函数y =log a x 的图像向左平移不到1个单位后得到的,∴0<c <1.]对数函数的性质及应用◎角度1 比较对数值的大小(2016·全国卷Ⅰ)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<b cD .c a>c bB [∵0<c <1,∴当a >b >1时,log a c >log b c ,A 项错误; ∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0, ∴log c a <log c b ,B 项正确;∵0<c <1,∴函数y =x c在(0,+∞)上单调递增, 又∵a >b >0,∴a c>b c,C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减, 又∵a >b >0,∴c a<c b ,D 项错误.] ◎角度2 解简单的对数不等式若f (x )=lg x ,g (x )=f (|x |),当g (lg x )>g (1)时,则x 的取值范围是________.⎝ ⎛⎭⎪⎫0,110∪(10,+∞) [当g (lg x )>g (1)时,f (|lg x |)>f (1),由f (x )为增函数得|lg x |>1,从而lg x >1或lg x <-1,解得0<x <110或x >10.]◎角度3 探究对数型函数的性质已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.[解] (1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上单调递增,在(1,3)上单调递减. 又y =log 4x 在(0,+∞)上单调递增,∴f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.[规律方法] 对数值大小比较的主要方法 1化同底数后利用函数的单调性. 2化同真数后利用图像比较. 3借用中间量0或1等进行估值比较.易错警示:利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,注意对数性质的正用、逆用、变形用. [跟踪训练] (1)已知a =log 29-log 23,b =1+log 27,c =2+log 213,则( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a(2)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.(1)B (2)⎝ ⎛⎭⎪⎫1,83 [(1)a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 是增函数,且27>33>26,所以b >a >c ,故选B .(2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由于f (x )>1恒成立,所以f (x )min =log a (8-2a )>1,故1<a <83.当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数,由于f (x )>1恒成立,所以f (x )min =log a (8-a )>1,即a >4,且8-2a >0,a <4,显然这样的a 不存在.故a 的取值范围为⎝ ⎛⎭⎪⎫1,83.]。
3.2.1对数与对数运算(一)
一.学习要点:对数及其有关概念和性质
二.学习过程:
1.对数的概念
一般地,如果N a x =)1,0(≠>a a ,那么数x
记作: ,其中a 叫做对数的 ,N 叫做
log a N 读作
【思考】○
1为什么对数的定义中要求底数0>a ,且1≠a ;
○
2是否是所有的实数都有对数呢? ③对数与指数间的关系。
根据对数的定义,可以得到对数与指数间的关系:
3.常用对数、自然对数
○
1 常用对数:以10为底的对数,并把log 10N 记为 ;
○
2 自然对数:以无理数Λ71828.2=e 为底的对数。
并把log e N 记为 4.对数的性质
(1)
(2)
(3)
(4)
(5)
【例1】将下列指数式化成对数式,对数式化为指数式:
(1)54=625; (2)2-6=641; (3)73531⋅=⎪⎭⎫ ⎝⎛m
; (4)416log 2
1-=; (5)201.0lg -= (6)303.210ln =
【例2】求下列各式中x 的值:
3
2log )1(64-=x 68log )2(=x x =100lg )3( x e =-2ln )4( 0)](log [log log )5(432=x
【例3】计算2log 3lg 1ln 1010ππ+⋅-的值。
五.【巩固练习】
教材P 97练习A 、B ;
六、课后作业:见作业(28)。
学习资料第五节对数与对数函数授课提示:对应学生用书第23页[基础梳理]1.对数的概念如果a x=N(a>0,且a≠1),那么x叫作以a为底N的对数,记作x=log a N.2.对数的性质与运算法则(1)对数的性质①log a1=0;②log a a=1.(2)对数恒等式a log a N=N.(其中a>0且a≠1)(3)对数的换底公式log b N=错误!(a,b均大于零且不等于1,N>0).(4)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a错误!=log a M-log a N;③log a M n=n log a M(n∈R).3.对数函数的定义、图像与性质定义函数y=log a x(a>0,且a≠1)叫作对数函数图像a>10<a<1性质定义域:(0,+∞)值域:(-∞,+∞)当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图像关于直线y=x对称.1.换底公式的三个重要结论(1)log a b=错误!;(2)log am b n=错误!log a b;(3)log a b·log b c·log c d=log a d.2.对数函数的图像与底数大小的比较如图,作直线y=1,则该直线与四个函数图像交点的横坐标为相应的底数.故0<c<d<1<a<b。
由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.[四基自测]1.(基础点:对数运算)lg 2+lg 5=()A.10B.1C.lg 7D.lg 2 lg 5答案:B2.(基础点:对数函数的图像)y=ln|x|的图像为()答案:B3.(基础点:对数函数性质)a=log23.4,b=log82,c=log0。
对数与对数函数1.对数的定义如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质与运算及换底公式 (1)对数的性质(a >0且a ≠1):①log a 1=0;②log a a =1;③a log a N =N . (2)对数的换底公式基本公式:log a b =log c blog c a (a ,c 均大于0且不等于1,b >0).(3)对数的运算法则:如果a >0且a ≠1,M >0,N >0,那么 ①log a (M ·N )=log a M +log a N , ②log a MN =log a M -log a N ,③log a M n =n log a M (n ∈R ). 3.对数函数的图像与性质a >10<a <1图像定义域 (0,+∞)值域 R 定点 过点(1,0)单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数 函数值正负当x >1时,y >0; 当0<x <1,y <0当x >1时,y <0; 当0<x <1时,y >04.反函数指数函数y =a x (a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图像关于直线y =x 对称.1.在运算性质log a M n =n log a M 中,易忽视M >0. 2.解决与对数函数有关的问题时易漏两点: (1)函数的定义域; (2)对数底数的取值范围. [试一试]1.(2013·苏中三市、连云港、淮安二调)“M >N ”是“log 2M >log 2N ”成立的____________条件(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”).2.(2014·常州期末)函数f (x )=log 2(4-x 2)的值域为________.1.对数值的大小比较的基本方法(1)化同底后利用函数的单调性;(2)作差或作商法; (3)利用中间量(0或1);(4)化同真数后利用图像比较. 2.明确对数函数图像的基本点(1)当a >1时,对数函数的图像“上升”; 当0<a <1时,对数函数的图像“下降”.(2)对数函数y =log a x (a >0,且a ≠1)的图像过定点(1,0),且过点(a,1)⎝⎛⎭⎫1a ,-1,函数图像只在第一、四象限. [练一练]1.函数y =log a (3x -2)(a >0,a ≠1)的图像经过定点A ,则A 点坐标是________.2.(2013·全国卷Ⅱ改编)设a =log 32,b =log 52,c =log 23,则a ,b ,c 的大小关系为________.考点一对数式的化简与求值计算下列各题:(1)lg 37+lg 70-lg 3-(lg 3)2-lg 9+1;(2)12lg 3249-43lg 8+lg 245[类题通法]对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.考点二对数函数的图像及应用[典例] (1)(2014·南通期末)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log22x ,y =x 12,y =⎝⎛⎭⎫22x 的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是________.若本例(2)变为:若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________.[类题通法]应用对数型函数的图像可求解的问题(1)对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. [针对训练]已知函数f (x )=⎩⎪⎨⎪⎧lg x , 0<x ≤10,⎪⎪⎪⎪-12x +6, x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.考点三对数函数的性质及应用[典例] 已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.[类题通法]求复合函数y =f (g (x ))的单调区间的步骤(1)确定定义域;(2)将复合函数分解成基本初等函数y =f (u ),u =g (x ); (3)分别确定这两个函数的单调区间;(4)若这两个函数同增或同减,则y =f (g (x ))为增函数,若一增一减,则y =f (g (x ))为减函数,即“同增异减”. [针对训练]已知f (x )=log a (a x -1)(a >0且a ≠1). (1)求f (x )的定义域; (2)判断函数f (x )的单调性.[课堂练通考点]1.(2014·深圳第一次调研)设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=________.2.(2013·广东高考改编)函数y =lg (x +1)x -1的定义域是________.。
第六节 对数与对数函数[考纲传真] 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,12的对数函数的图像.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(对应学生用书第18页)[基础知识填充]1.对数的概念如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么数b 叫作以a 为底N 的对数,记作log a N =b ,其中a 叫作对数的底数,N 叫作真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log m a M n=n mlog a M (m ,n ∈R 且m ≠0). (2)对数的性质①a log a N=N ;②log a a N=N (a >0,且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b >0,a ,b ≠1,N >0);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a D .3.对数函数的图像与性质指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图像关于直线y =x 对称. [知识拓展]1.换底公式的两个重要结论 (1)log a b =1log b a ;(2)log am b n=n mlog a B .其中a >0且a ≠1,b >0且b ≠1,m ,n ∈R . 2.对数函数的图像与底数大小的比较如图261,作直线y =1,则该直线与四个函数图像交点的横坐标为相应的底数.故0<c <d <1<a <B .由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.图261 [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)log 2x 2=2log 2x .( ) (2)当x >1时,log a x >0.( )(3)函数y =lg(x +3)+lg(x -3)与y =lg[(x +3)(x -3)]的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图像过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图像不在第二、三象限.( ) [答案] (1)× (2)× (3)× (4)√ 2.已知a =2,b =log 213,c =,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD [∵0<a =2<20=1,b =log 213<log 21=0,c =>=1,∴c >a >B .]3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图262,则下列结论成立的是( )图262A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由图像可知y =log a (x +c )的图像是由y =log a x 的图像向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C .⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D .⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.(2018·南昌模拟)计算:2log 510+log 514=________,2log 43=________.【导学号:00090033】2 3 [2log 510+log 514=log 5⎝⎛⎭⎪⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log 23= 3.](对应学生用书第19页)(1)设2a =5b=m ,且a +b=2,则m 等于( )A .10B .10C .20D .100(2)(2018·太原模拟)已知log 7[log 3(log 2x )]=0,那么x -12等于( )A .13B .36 C .33D .24(1)A (2)D [(1)∵2a=5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2,∴m =10.(2)由log 7[log 3(log 2x )]=0得log 3(log 2x )=1, 即log 2x =3,所以x =8, 所以x -12=24.][规律方法] 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.[变式训练1] (1)(2017·东城区综合练习(二))已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f x +,x <4,则f (2+log 23)的值为( ) A .24 B .16 C .12D .8(2)(2015·浙江高考)计算:log 222=________,2log 23+log 43=________. (1)A (2)-12 33 [(1)∵3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=23+log 23=8×3=24,故选A .(2)log 222=log 22-log 22=12-1=-12;2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log23=3 3.]y |y ≥1},则函数y =log a |x |的图像大致是( )A BC D(2)(2017·衡水调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.(1)B (2)(1,+∞) [(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图像如图所示.故选B .(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图像,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.][规律方法] 1.在识别函数图像时,要善于利用已知函数的性质、函数图像上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. [变式训练2] (1)(2018·邵阳模拟)若函数f (x )=a x-k ·a -x(a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a (x +k )的大致图像是( )(2)(2018·合肥模拟)当0<x ≤12时,4x<log a x ,则a 的取值范围是( )【导学号:00090034】A .⎝ ⎛⎭⎪⎫0,22 B .⎝⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)(1)B (2)B [(1)由题意函数f (x )=a x-k ·a -x(a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,∴有f (0)=0,即0=1-k , ∴k =1,根据增+增=增,∴y =a x是增函数,∴a >1.那么函数g (x )=log a (x +1)(a >1)的图像单调递增,恒过(0,0),故选B .(2)构造函数f (x )=4x和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图像,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.]角度1 (1)(2016·全国卷Ⅰ)若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a>c b(2)(2018·榆林模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a 、b 、c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a(1)B (2)B [(1)∵0<c <1,∴当a >b >1时,log a c >log b c ,A 项错误; ∵0<c <1,∴y =log c x 在(0,+∞)上是减少的,又a >b >0, ∴log c a <log c b ,B 项正确;∵0<c <1,∴函数y =x c在(0,+∞)上是增加的, 又∵a >b >0,∴a c >b c,C 项错误;∵0<c <1,∴y =c x在(0,+∞)上是减少的, 又∵a >b >0,∴c a <c b,D 项错误.(2)因为a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,所以a >b >C .] 角度2 解简单的对数不等式(1)(2018·哈尔滨模拟)已知函数f (x )=⎩⎪⎨⎪⎧3+log 2x ,x >0x 2-x -1,x ≤0,则不等式f (x )≤5的解集为( ) A .[-1,1] B .(-∞,-2]∪(0,4) C .[-2,4]D .(-∞,-2]∪[0,4](2)(2016·浙江高考)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0(1)C (2)D [(1)由于f (x )=⎩⎪⎨⎪⎧3+log 2x ,x >0x 2-x -1,x ≤0,当x >0时,3+log 2x ≤5,即log 2x ≤2=log 24,解得0<x ≤4,当x ≤0时,x 2-x -1≤5,即(x -3)(x +2)≤0,解得-2≤x ≤0, ∴不等式f (x )≤5的解集为[-2,4],故选C . (2)法一:log a b >1=log a a , 当a >1时,b >a >1;当0<a <1时,0<b <a <1.只有D 正确. 法二:取a =2,b =3,排除A ,B ,C ,故选D .] 角度3 探究对数型函数的性质已知函数f (x )=log4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,请说明理由.【导学号:00090035】[解] (1)因为f (1)=1,所以log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0,得-1<x <3,函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上是增加的,在(1,3)上是减少的. 又y =log 4x 在(0,+∞)上是增加的, 所以f (x )的单调递增区间是(-1,1), 单调递减区间是(1,3).(2)假设存在实数a ,使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,即⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.[规律方法] 利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.。
[考纲传真] 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,错误!的对数函数的图像.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.1.对数的概念如果a(a>0,a≠1)的b次幂等于N,即a b=N,那么数b叫作以a为底N的对数,记作log a N=b ,其中a叫作对数的底数,N叫作真数.2.对数的性质与运算法则(1)对数的运算法则:如果a>0,且a≠1,M>0,N>0,那么:1log a(M·N)=log a M+log a N;2log a错误!=log a M—log a N;3log a M n=n log a M(n∈R).(2)对数的性质:1a log a N=N;2log a a b=b(a>0,且a≠1).(3)对数的换底公式:log a b=错误!(a,c均大于0且不等于1,b>0).3.对数函数的定义、图像与性质定义函数y=log a x(a>0且a≠1)叫作对数函数图像a>10<a<1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图像关于直线y=x对称.[常用结论]1.换底公式的两个重要结论(1)log a b=错误!;(2)log am b n=错误!log a b.其中a>0且a≠1,b>0且b≠1,m,n∈R.2.对数函数的图像与底数大小的比较如图,作直线y=1,则该直线与四个函数图像交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.(2)log2x2=2log2x. ()(3)函数y=ln错误!与y=ln(1+x)—ln(1—x)的定义域相同.()(4)对数函数y=log a x(a>0且a≠1)的图像过定点(1,0),且过点(a,1),错误!,函数图像不在第二、三象限.()[答案] (1)×(2)×(3)√(4)√2.(log29)·(log34)=()A.错误!B.错误!C.2D.4D[原式=错误!·错误!=错误!×错误!=4.]3.已知函数y=log a(x+c)(a,c为常数,其中a>0,且a≠1)的图像如图,则下列结论成立的是()A.a >1,c >1 B.a >1,0<c <1 C.0<a <1,c >1 D.0<a <1,0<c <1D [由图可知0<a <1,又f (0)=log a c >0,∴0<c <1.] 4.函数f (x )=log 错误!(x 2—4)的递增区间为( ) A.(0,+∞) B.(—∞,0) C.(2,+∞)D.(—∞,—2)D [由x 2—4>0得x >2或x <—2,由复合函数的单调性可知,f (x )=log 错误!(x 2—4)的递增区间,即为y =x 2—4在{x |x >2或x <—2}上的递减区间,故选D.] 5.若a =log 4 3,则2a +2—a =________.错误! [∵a =log 4 3,∴2a =2log 4 3=2log 2 错误!=错误!,∴2—a =错误!, ∴2a +2—a =错误!+错误!=错误!.]对数的运算1.设2a =5b =m ,且错误!+错误!=2,则m 等于( ) A.错误! B.10 C.20D.100A [∵2a =5b =m ,∴a =log 2m ,b =log 5m ,∴错误!+错误!=错误!+错误!=log m 2+log m 5=log m 10=2, ∴m =错误!.] 2.化简下列各式:(1)lg 错误!+lg 70—lg 3—错误!;(2)log 3 错误!·log 5[4错误!log 2 10—(3错误!)错误!—7log 7 2]; (3)(log 3 2+log 9 2)·(log 4 3+log 8 3).[解] (1)原式=lg 错误!—错误!=lg 10—错误!=1—|lg 3—1|=lg 3.(2)原式=log3错误!·log5[10—(3错误!)错误!—7log72]=(log33错误!—1)·log5(10—3—2)=错误!·log55=—错误!.(3)原式=错误!·错误!=错误!·错误!=错误!·错误!=错误!.[规律方法] 在解决对数的化简与求值问题时1要理解并灵活运用对数的定义、对数的运算性质、对数恒等式和对数的换底公式.2注意化简过程中的等价性和对数式与指数式的互化.3化异底为同底.【例1】(1)函数y=2log4(1—x)的图像大致是()A B C D(2)当x∈(1,2)时,不等式(x—1)2<log a x恒成立,则a的取值范围是()A.(0,1)B.(1,2)C.(1,2] D.错误!(1)C(2)C[(1)函数y=2log4(1—x)的定义域为(—∞,1),排除A,B;函数y=2log 4(1—x)在定义域上递减,排除D.故选C.(2)设f1(x)=(x—1)2,f2(x)=log a x,要使当x∈(1,2)时,不等式(x—1)2<log a x恒成立,只需f1(x)=(x—1)2在区间(1,2)上的图像在f2(x)=log a x的图像的下方即可.当0<a<1时,显然不成立.当a>1时,如图所示,要使在区间(1,2)上,f1(x)=(x—1)2的图像在f2(x)=log a x的图像的下方,只需f1(2)≤f2(2),即(2—1)2≤log a2,所以log a2≥1,即1<a≤2.] [规律方法] 利用对数函数的图像可求解的两类问题1对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性单调区间、值域最值、零点时,常利用数形结合思想求解.2一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.a a()A B C D(2)已知函数f(x)=错误!且关于x的方程f(x)+x—a=0有且只有一个实根,则实数a的取值范围是________.(1)C(2)(1,+∞)[(1)法一:∵f(2)=4,∴2a=4,解得a=2,∴g(x)=|log2(x+1)|=错误!∴当x≥0时,函数g(x)递增,且g(0)=0;当—1<x<0时,函数g(x)递减.故选C.法二:由f(2)=4,即2a=4得a=2,∴g(x)=|log2(x+1)|,函数g(x)是由函数y=|log2x|向左平移一个单位得到的,只有C项符合,故选C.(2)如图,在同一坐标系中分别作出y=f(x)与y=—x+a的图像,其中a表示直线在y轴上截距,由图可知,当a>1时,直线y=—x+a与y=log2x只有一个交点.]对数函数的性质及应用【例2】(1)(2018·天津高考)已知a=log2e,b=ln 2,c=log错误!错误!,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b(2)若函数f(x)=log2(x2—ax—3a)在区间(—∞,—2]上是减函数,则实数a的取值范围是()A.(—∞,4)B.(—4,4]C.(—∞,—4)∪[—2,+∞)D.[—4,4)(1)D(2)D[因为a=log2e>1,b=ln 2∈(0,1),c=log错误!错误!=log23>log2e>1,所以c>a>b,故选D.(2)由题意可知错误!解得—4≤a<4.故所求实数a的取值范围为[—4,4).][规律方法] 1利用对数函数单调性时要注意真数必须为正,明确底数对单调性的影响.2解决与对数函数有关的复合函数问题,首先要确定函数的定义域,根据“同增异减”原则判断函数的单调性,利用函数的最值解决恒成立问题.A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数(2)设函数f(x)=错误!若f(a)>f(—a),则实数a的取值范围是()A.(—1,0)∪(0,1)B.(—∞,—1)∪(1,+∞)C.(—1,0)∪(1,+∞)D.(—∞,—1)∪(0,1)(3)已知偶函数f(x)在(0,+∞)上递增,a=f错误!,b=f错误!,c=f(log32),则下列关系式中正确的是()A.a<b<cB.a<c<bC.c<a<bD.c<b<a(1)A(2)C(3)D[(1)由题意可知,函数f(x)的定义域为(—1,1),且f(x)=ln 错误!=ln错误!,易知y=错误!—1在(0,1)上为增函数,故f(x)在(0,1)上为增函数,又f(—x)=ln(1—x)—ln(1+x)=—f(x),所以f(x)为奇函数,故选A.(2)由题意得错误!或错误!解得a>1或—1<a<0.故选C.(3)log2错误!=—log23,而0<log32<1<错误!=log2错误!<log2错误!=log23.∵函数f(x)是偶函数,且在(0,+∞)上递增,∴f(log32)<f错误!<f(log23)=f(—log23)=f错误!,∴c<b<a,故选D.]1.(2018·全国卷Ⅲ)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0C.a+b<0<abD.ab<0<a+bB[由a=log0.20.3得错误!=log0.30.2,由b=log20.3得错误!=log0.32,所以错误!+错误!=log0.30.2+log0.32=log0.30.4,所以0<错误!+错误!<1,得0<错误!<1.又a>0,b <0,所以ab<0,所以ab<a+b<0.]2.(2016·全国卷Ⅰ)若a>b>1,0<c<1,则()A.a c<b cB.ab c<ba cC.a log b c<b log a cD.log a c<log b cC[∵y=xα,α∈(0,1)在(0,+∞)上是增函数,∴当a>b>1,0<c<1时,a c>b c,选项A不正确.∵y=xα,α∈(—1,0)在(0,+∞)上是减函数,∴当a>b>1,0<c<1,即—1<c—1<0时,a c—1<b c—1,即ab c>ba c,选项B不正确.∵a>b>1,∴lg a>lg b>0,∴a lg a>b lg b>0,∴错误!>错误!.又∵0<c<1,∴lg c<0.∴错误!<错误!,∴a log b c<b log a c,选项C正确.同理可证log a c>log b c,选项D不正确.]3.(2018·全国卷Ⅲ)已知函数f(x)=ln(错误!—x)+1,f(a)=4,则f(—a)=________.—2[由f(a)=ln(错误!—a)+1=4,得ln(错误!—a)=3,所以f(—a)=ln(错误!+a)+1=—ln 错误!+1=—ln(错误!—a)+1=—3+1=—2.]。