高三第一轮复习数学指数函数与对数函数
- 格式:docx
- 大小:32.95 KB
- 文档页数:4
2018届高三第一轮复习讲义【12】-指数函数与对数函数一、知识梳理:1.指数函数的概念、图像和性质 (1)指数的运算性质()()()()()0,,;0,,;0,0,.m n m n nm mn nn n a a a a m n R a a a m n R a b a b a b n R ⋅⋅=>∈=>∈⋅=⋅>>∈(2)指数函数:一般地,函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(3)指数函数的图像与性质【注意】(1)会根据复合函数的单调性特征“同增异减”,判断形如()f x y a =(0a >且1a ≠)函数的单调性;(2)会根据x y a = (0a >且1a ≠)的单调性求形如(),f x y ax D =∈,(),x y f a x D=∈(1)定义域:x R ∈(2)值域:(0,y ∈的值域;(3)解题时注意“分类讨论”、“数形结合”、“换元”等思想方法的应用。
2.对数的概念及其运算 (1)对数的定义:如果=ba N (>0a ,1a ≠),那么b 叫做以a 为底N 的对数,记作=a log N b .读作“以a 为底N 的对数”,其中a 叫做底数,N 叫做真数.必须注意真数0N >,即零与负数没有对数.(2)指数式与对数式的关系:=ba N ⇔=a log Nb (>0a ,1a ≠,0N >).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数的性质:① log a N 中0(0,1)N a a >>≠,零和负数没有对数,即0N >; ② 底数的对数等于1,即log =1a a ,log a NaN =,()0,1,0a a N >≠>③ 1的对数0,即log 1=0a . (4)对数的运算性质:① ()=+a a a log MN log M log N (0M >,0N >,>0a ,1a ≠);② =aa a Mlog log M log N N-(0M >,0N >,>0a ,1a ≠) ③ =n a a log M nlog M ;log a NaN =(0M >,0N >,>0a ,1a ≠)④ 对数换底公式:log =log a b a Nlog N b(>0a ,1a ≠,>0b ,1b ≠,0N >)【提醒】(1)注意真数0N >,即零与负数没有对数.(2)底数满足>0a ,1a ≠ 3.对数函数:对数函数的图像与性质二、基础检测:1. 设16log 27a =, 则用a 表示6log 16=_______________.2. 函数222xxy +=的单调递增区间是_____________, 值域是____________. 3. 函数|1|45x y -⎛⎫= ⎪⎝⎭的单调递减区间是_____________, 值域是____________.4. 函数20.1log (62)y x x =+-的单调递增区间是________________.5. 若2log 13a<, 则实数a 的取值范围是________________________. 6. 不等式2(21)1x a -<的解集为(,0)-∞, 则实数a 的取值范围是______________.三、例题精讲:【例1】指数函数①x y a =,②x y b =,③x y c =,④xy d =在同一坐标系内的图像如图所示,则,,,a b c d 的大小顺序是().A .b a d c <<<B .a b d c <<<C .b a c d <<<D .b c a d <<< 【参考答案】A .【例2】若不论a 取何正实数,函数12x y a +=-的图像都通过同一定点,则该点坐标是____________. 【参考答案】()1,1--【例3】不等式()2211xa -<的解集为(),0-∞,则实数a 的取值范围是.【参考答案】()(),11,-∞-+∞【例4】根据统计资料,在A 小镇,当某件信息发布后,t 小时之内听到该信息的人口是全镇人口的100(12)%kt--,其中k 是某个大于0的常数,今有某信息,假设在发布后3小时之内已经有70%的人口听到该信息.又设最快要T 小时后,有99%的人口已听到该信息,则T =_______小时.(保留一位小数) 【参考答案】11.5【例5】已知22124x x x-+⎛⎫≤ ⎪⎝⎭,求函数22x xy -=-的值域.解:222242122224414x x xxxx x x x x -++-+⎛⎫≤⇔≤⇔+≤-+⇔-≤≤ ⎪⎝⎭,而函数22xxy -=-在区间[]4,1-上是增函数,所以,函数22xxy -=-的值域为2553,162⎡⎤-⎢⎥⎣⎦.【例6】已知函数[)1423,2,x x y a x --=-⋅-∈-+∞的最小值是4-,求实数a 的值. 解:设2xu -=由于[)2,x ∈-+∞,所以(]0,4u ∈,()2124233x x y a u a a --=-⋅-=---①_x0001_(]0,4a ∈时,()()2min 34,1,f x a a =--==此时u a =,即0x =;②_x0001_当(),0a ∈-∞时,()()223g u u a a =---在(]0,4上是增函数,()f x 无最小值; ③_x0001_当()4,a ∈+∞时,()()223g u u a a =---在(]0,4上是减函数,()174,8a =∉+∞舍去. 综上所述,实数a 的值为1.【例7】若两个函数的图像经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列四个函数:()x x f 21log 2=,()()22log 2f x x =+,232log f x =,42log (2)f x =则“同形”函数是( ) A 1()f x 与2()f x B 2()f x 与3()f x C 2()f x 与4()f x D 1()f x 与4()f x【参考答案】C【例8】函数221()log (2)2ax f x x x -=+-+在[1,3]x ∈上恒有意义,则实数a 的取值范围是_________.【参考答案】(2)-+∞【例9】函数20.3log (2)y x x =-的单调递减区间为.解:先求定义域:由220x x ->得(2)0x x ->0x ∴<或2x >.∵函数0.3log y t =是减函数,故所求单调减区间即22t x x =-在定义域内的增区间, 又22t x x =-的对称轴为1x =,∴所求函数的单调递减区间为(2,)+∞. 【例10】已知函数2()log (01)2axf x a x+=<<-(1)试判断()f x 的奇偶性; (2)解不等式()log 3a f x x ≥. 解:(1)20222xx x+>⇒-<<-故()f x 的定义域关于原点对称, 且122()log log ()()22aa x x f x f x x x--+-===-+-∴()f x 是奇函数. (2)2()log 3log log 3.012a aa xf x x x a x+≥⇔≥<<-,故2220221(32)(1)230322xx x x x x x x x x+⎧-<<>⎧⎪⎪⎪-⇔⇔≤≤--⎨⎨+≥⎪⎪≤-⎩⎪-⎩,即原不等式的解集为2{|1}3x x ≤≤.【例11】设不等式211222(log )9(log )90x x ++≤的解集为M ,求当x M ∈时,函数22()(log )(log )28x xf x =的最大、最小值. 解:211222(log )9(log )90x x ++≤1122(2log 3)(log 3)0x x ∴++≤1233log 2x ∴-≤≤-即3333221112221111log ()log log (),()()2222x x ----≤≤∴≤≤∴8x ≤≤即{|M x x =∈又2222222()(log 1)(log 3)log 4log 3(log 2)1f x x x x x x =--=-+=--∵8x ≤≤∴23log 32x ≤≤ ∴当2log 2x =即4x =时min 1y =-;当2log 3x =,即8x =时,max 0y =. 【例12】通常表明地震能量大小的尺度是里氏震级,其计算公式是0lg lg M A A =-,其中,A 是被测地震最大振幅,0A 是“标准地震”的振幅,M 为震级.则7级地震的最大振幅是5级地震最大振幅的__倍.解:7050(lg lg )(lg lg )752A A A A ---=-=,即75lg 2A A =,75100AA =.【例13】已知函数()|lg |f x x =,若a b ≠,且()()f a f b =,则a b +的取值范围是________.解:如图,由()()f a f b =得|lg ||lg |a b =设0a b <<则lg lg 0a b +=∴1ab =∴22a b ab +>=,答案:(2,)+∞【例14】已知函数()log (01).a f x x x b a a =+->≠,且当234a b <<<<时,函数()f x 的零点*0(,1),,=x n n n N n ∈+∈则.解:方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图像与函数(34)y x b b =-<<的交点横坐标为0x , 且*0(,1),x n n n N ∈+∈,结合图像,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图像上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图像上点的横坐标(5,6)x ∈.故所求的2n =.四、难题突破: 例1. 已知函数1()log 1axf x x-=+(0, 1a a >≠). (1) 讨论函数()f x 的奇偶性和单调性;(2) 设函数()f x 的定义域为[,)a b , 值域为[1,)+∞, 求实数a , b 的值. (1)解: 函数的定义域为区间(1,1)-, 关于原点对称,任取(1,1)x ∈-, 111()log log log ()111a a ax x x f x f x x x x +--⎛⎫-===-=- ⎪-++⎝⎭, 即()f x 是奇函数.任取12,(1,1)x x ∈-, 12x x <, 则12011x x <+<+, 故有121211221111x x x x >⇔>++++, 因此1212121122111111x x x x x x ---+>-+⇔>++++, 当01a <<时, 由log a y x =在(0,)+∞上单调递减, 得121211log log 11a ax x x x --<++, 此时()f x 在(1,1)-上单调递增;当1a >时, 由log a y x =在(0,)+∞上单调递增, 得121211log log 11a ax x x x -->++, 此时()f x 在(1,1)-上单调递减.(2)解: 由题意, [,)(1,1)a b ⊆-, 故11a b -<<≤, 即01a b <<<,由(1)可知()f x 在(1,1)-上单调递增, 故有11()1log 111a a af a a a a--=⇔=⇔=++, 解得1a =;当1b <时, 由单调性得1()log 1a bf x b-<+, 不合题意, 故1b =;综上有1, 1a b =.例2. 已知函数22()lg[(1)(1)1]f x a x a x =-+++(其中a 为实常数). (1) 若函数的定义域为, 求实数a 的取值范围; (2) 若函数的值域为, 求实数a 的取值范围.(1)解: 即不等式22(1)(1)10a x a x -+++>的解集为,当1a =时, 不等式为210x +>, 不合题意;当1a =-时, 不等式为10>恒成立, 符合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--<⎪⎩, 解得5(,1)(,)3a ∈-∞-⋃+∞; 综上所述, 5(,1](,)3a ∈-∞-⋃+∞;(2)解: 即函数22(1)(1)1y a x a x =-+++的值域包含+,当1a =时, 函数为21y x =+, 符合题意; 当1a =-时, 函数为1y =, 不合题意;当21a ≠时, 则有22210(1)4(1)0a a a ⎧->⎪⎨∆=+--≥⎪⎩, 解得5(1,]3a ∈, 综上所述, 5[1,]3a ∈.例3. 已知函数2()log ()a f x ax x =-(0, 1a a >≠)在区间[2,4]上是增函数, 求实数a 的取值范围.解: 令210(1)0(,0)(,)ax x x ax x a->⇔->⇒∈-∞⋃+∞给出,函数在[2,4]有定义, 则1122a a <⇒>, 令2t ax x =-, 其图像对称轴为直线12x a=, 当1a >时, 外层函数单调递增, 因此内层函数2t ax x =-在[2,4]上单调递增, 得11224a a ≤⇔≥, 结合定义域要求, 即1a >; 当01a <<时, 外层函数单调递减, 因此内层函数2t ax x =-在[2,4]上单调递减, 因此11428a a ≥⇒≤, 结合定义域要求, 无解; 综上所述, 1a >. 五、课堂练习:1. 函数||3x y -=的值域是____________.2. 已知01a <<, 1b <-, 则函数x y a b =+的图像不会经过第______象限.3. 函数y =_________________.4. 若()log (0, 1)a f x x a a =>≠在[,2]a a 上的最大值是最小值的3倍, 则实数a 的值为_____.5. 函数lg100xy =的图像与函数10010x y =⋅的图像关于直线______________对称; 函数lg100x y =的图像与函数0.1log 100x y =的图像关于直线______________对称. 6. 函数3()log |2|f x x a =+的图像的对称轴是直线2x =, 则实数a =__________. 7. 使2log ()1x x -<+成立的x 的取值范围是_____________. 8. 设223()2(1)xx f x x -+=≥, 则其反函数1()f x -=_______________________.9. 求2211()log ()log ()24f x x x =⋅, 当[2,8]x ∈时的最小值和最大值.10. 求函数2221()log log (1)log ()1x f x x p x x +=+-+--(其中p 为常数, 且1p >)的值域.11. 已知0a >, 1a ≠, 21(log )()1a a f x x a x=--, (1) 判断()f x 的定义域内的奇偶性及单调性, 并加以证明; (2) 若()40f x -<的解集为(,2)-∞, 求a 的值.12. 已知函数()lg()x x f x a b =-(其中a , b 为常数, 且01b a <<<). (1) 求函数()f x 的定义域;(2) 在函数()y f x =的图像上是否存在两个不同的点, 使得过它们的直线平行于x 轴? 若存在, 求出这样的点; 若不存在, 说明理由;(3) 当a , b 满足什么条件时, 不等式()0f x >对一切(1,)x ∈+∞都成立?六、回顾总结:1.主要方法:①指数函数、对数函数的单调性决定于底数a ,要分1a >与01a <<来分类讨论.②熟练掌握对、指数公式的使用和化简计算;2.易错、易漏点:①解决与对数函数有关的问题,要特别注意定义域(对数的底数和真数应满足的条件);注意区别log (1)a b +与log 1a b +的区别;②不同底的对数运算问题,应化为同底对数式进行运算.七、课后作业:1.幂函数)(x f y =图像经过点)21,41(,则=)(x f . 2.已知幂函数a x y =的图像,当10<<x 时,在直线x y =的上方,当1>x 时,在直线x y =的下方,则a 的取值范围是.3.函数2223()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =. 4.幂函数),*,,,()1(互质n m N k n m xy m nk ∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为.5.设,函数在区间上的最大值与最小值之差为,则( ) AB . C. D .6.已知函数|lg|)(x x f =,若b a <<0,且)()(b f a f =,则b a 2+的取值范围是 ( )A .B .C .D .7.设函数)(x f =若)()(a f a f ->,则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)8.函数的值域为 A . B . C . D .9.为了得到函数的图像,只需把函数的图像上所有的点() A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.在同一平面直角坐标系中,函数的图象与的图象关于直线对称.而函数的图象与的图象关于轴对称,若,则的值是()1a >()log a f x x =[]2a a ,12a =24)+∞)+∞(3,)+∞[3,)+∞()212log log x x ⎧⎪⎨-⎪⎩0,0x x ><()()2log 31x f x =+()0,+∞)0,+∞⎡⎣()1,+∞)1,+∞⎡⎣3lg 10x y +=lg y x =()y g x =x y e =y x =()y f x =()y g x =y ()1f m =-mA .B .C .D . 11.函数的图象大致是( )12.若在上是减函数,则的取值范围是 ( )A .B .C .D .13.若函数|1|()2x f x m --=-的图象与x 轴有交点,则实数m 的范围是__________. 14.函数)1,0(≠>=a a a y x 在[]2,1上最大值比最小值大2a ,则_________=a . 15.已知函数),0[,)(+∞∈+⋅=x cb a x f x 的值域为)3,2[-,则)(x f 的一个可能的解析式为__________.【思考题】1.设函数()121,x f x x R -=-∈e -1e -e 1elg ||x y x=)2(log ax y a -=]1,0[a )1,0()2,0()2,1(),2(+∞(1)分别作出()y f x =和()y f x =的图像;(2)求实数a 的取值范围,使得方程()fx a =与()f x a =都有且仅有两个实数解.2.已知2()lg x f x ax b =+,(1)0f =,当0x >时,恒有1()lg f x f x x ⎛⎫-= ⎪⎝⎭.⑴求()f x 的解析式;⑵若方程()lg()f x m x =+的解集是∅,求实数m 的取值范围.3.已知函数2()log (1)f x x =-,222x t g x t ⎛⎫-=∈ ⎪⎝⎭R ,.⑴求()y g x =的解析式;⑵若1t =,求当[2,3]x ∈时,()()g x f x -的最小值;⑶若在[2,3]x ∈时,恒有()()g x f x ≥成立,求实数t 的取值范围.。
指数函数和对数函数知识点总结适用于高一应届学习及高三一轮复习指数函数和对数函数知识点总结及练习题一.指数函数(一)指数及指数幂的运算a am ar as ar s (ar)s ars (ab)r arbr(二)指数函数及其性质1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。
xmn二.对数函数(一)对数1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。
2.指数式与对数式的互化幂值真数xax log指数对数适用于高一应届学习及高三一轮复习3.两个重要对数(1)常用对数:以10为底的对数lgN(2)自然对数:以无理数e 2.***** 为底的对数lnN(二)对数的运算性质(a 0且a 1,M 0,N 0)①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb(三)对数函数1.对数函数的概念:形如y logax(a 0且a 1)叫做对数函数,其中x 是自变量。
M Nnlogcb(c 0且c 1)logcannlogab ②logab logba 1 m适用于高一应届学习及高三一轮复习基本初等函数练习题1.已知集合M { 1,1},N {x|12x 1 4,x Z},则M∩N=()2A.{-1,1}B.{0}C.{-1}D.{-1,0} 2.设11b1a() () 1,则()333abaaabbaabaaA.a a bB.a b aC.a a bD.a b a 3.设y1 40.9,y2 80.48,y3 () 1.5,则()12A.y3 y1 y2B.y2 y1 y3C.y1 y3 y2D.y3 y1 y2 4.若()122a 11()3 2a,则实数a的取值范围是()211A.(1,+∞)B.(,+∞)C.(-∞,1)D.(-∞,)221-5.方程3x1=的解为()9A.x=2B.x=-2C.x=1D.x=-1116.已知实数a,b满足等式(a=()b,则下列五个关系式:①0ba;②ab0;③0ab;23④ba0;⑤a=b。
版高考数学一轮总复习指数与对数函数的性质证明在进行高考数学一轮总复习时,掌握指数与对数函数的性质是至关重要的。
本文将详细探讨指数与对数函数的性质,并给出相应的证明。
一、指数函数的性质证明指数函数是形如f(x) = a^x的函数,其中a为常数且a>0且不等于1。
下面将详细证明指数函数的性质:1. 性质1:指数函数的定义域为实数集。
证明:对于任意实数x来说,a^x的定义域是实数集,因此指数函数的定义域为实数集。
2. 性质2:指数函数的值域为正数集。
证明:由指数函数的定义可知,对于任意实数x来说,a^x的值都是一个正数,因此指数函数的值域为正数集。
3. 性质3:指数函数是严格递增的。
证明:设x1 < x2,即x2-x1 > 0,我们要证明a^x2 > a^x1。
由于a > 0且不等于1,所以a^(x2-x1) > 1。
两边同时乘以a^x1,得到a^x2 > a^x1,即证明了指数函数是严格递增的性质。
4. 性质4:指数函数的图像关于y轴是对称的。
证明:对于任意实数x来说,有a^(-x) = 1/(a^x)。
因此,关于y轴,可以得到f(x) = a^x和f(-x) = 1/(a^x)。
由于a > 0且不等于1,所以f(x)与f(-x)不相等,即指数函数的图像关于y轴是对称的。
二、对数函数的性质证明对数函数是指以某个正数为底数,将正实数x所对应的幂指数记作y的函数,即f(x) = log_a x,其中a为底数且a>0且不等于1。
下面将证明对数函数的性质:1. 性质1:对数函数的定义域为正数集。
证明:对于任意正实数x来说,存在正实数y,使得a^y = x成立,因此对数函数的定义域为正数集。
2. 性质2:对数函数的值域为实数集。
证明:对于任意正实数x来说,存在正实数y,使得a^y = x成立。
也就是说,对于任意实数y来说,都可以找到正实数x,使得a^y = x 成立。
指数与指数函数[A 组 基础保分练]1.函数f (x )=21-x的大致图像为( )解析:函数f (x )=21-x =2×⎝⎛⎭⎫12x,单调递减且过点(0,2),选项A 中的图像符合要求. 答案:A2.(2021·安徽皖江名校模拟)若e a +πb ≥e -b +π-a ,则有( ) A.a +b ≤0 B.a -b ≥0 C.a -b ≤0 D.a +b ≥0解析:令f (x )=e x-π-x ,则f (x )在R 上是增加的,因为e a +πb ≥e -b +π-a ,所以e a -π-a ≥e -b-πb ,则f (a )≥f (-b ),所以a ≥-b ,即a +b ≥0. 答案:D3.(2021·衡阳模拟)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( ) A.(-2,1) B.(-4,3) C.(-3,4) D.(-1,2)解析:∵(m 2-m )·4x -2x <0在x ∈(-∞,-1]上恒成立,∴m 2-m <12x 在x ∈(-∞,-1]上恒成立.又f (x )=12x 在x ∈(-∞,-1]上单调递减,∴f (x )≥2,∴m 2-m <2,∴-1<m <2. 答案:D4.已知函数f (x )=⎩⎪⎨⎪⎧1-2-x ,x ≥0,2x -1,x <0,则函数f (x )是( )A.偶函数,在[0,+∞)上单调递增B.偶函数,在[0,+∞)上单调递增C.奇函数,且单调递增D.奇函数,且单调递增解析:易知f (0)=0,当x >0时,f (x )=1-2-x ,-f (x )=2-x -1,此时-x <0,则f (-x )=2-x -1=-f (x );当x <0时,f (x )=2x -1,-f (x )=1-2x ,此时-x >0,则f (-x )=1-2-(-x )=1-2x =-f (x ).即函数f (x )是奇函数,且单调递增. 答案:C5.设函数f (x )=x 2-a 与g (x )=a x 在区间(0,+∞)上具有不同的单调性,其中a >1且a ≠2,则M =(a -1)0.2与N =⎝⎛⎭⎫1a 0.1的大小关系是( ) A.M =N B.M ≤N C.M <N D.M >N解析:由题意,因为f (x )=x 2-a 与g (x )=a x 在区间(0,+∞)上具有不同的单调性,所以易知a >2,所以M =(a -1)0.2>1,N =⎝⎛⎭⎫1a 0.1<1,所以M >N .答案:D6.(2021·广州模拟)若存在负实数使得方程2x -a =1x -1成立,则实数a 的取值范围是( )A.(2,+∞)B.(0,+∞)C.(0,2)D.(0,1)解析:在同一直角坐标系内分别作出函数y =1x -1和y =2x -a 的图像,则由图知,当a ∈(0,2)时符合要求.答案:C 7.不等式>⎝⎛⎭⎫12x +4的解集为__________.解析:>2-x -4,∴-x 2+2x >-x -4,即x 2-3x -4<0,∴-1<x <4.答案:{x |-1<x <4}8.若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =__________.解析:若a >1,有a 2=4,a -1=m .此时a =2,m =12,此时g (x )=-x 为减函数,不合题意.若0<a <1,有a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.答案:149.已知函数f (x )=⎝⎛⎭⎫23|x |-a .(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求实数a 的值.解析:(1)令t =|x |-a ,则f (t )=⎝⎛⎭⎫23t ,不论a 取何值,t 在(-∞,0]上单调递减, 在[0,+∞)上单调递增,又f (t )=⎝⎛⎭⎫23t 是单调递减的,因此f (x )的单调递增区间是(-∞,0], 单调递减区间是[0,+∞).(2)由于f (x )的最大值是94,且94=⎝⎛⎭⎫23-2,所以g (x )=|x |-a 应该有最小值-2, 即g (0)=-2,从而a =2.10.已知函数f (x )=2x +k ·2-x ,k ∈R .(1)若函数f (x )为奇函数,求实数k 的值;(2)若对任意的x ∈[0,+∞)都有f (x )>2-x 成立,求实数k 的取值范围.解析:(1)因为f (x )=2x +k ·2-x 是奇函数,所以f (-x )=-f (x ),x ∈R ,即2-x +k ·2x =-(2x +k ·2-x ).所以(1+k )+(k +1)·22x =0对一切x ∈R 恒成立,所以k =-1.(2)因为x ∈[0,+∞)时,均有f (x )>2-x ,即2x +k ·2-x >2-x 成立,所以1-k <22x 对x ≥0恒成立,所以1-k <(22x )min . 因为y =22x 在[0,+∞)上单调递增, 所以(22x )min =1,所以k >0.所以实数k 的取值范围是(0,+∞).[B 组 能力提升练]1.已知函数f (x )=2x -2,则函数y =|f (x )|的图像可能是( )解析:|f (x )|=|2x-2|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x ,x <1,易知函数y =|f (x )|的图像的分段点是x =1,且过点(1,0),(0,1),⎝⎛⎭⎫-1,32.又|f (x )|≥0. 答案:B2.(2021·青岛模拟)函数y =a x +2-1(a >0且a ≠1)的图像恒过的点是( ) A.(0,0) B.(0,-1) C.(-2,0) D.(-2,-1)解析:因为函数y =a x(a >0且a ≠1)的图像恒过点(0,1),将该图像向左平移2个单位长度,再向下平移1个单位长度得到y =a x +2-1(a >0且a ≠1)的图像,所以y =a x +2-1(a >0且a ≠1)的图像恒过点(-2,0). 答案:C3.(2021·潍坊模拟)已知a =⎝⎛⎭⎫12-43,b =⎝⎛⎭⎫14-25,c =⎝⎛⎭⎫125-13,则( )A.a <b <cB.b <c <aC.c <b <aD.b <a <c解析:因为a =⎝⎛⎭⎫12-43=243,b =⎝⎛⎭⎫14-25=245,c =⎝⎛⎭⎫125-13=523,显然有b <a ,又a =423<523=c ,故b <a <c . 答案:D4.设x >0,且1<b x <a x ,则( ) A.0<b <a <1 B.0<a <b <1 C.1<b <a D.1<a <b解析:因为1<b x ,所以b 0<b x , 因为x >0,所以b >1,因为b x <a x,所以⎝⎛⎭⎫a b x >1,因为x >0,所以ab>1,所以a >b ,所以1<b <a . 答案:C5.已知0<b <a <1,则在a b ,b a ,a a ,b b 中最大的是( ) A.b a B.a aC.a bD.b b解析:因为0<b <a <1,所以y =a x 和y =b x 均为减函数,所以a b >a a ,b a <b b ,又因为y =x b 在(0,+∞)上为增函数,所以a b >b b ,所以在a b ,b a ,a a ,b b 中最大的是a b . 答案:C6.不等式⎝⎛⎭⎫12x 2+ax <⎝⎛⎭⎫122x +a -2恒成立,则a 的取值范围是__________.解析:由题意,y =⎝⎛⎭⎫12x 是减函数,因为⎝⎛⎭⎫12x 2+ax <⎝⎛⎭⎫122x +a -2恒成立, 所以x 2+ax >2x +a -2恒成立,所以x 2+(a -2)x -a +2>0恒成立, 所以Δ=(a -2)2-4(-a +2)<0, 即(a -2)(a -2+4)<0, 即(a -2)(a +2)<0,故有-2<a <2,即a 的取值范围是(-2,2). 答案:(-2,2)7.已知实数a ,b 满足等式⎝⎛⎭⎫12a =⎝⎛⎭⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中可能成立的关系式有__________.(填序号)解析:函数y 1=⎝⎛⎭⎫12x 与y 2=⎝⎛⎭⎫13x 的图像如图所示.由⎝⎛⎭⎫12a =⎝⎛⎭⎫13b得,a <b <0或0<b <a 或a =b =0. 故①②⑤可能成立,③④不可能成立. 答案:①②⑤[C 组 创新应用练]1.(2021·杭州模拟)设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( ) A.K 的最大值为0 B.K 的最小值为0 C.K 的最大值为1 D.K 的最小值为1解析:根据题意可知,对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1. 答案:D2.(2021·北京模拟)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =a e -kx ,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约 年.(参考数据:log 20.767≈-0.4)解析:由题意可知,当x =5 730时,a e -5 730k =12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2292.答案:2 292对数与对数函数[A 组 基础保分练]1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B.19 C.18 D.16解析:法一:因为a log 34=2,所以log 34a =2,所以4a =32=9,所以4-a =14a =19.法二:因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a ==9-1=19.答案:B2.函数y =log 3(2x -1)+1的定义域是( ) A.[1,2] B.[1,2) C.⎣⎡⎭⎫23,+∞ D.⎝⎛⎭⎫23,+∞ 解析:由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎨⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.答案:C3.(2021·吕梁模拟)已知a =log 35,b =1.51.5,c =ln 2,则a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <a C.a <c <b D.a <b <c解析:1<a =log 35=12log 325<12log 327=1.5,b =1.51.5>1.5,c =ln 2<1,所以c <a <b .答案:A4.已知x ∈⎝⎛⎭⎫12,1,a =ln x ,b =2ln x ,c =ln 3x ,那么( ) A.a <b <c B.c <a <b C.b <a <c D.b <c <a解析:由于12<x <1,故x >x 2,故ln x >ln x 2=2ln x ,所以a >b .c -a =ln 3x -ln x =ln x (ln 2x-1),由于ln x <0,|ln x |<ln 2<1,ln 2x -1<0,所以ln x (ln 2x -1)>0,故c >a . 答案:C5.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则实数a 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎦⎤0,12C.⎝⎛⎭⎫12,+∞ D.(0,+∞) 解析:因为-1<x <0,所以0<x +1<1.又因为f (x )>0,所以0<2a <1,所以0<a <12.答案:A6.(2021·西安模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A.x 1x 2<0 B.x 1x 2=0 C.x 1x 2>1 D.0<x 1x 2<1解析:作出y =10x 与 y =|lg (-x )|的大致图像,如图所示.显然x 1<0,x 2<0. 不妨令x 1<x 2, 则x 1<-1<x 2<0, 所以10x 1=lg (-x 1),10x 2=-lg (-x 2), 此时10x 1<10x 2,即lg (-x 1)<-lg (-x 2), 由此得lg (x 1x 2)<0,所以0<x 1x 2<1. 答案:D7.已知2x =72y =A ,且1x +1y=2,则A 的值是__________.解析:由2x =72y =A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2. 答案:72 8.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为__________. 解析:令g (x )=x 2-ax +3a ,因为f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, 所以函数g (x )在区间[2,+∞)内单调递增,且恒大于0,所以12a ≤2且g (2)>0,所以a ≤4且4+a >0,所以-4<a ≤4. 答案:(-4,4]9.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎡⎦⎤0,32上的最大值. 解析:(1)因为f (1)=2,所以log a 4=2(a >0,且a ≠1),所以a =2. 由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x ) =log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由. 解析:(1)∵f (1)=1,∴log 4(a +5)=1,得a =-1, 故f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3,函数定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减, 又y =log 4x 在(0,+∞)上递增,所以f (x )的单调递增区间是(-1,1),递减区间是(1,3). (2)假设存在实数a 使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,因此⎩⎪⎨⎪⎧a >0,3a -1a =1,解得a =12.故存在实数a =12使f (x )的最小值为0.[B 组 能力提升练]1.函数f (x )=|log a (x +1)|(a >0,且a ≠1)的图像大致是( )解析:函数f (x )=|log a (x +1)|的定义域为{x |x >-1},且对任意的x ,均有f (x )≥0,结合对数函数的图像可知选C. 答案:C2.函数y =log a x 与y =-x +a 在同一平面直角坐标系中的图像可能是( )解析:当a >1时,函数y =log a x 的图像为选项B ,D 中过点(1,0)的曲线,此时函数y =-x +a 的图像与y 轴的交点的纵坐标a 应满足a >1,选项B ,D 中的图像都不符合要求; 当0<a <1时,函数y =log a x 的图像为选项A ,C 中过点(1,0)的曲线,此时函数y =-x +a 的图像与y 轴的交点的纵坐标a 应满足0<a <1,选项A 中的图像符合要求. 答案:A3.已知函数f (x )=|ln x |.若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是( ) A.(4,+∞) B.[4,+∞) C.(5,+∞) D.[5,+∞)解析:由f (a )=f (b )得|ln a |=|ln b |,根据函数y =|ln x |的图像及0<a <b ,得-ln a =ln b ,0<a <1<b ,1a =b .令g (b )=a +4b =4b +1b,易得g (b )在(1,+∞)上单调递增,所以g (b )>g (1)=5,即a +4b >5. 答案:C4.若log 2x =log 3y =log 5z <-1,则( ) A.2x <3y <5z B.5z <3y <2x C.3y <2x <5z D.5z <2x <3y解析:设log 2x =log 3y =log 5z =t ,则t <-1,x =2t ,y =3t ,z =5t ,因此2x =2t +1,3y =3t +1,5z =5t +1.又t <-1,所以t +1<0,由幂函数y =x t +1的单调性可知5z <3y <2x . 答案:B5.(2020·高考全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b解析:∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝⎛⎭⎫log 53+log 5822-1log 58=⎝⎛⎭⎫log 52422-1log 58<⎝⎛⎭⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4,4<5log 138,∴log 85<log 138,∴log 53<log 85<log 138,即a <b <c . 答案:A6.(2021·黄石模拟)已知x 1=log 132,x 2=2,x 3满足⎝⎛⎭⎫13x 3=log 3x 3,则( )A.x 1<x 2<x 3B.x 1<x 3<x 2C.x 2<x 1<x 3D.x 3<x 1<x 2 解析:由题意可知x 3是函数y 1=⎝⎛⎭⎫13x与y 2=log 3x 的图像交点的横坐标,在同一直角坐标系中画出函数y 1=⎝⎛⎭⎫13x与y 2=log 3x 的图像,如图所示,由图像可知x 3>1,而x 1=log 132<0,0<x 2=2<1,所以x 3>x 2>x 1. 答案:A7.已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3,若存在实数a ,b ,c ,d ,满足f (a )=f (b )=f(c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围__________.解析:由题意可得-log 3a =log 3b =13c 2-103c +8=13d 2-103d +8,可得log 3(ab )=0,故ab =1.结合函数f (x )的图像,在区间[3,+∞)上, 令f (x )=1可得c =3,d =7,cd =21. 令f (x )=0可得c =4,d =6,cd =24. 故有21<abcd <24. 答案:(21,24)[C 组 创新应用练]1.(2020·新高考全国卷)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( ) A.1.2天 B.1.8天 C.2.5天 D.3.5天 解析:由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病倒数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8.答案:B 2.(2021·朝阳模拟)在标准温度和大气压下,人体血液中氢离子的物质的量浓度(单位mol/L ,记作[H +])和氢氧根离子的物质的量浓度(单位mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg[H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( ) A.12 B.13 C.16 D.110解析:由题意可得pH =-lg[H +]∈(7.35,7.45),且[H +]·[OH -]=10-14,∴lg [H +][OH -]=lg [H +]10-14[H +]=lg [H +]2+14=2lg[H +]+14.∵7.35<-lg[H +]<7.45,∴-7.45<lg[H +]<-7.35,∴-0.9<2lg[H +]+14<-0.7,即-0.9<lg [H +][OH -]<-0.7.∵lg 12=-lg 2≈-0.30,故A 错误;lg 13=-lg 3≈-0.48,故B 错误;lg 16=-lg 6=-(lg 2+lg 3)≈-0.78,故C 正确;lg 110=-1,故D 错误.答案:C3.已知函数f (x )=ln x1-x ,若f (a )+f (b )=0,且0<a <b <1,则ab 的取值范围是__________.解析:由题意可知ln a 1-a +ln b1-b=0,即ln ⎝⎛⎭⎫a 1-a ·b 1-b =0,从而a 1-a ·b1-b=1,化简得a +b =1,故ab =a (1-a )=-a 2+a =-⎝⎛⎭⎫a -122+14.又0<a <b <1,∴0<a <12,故0<-⎝⎛⎭⎫a -122+14<14,即ab ∈⎝⎛⎭⎫0,14. 答案:⎝⎛⎭⎫0,14。
个性化辅导授课教案指数函数与对数函数一、指数函数【考情解读】1.考查指数函数的求值、指数函数的图象和性质;2.讨论与指数函数有关的复合函数的性质;3.将指数函数与对数函数、抽象函数相结合,综合考查指数函数知识的应用. 【重点知识梳理】 1.根式的性质 (1)(na )n =a .(2)当n 为奇数时na n =a . 当n 为偶数时na n ={ a a ≥0-aa <0.2.有理数指数幂 (1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n 个 (n ∈N *). ②零指数幂:a 0=1(a ≠0).③负整数指数幂:a -p =1ap (a ≠0,p ∈N *).④正分数指数幂:a m n =na m (a >0,m 、n ∈N *,且n >1).⑤负分数指数幂:a -m n =1a m n =1na m (a >0,m 、n ∈N *,且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质①a r a s =a r +s (a >0,r 、s ∈Q ); ②(a r )s =a rs (a >0,r 、s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y =a xa >10<a <1图象定义域 (1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1;x <0时,0<y <1(5)当x >0时,0<y <1; x <0时,y >1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【高频考点突破】 考点一 指数幂的运算例1、 (1)计算:(124+223)12-2716+1634-2×(8-23)-1;(2)已知x 12+x -12=3,求x 2+x -2-2x 32+x -32-3的值.【探究提高】根式运算或根式与指数式混合运算时,将根式化为指数式计算较为方便,对于计算的结果,不强求统一用什么形式来表示,如果有特殊要求,要根据要求写出结果.但结果不能同时含有根号和分数指数,也不能既有分母又有负指数.【变式探究】计算下列各式的值:(1)⎝⎛⎭⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0; (2)15+2-(3-1)0-9-45; (3)a 3b 23ab 2a 14b 124a -13b 13(a >0,b >0).考点二 指数函数的图象、性质的应用 例2、 (1)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是 ( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 【答案】 (1) D 【解析】由f (x )=a x-b的图象可以观察出函数f (x )=a x-b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.(2)求函数f (x )=3x 2-5x +4的定义域、值域及其单调区间. 【解析】依题意x 2-5x +4≥0,解得x ≥4或x ≤1, ∴f (x )的定义域是(-∞,1]∪[4,+∞).【探究提高】(1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. (2)对复合函数的性质进行讨论时,要搞清复合而成的两个函数,然后对其中的参数进行讨论. 【变式探究】 (1)函数y =e x +e -xe x -e-x 的图象大致为( )【答案】A【解析】y =e x +e -x e x -e -x =1+2e 2x -1,当x >0时,e 2x -1>0,且随着x 的增大而增大,故y =1+2e 2x -1>1且随着x的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减.又函数y 是奇函数,故只有A 正确.(2)若函数f (x )=e -(x -μ)2 (e 是自然对数的底数)的最大值是m ,且f (x )是偶函数,则m +μ=________. 【答案】1【解析】由于f (x )是偶函数,所以f (-x )=f (x ),即e -(-x -μ)2=e -(x -μ)2,∴(x +μ)2=(x -μ)2,∴μ=0, ∴f (x )=e -x 2.又y =e x 是R 上的增函数,而-x 2≤0, ∴f (x )的最大值为e 0=1=m ,∴m +μ=1. 考点三 指数函数的综合应用例3、(1)k 为何值时,方程|3x -1|=k 无解?有一解?有两解? (2)已知定义在R 上的函数f (x )=2x -12|x |.①若f (x )=32,求x 的值;②若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.【解析】(1)函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的图象有唯一的交点,所 以方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同的交点,所以方程有两解.【探究提高】对指数函数的图象进行变换是利用图象的前提,方程f (x )=g (x )解的个数即为函数y =f (x )和y =g (x )图象交点的个数;复合函数问题的关键是通过换元得到两个新的函数,搞清复合函数的结构.【变式探究】已知f(x)=aa2-1(a x-a-x) (a>0且a≠1).(1)判断f(x)的奇偶性;(2)讨论f(x)的单调性;(3)当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.【解析】(1)因为函数的定义域为R,所以关于原点对称.又因为f(-x)=aa2-1(a-x-a x)=-f(x),所以f(x)为奇函数.二、对数函数【考情解读】1.考查对数函数的图象、性质;2.考查对数方程或不等式的求解;3.考查和对数函数有关的复合函数问题.【重点知识梳理】1.对数的概念一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”.2.对数的性质与运算法则(1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M .(2)对数的性质①a log a N =__N __;②log a a N =__N __(a >0且a ≠1). (3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质a >1 0<a <1图 象性 质(1)定义域:(0,+∞)(2)值域:R(3)过定点(1,0),即x =1时,y =0(4)当x >1时,y >0 当0<x <1时,y <0 (5)当x >1时,y <0 当0<x <1时,y >0 (6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x __对称. 【高频考点突破】 考点一 对数式的运算 例1、计算下列各式: (1)lg 25+lg 2·lg 50+(lg 2)2; (2)lg 32-lg 9+1·lg 27+lg 8-lg 1 000lg 0.3·lg 1.2;(3)(log 32+log 92)·(log 43+log 83).【探究提高】(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧. 【变式探究】 求值:(1)log 89log 23;(2)(lg 5)2+lg 50·lg 2;(3)12lg 3249-43lg 8+lg 245. 【解析】(1)原式=log 2332log 23=23.(2)原式=(lg 5)2+lg(10×5)lg 105=(lg 5)2+(1+lg 5)(1-lg 5) =(lg 5)2+1-(lg 5)2=1. (3)原式=lg 427-lg 4+lg(75) =lg42×757×4=lg 10=12. 考点二 对数函数的图象与性质例2、已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c=f (0.2-0.6),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c【答案】B【探究提高】(1)函数的单调性是函数最重要的性质,可以用来比较函数值的大小,解不等式等;(2)函数图象可以直观表示函数的所有关系,充分利用函数图象解题也体现了数形结合的思想. 【变式探究】 (1)已知a =21.2,b =⎝⎛⎭⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <bC .b <a <cD .b <c <a【答案】A【解析】b =⎝⎛⎭⎫12-0.8=20.8<21.2=a , c =2log 52=log 522<log 55=1<20.8=b , 故c <b <a .(2)已知函数f (x )=log a (x +b ) (a >0且a ≠1)的图象过两点(-1,0)和(0,1),则a =________,b =________. 【答案】2 2【解析】f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1,∴⎩⎪⎨⎪⎧ b -1=1b =a ,即⎩⎪⎨⎪⎧b =2a =2. 考点三 对数函数的综合应用 例3、已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【探究提高】解决对数函数综合问题时,无论是讨论函数的性质,还是利用函数的性质(1)要分清函数的底数a∈(0,1),还是a∈(1,+∞);(2)确定函数的定义域,无论研究函数的什么性质或利用函数的某个性质,都要在其定义域上进行;(3)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.【变式探究】已知函数f(x)=log a(8-2x) (a>0且a≠1).(1)若f(2)=2,求a的值;(2)当a>1时,求函数y=f(x)+f(-x)的最大值.。
指数函数与对数函数知识回顾:1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a xy a 的图象与性质2、指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a xy a 互为 ,其图象关于直线 对称 典型例题分析:一、指对函数的图象及性质应用例1、已知实数,a b 满足等式11()()23ab=,下列五个关系式(1)0b a <<(2)0a b <<(3)0a b <<(4)0b a <<(5)a b = 其中不可能成立的关系式有A 、4个B 、1个C 、2个D 、3个 例2、对于函数()f x 定义域中任意1212,,()x x x x ≠,有如下结论 (1)1212()()()f x x f x f x += (2)1212()()()f x x f x f x =+ (3)1212()()0f x f x x x ->- (4)1212()()22x x f x x f ++<当()lg f x x =时,上述结论中正确结论的序号是 。
例3、如图,是指数函数(1)x y a =,(2)x y b =,(3)x y c =, (1) (2) (3) (4) (4)x y d =的图象,则,,,a b c d 与1的大小关系是 A 、1a b c d <<<<0 B 、1b a d c <<<< C 、1a b c d <<<< 2 D 、1a b d c <<<< 3例4、若函数log ()(0,1)a y x b a a =+>≠的图象过两点(1,0)-和(0,1),则A 、2,2a b ==B 、2a b ==C 、 2,1a b ==D 、a b ==例5、方程log 2(01)a x x a =-<<的实数解的个数是 A 、0 B 、1 C 、2 D 、3 例6、函数2xy -=的单调递增区间是A 、(-∞,+∞)B 、(-∞, 0)C 、(0, +∞)D 、不存在例7、当a >1时,函数x y a -=与log a y x =的图像是 ( )例8、设01a <<,函数2()log (22)x x a f x a a =--,则使()0f x <的x 取值范围是 A 、(-∞,0) B 、(0, +∞) C 、(-∞,log 3a ) D 、(log 3a , +∞) 例9、函数x y a =在[]0,1上的最大值与最小值的和为3,则a 的值为 A 、12 B 、2 C 、4 D 、14例10、已知不等式2log (21)log (3)0x x x x +<<成立,则实数x 的取值范围是 A 、1(0,)3 B 、1(0,)2 C 、1(,1)3 D 、11(,)32二、比较大小例1、若92log 3a =, 8log b =14c =,则这三个数的大小关系是 A 、a c b << B 、a b c << C 、c a b << D 、c b a <<例2、若60a =︒, 2log sin30b =︒, 3log 45c tg =︒,则,,a b c 的大小关系是( )。
2023年一轮复习《指数函数和对数函数》综合训练一、单选题(本大题共12小题,共60分)1.(5分)已知函数y=f(x)是定义域为R的奇函数.当x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则实数m的值为()A. √2−1B. 2√2−2C. 2−√2D. 3−2√22.(5分)已知某抽气机每次可抽出容器内空气的60%,要使容器内的空气少于原来的0.2%,则至少要抽的次数是(参考数据:lg2=0.301)()A. 6B. 7C. 8D. 93.(5分)已知函数f(x)=sin(π2x)+a(e x−1+e−x+1)有唯一零点,则a=()A. −1B. −12C. 12D. 14.(5分)已知x1是方程x+≶x=3的根,x2是方程x+10x=3的根,那么x1+x2的值为()A. 6B. 3C. 2D. 15.(5分)函数y=|ln|x−2||+x2−4x的所有零点之和是()A. −8B. −4C. 4D. 86.(5分)已知函数f(x)={xlnx−x,x>0f(x+1),x⩽0,若关于x的方程2f(x)−kx+1=0有四个不同的实根,则实数k的取值范围是()A. (−14,−16]∪(14,12]B. [−14,−16)∪[14,12)C. (−12,−13]∪(12,1]D. [−12,−13]7.(5分)已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减,f(−2)=0,则不等式xf(x+1)>0的解集为()A. (−3,−1)∪(0,+∞)B. (−∞,−3)∪(0,1)C. (−∞,−3)∪(−1,+∞)D. (−3,0)∪(1,+∞)8.(5分)已知函数y=f(x)的定义域为(0,+∞),满足对任意x∈(0,+∞),恒有f[f(x)−1x]=4,若函数y=f(x)−4的零点个数为有限的n(n∈N∗)个,则n的最大值为()A. 1B. 2C. 3D. 49.(5分)下列函数中,在定义域内单调递增,且在区间(−1,1)内有零点的函数是()A. y=−x3B. y=2x−1C. y=x2−12D. y=log2(x+2)10.(5分)(示范高中)已知x >0,y >0,≶2x +≶4y =≶2,则1x +1y 的最小值是( )A. 6B. 5C. 3+2√2D. 4√211.(5分)已知函数f(x)={|log 2(x +1)|,x ∈(−1,3)5−x,x ∈[3,+∞),则函数g(x)=f(f(x))−1的零点个数为( )A. 3B. 4C. 5D. 612.(5分)已知函数f(x)在[−3,4]上的图象是一条连续的曲线,且其部分对应值如表:A. (−3,−1)和(−1,1)B. (−3,−1)和(2,4)C. (−1,1)和(1,2)D. (−∞,−3)和(4,+∞)二 、填空题(本大题共4小题,共20分)13.(5分)若log 9(3a +4b )=log 3√ab ,则a +3b 的最小值是________. 14.(5分)已知2a =3,b =log 25,则2b =______,2a+b =______. 15.(5分)若lga ,lgb 是方程2x2-4x+1=0的两个实根,则ab=____. 16.(5分)计算 log23•log38=____. 三 、解答题(本大题共6小题,共72分) 17.(12分)求值:(1)0.027−13−(−17)−2−3−1+(−78)0; (2)3log 32+lg 16+3lg 5−lg 15.18.(12分)计算下列各式的值. (1)i −i 2+i 3−i 4+…+i 2021−i 2022;(2)log 168+101−lg5−(2764)13+(1−√2)lg1. 19.(12分)已知函数f(x)=a −22x +1(a ∈R) 为定义域上的奇函数.(1)求a 的值;(2)判断f(x)在定义域上的单调性,并加以证明;(3)若关于x 的方程f(x)=23在区间(b,b +1)(b ∈N ∗)内有唯一解,求b 的值. 20.(12分)设二次函数f(x)=ax 2+(b −3)x +3.(1)若函数f(x)的零点为−3,2,求函数f(x); (2)若f(1)=1,a >0,b >0,求1a +4b 的最小值. 21.(12分)解下列方程. (1)log 2[log 2(2x +3)]=2; (2)(12)x .82x =4.22.(12分)已知函数f(x)=−x 2+2ex +m −1,g(x)=x +e 2x(x >0).(1)若y =g(x)−m 有零点,求实数m 的取值范围;(2)求实数m 的取值范围,使得g(x)−f(x)=0有两个不相等的实根. 四 、多选题(本大题共5小题,共25分) 23.(5分)已知a >0,b >0,ln a =ln b 2=ln (3a +2b )3,则下列说法错误的是( )A. b =2aB. 3a +2b =b 3C. ln bln (a+1)=log 23D. eln b a=324.(5分)设函数f(x)={3x ,x ⩽0|log 3x|,x >0,若f(x)−a =0有三个不同的实数根,则实数a 的取值可以是( )A. 12 B. 1 C. −1 D. 225.(5分)若关于x 的不等式ae x +bx +c <0的解集为(−1,1),则( )A. b >0B. |a|<|c|C. a +b +c >0D. 8a +2b +c >026.(5分)下列各选项中,值为1的是( )A. log 26.log 62B. log 62+log 64C. (2+√3)12⋅(2−√3)12D. (2+√3)12−(2−√3)1227.(5分)已知函数f(x)={cosx,x >0kx,x ⩽0,若方程f(x)+f(−x)=0有n 个不同的实根,从小到大依次为x 1,x 2,x 3,…,x n ,则下列说法正确的是( )A. x 1+x 2+x 3+…+x n =0B. 当n =1时,k <−1π C. 当n =3且k <0时,tan x 3=−1x 3D. 当k >12π时,n =3答案和解析1.【答案】B;【解析】解:∵函数y=f(x)是定义域为R的奇函数.x⩾0时f(x)={x 2,0⩽x⩽1f(x−1)+1,x>1.∴f(0)=0,若恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,则f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,由y=f(x)=(x−1)2+1,x∈[1,2],故mx=(x−1)2+1有且只有一个解,即x2−(m+2)x+2=0的Δ=0,解得:m=2√2−2,或m=−2√2−2(舍去),故m=2√2−2,故选:B由已知中恰有5个不同的实数x1,x2,…,x5,使得f(x)=mx成立,可得f(x)=mx有且仅有两个正根,则m>0,且y=mx的图象,与y=f(x),x∈[1,2]的图象相切,进而可得答案.此题主要考查的知识点是根的存在性及根的个数判断,其中结合函数奇偶性的函数特征,分析出f(x)=mx有且仅有两个正根,是解答的关键.2.【答案】B;【解析】解:假设至少要抽的次数是n,则(1−0.6)n<0.002,∴nlg0.4<lg0.002,∴n>lg0.002lg0.4=lg2−32lg2−1≈6.8.∴至少要抽的次数是7.故选:B.假设至少要抽的次数是n,则(1−0.6)n<0.002,化为对数式即可得出.该题考查了指数式化为对数式,考查了推理能力与计算能力,属于基础题.3.【答案】B;【解析】解:因为函数f(x)=sin(π2x)+a(e x−1+e−x+1),令x−1=t,t∈R,则g(t)=sin(π2(t+1))+a(e t+e−t)=cos(π2t)+a(e t+e−t)为偶函数,因为函数f(x)=sin(π2x)+a(e x−1+e x−1)有唯一零点,t)+a(e t+e−1)有唯一零点,所以g(t)=cos(π2根据偶函数的对称性,则g(0)=1+2a=0,解得a=−1,2故选:B.t)+a(e t+e−t)有唯一零点,根据偶函数的对称性求令x−1=t,转化为g(t)=cos(π2解.此题主要考查了函数的零点问题,属于中档题.4.【答案】B;【解析】解:第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,其实是与第一个方程一样的.如果x1,x2是两个方程的解,则必有x1=3−x2,∴x1+x2=3.故选:B.第一个方程:≶x=3−x,第二个方程,≶(3−x)=x.注意第二个方程如果做变量代换y=3−x,则≶y=3−y,由此能求出结果.该题考查两数和的求法,是基础题,解题时要认真审题,注意对数函数性质的合理运用.5.【答案】D;【解析】解:根据函数y=|ln|x−2||+x2−4x的零点,转化为|ln|x−2||+x2−4x=0的根,令y=|ln|x−2||,y=−x2+4x,两个函数的对称轴都为x=2,在同一坐标系中,画出函数的图象:x 3,x 2关于x =2对称,所以x 3+x 2=4, x 1,x 4关于x =2对称,所以x 1+x 4=4, 所以x 1+x 2+x 3+x 4=8, 故选:D .根据函数y =|ln |x −2||+x 2−4x 的零点⇒|ln |x −2||+x 2−4x =0的根⇒y =|ln |x −2||,y =−x 2+4x 交点的横坐标,由两个函数都有对称轴x =2,结合图象可得x 3,x 2关于x =2对称,x 1,x 4关于x =2对称,进而得出答案. 该题考查函数的零点,解题中注意转化思想的应用,属于中档题.6.【答案】C;【解析】解:当x >0时,f ′(x)=lnx ,当0<x <1时,f ′(x)<0,当x >1时,f ′(x)>0,所以当x >0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增, 又当x ⩽0时,f(x)=f(x +1),所以根据周期为1可得:当x ⩽0时f(x)的图象,故f(x)的图象如图所示:将方程2f(x)−kx +1=0,转化为方程f(x)=k2x −12有四个不同的实根, 令g(x)=k2x −12,其图象恒过(0,−12), 因为f(x)与g(x)的图象有四个不同的交点, 所以k CE <k2⩽k DE 或k BE <k2⩽k AE ,又由A(−3,0),B(−2,0),C(−2,−1),D(−1,−1),E(0,−12), 故k CE =14,k DE =12,k BE =−14,k DE =−16, 所以14<k2⩽12或−14<k2⩽−16, 即12<k ⩽1或−12<k ⩽−13. 故选:C.把方程2f(x)−kx +1=0有四个不同的实根,转化为函数y =f(x)和g(x)=k2x −12的图象有四个交点,作出两个函数的图象,结合图象,即可求解.此题主要考查了函数的零点、转化思想、数形结合思想,难点在于作出图象,属于中档题.7.【答案】B;【解析】本题查抽象函数的单调性和奇偶性的综合应用,属于中档题。
高考数学(指数函数和对数函数)第一轮复习资料知识点小结(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x +=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。
指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。
性质:见表2试题选讲第一节对函数的进一步认识第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-2 2.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3.答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x+12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2.(2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0即(22t2-k +1+2)(-2t2-2t+1)+(2t2-2t +1+2)(-22t2-k+1)<0整理得23t2-2t -k>1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________.解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y =(13)2-x =3x -2.答案:y =3x -2(x ∈R ) 6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x+e x e -x -e x =-e x+e-xe x -e -x =-f (x ),∴f (x )为奇函数,排除④.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x-1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x+1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.解析:由f (x )=2-|x |≤12得x ≥1或x ≤-1,∴f K (x )=⎩⎪⎨⎪⎧2-|x |,x ≥1或x ≤-1,12,-1<x <1.则单调增区间为(-∞,-1].答案:(-∞,-1]9.函数y =2|x |的定义域为[a ,b ],值域为[1,16],当a 变动时,函数b =g (a )的图象可以是________.解析:函数y =2|x |的图象如图.当a =-4时,0≤b ≤4,当b =4时,-4≤a ≤0,答案:②10.(2010年宁夏银川模拟)已知函数f (x )=a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值为14,求实数a 的值.解:f (x )=a 2x +2a x -1=(a x +1)2-2,∵x ∈[-1,1],(1)当0<a <1时,a ≤a x ≤1a ,∴当a x =1a 时,f (x )取得最大值.∴(1a +1)2-2=14,∴1a =3,∴a =13. (2)当a >1时,1a≤a x ≤a ,∴当a x =a 时,f (x )取得最大值.∴(a +1)2-2=14,∴a =3.综上可知,实数a 的值为13或3.11.已知函数f (x )=-22x -a +1.(1)求证:f (x )的图象关于点M (a ,-1)对称;(2)若f (x )≥-2x在x ≥a 上恒成立,求实数a 的取值范围.解:(1)证明:设f (x )的图象C 上任一点为P (x ,y ),则y =-22x -a +1,P (x ,y )关于点M (a ,-1)的对称点为P ′(2a -x ,-2-y ).∴-2-y =-2+22x -a +1=-2·2x -a 2x -a +1=-21+2-(x -a )=-22(2a -x )-a+1, 说明点P ′(2a -x ,-2-y )也在函数y =-22x -a +1的图象上,由点P 的任意性知,f (x )的图象关于点M (a ,-1)对称.(2)由f (x )≥-2x 得-22x -a +1≥-2x ,则22x -a +1≤2x ,化为2x -a ·2x +2x -2≥0,则有(2x )2+2a ·2x -2·2a ≥0在x ≥a 上恒成立.令g (t )=t 2+2a ·t -2·2a ,则有g (t )≥0在t ≥2a 上恒成立.∵g (t )的对称轴在t =0的左侧,∴g (t )在t ≥2a上为增函数. ∴g (2a )≥0.∴(2a )2+(2a )2-2·2a ≥0,∴2a (2a -1)≥0,则a ≥0.即实数a 的取值范围为a ≥0.12.(2008年高考江苏)若f 1(x )=3|x -p 1|,f 2(x )=2·3|x -p 2|,x ∈R ,p 1、p 2为常数,且f (x )=⎩⎪⎨⎪⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ).(1)求f (x )=f 1(x )对所有实数x 成立的充要条件(用p 1、p 2表示);(2)设a ,b 是两个实数,满足a <b ,且p 1、p 2∈(a ,b ).若f (a )=f (b ),求证:函数f (x )在区间[a ,b ]上的单调增区间的长度之和为b -a2(闭区间[m ,n ]的长度定义为n -m ).解:(1)f (x )=f 1(x )恒成立⇔f 1(x )≤f 2(x )⇔3|x -p 1|≤2·3|x -p 2|⇔3|x -p 1|-|x -p 2|≤2⇔|x -p 1|-|x -p 2|≤log 32.(*)若p 1=p 2,则(*)⇔0≤log 32,显然成立;若p 1≠p 2,记g (x )=|x -p 1|-|x -p 2|,当p 1>p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2,x <p 2,-2x +p 1+p 2,p 2≤x ≤p 1,p 2-p 1,x >p 1.所以g (x )max =p 1-p 2,故只需p 1-p 2≤log 32. 当p 1<p 2时,g (x )=⎩⎪⎨⎪⎧p 1-p 2,x <p 1;2x -p 1-p 2,p 1≤x ≤p 2;p 2-p 1,x >p 2.所以g (x )max =p 2-p 1,故只需p 2-p 1≤log 32.综上所述,f (x )=f 1(x )对所有实数x 成立的充要条件是|p 1-p 2|≤log 32. (2)证明:分两种情形讨论. ①当|p 1-p 2|≤log 32时,由(1)知f (x )=f 1(x )(对所有实数x ∈[a ,b ]),则由f (a )=f (b )及a <p 1<b易知p 1=a +b2.再由f 1(x )=⎩⎪⎨⎪⎧3p 1-x ,x <p 1,3x -p 1,x ≥p 1,的单调性可知,f (x )在区间[a ,b ]上的单调增区间的长度为b -a +b 2=b -a2.②当|p 1-p 2|>log 32时,不妨设p 1<p 2,则p 2-p 1>log 32.于是,当x ≤p 1时,有f 1(x )=3p 1-x<3p 2-x <f 2(x ),从而f (x )=f 1(x ).当x ≥p 2时,f 1(x )=3x -p 1=3p 2-p 1·3x -p 2>3log 32·3x -p 2=f 2(x ),从而f (x )=f 2(x ).当p 1<x <p 2时,f 1(x )=3x -p 1及f 2(x )=2·3p 2-x ,由方程3x 0-p 1=2·3p 2-x 0,解得f 1(x )与f 2(x )图象交点的横坐标为x 0=p 1+p 22+12log 32.①显然p 1<x 0=p 2-12[(p 2-p 1)-log 32]<p 2,这表明x 0在p 1与p 2之间.由①易知f (x )=⎩⎪⎨⎪⎧f 1(x ),p 1≤x ≤x 0,f 2(x ),x 0<x ≤p 2.综上可知,在区间[a ,b ]上,f (x )=⎩⎪⎨⎪⎧f 1(x ),a ≤x ≤x 0,f 2(x ),x 0<x ≤b .故由函数f 1(x )与f 2(x )的单调性可知,f (x )在区间[a ,b ]上的单调增区间的长度之和为(x 0-p 1)+(b -p 2),由于f (a )=f (b ),即3p 1-a =2·3b -p 2,得p 1+p 2=a +b +log 32.②故由①②得(x 0-p 1)+(b -p 2)=b -12(p 1+p 2-log 32)=b -a 2.综合①、②可知,f (x )在区间[a ,b ]上单调增区间的长度之和为b -a2.第二节 对数函数A 组1.(2009年高考广东卷改编)若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=________.解析:由题意f (x )=log a x ,∴a =log a a 12=12,∴f (x )=log 12x .答案:log 12x2.(2009年高考全国卷Ⅱ)设a =log 3π,b =log 23,c =log 32,则a 、b 、c 的大小关系是________.解析:a =log 3π>1,b =log 23=12log 23∈(12,1),c =log 32=12log 32∈(0,12),故有a >b >c .答案:a >b >c3.若函数f (x )=⎪⎩⎪⎨⎧∈-∈⎪⎭⎫ ⎝⎛]1,0[,4)0,1[,41x x xx,则f (log 43)=________.解析:0<log 43<1,∴f (log 43)=4log 43= 3.答案:3 4.如图所示,若函数f (x )=a x-1的图象经过点(4,2),则函数g (x )=log a 1x +1的图象是________.解析:由已知将点(4,2)代入y =a x -1,∴2=a4-1,即a =213>1.又1x +1是单调递减的,故g (x )递减且过(0,0)点,∴④正确.答案:④ 5.(原创题)已知函数f (x )=a log 2x +b log 3x +2,且f (12010)=4,则f (2010)的值为_.解析:设F (x )=f (x )-2,即F (x )=a log 2x +b log 3x ,则F (1x )=a log 21x +b log 31x=-(a log 2x+b log 3x )=-F (x ),∴F (2010)=-F (12010)=-[f (12010)-2]=-2,即f (2010)-2=-2,故f (2010)=0.答案:06.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a >0且a ≠1).(1)求f (log 2x )的最小值及相应x 的值;(2)若f (log 2x )>f (1)且log 2f (x )<f (1),求x 的取值范围.解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=(log 2a )2-log 2a +b =b ,∴log 2a =1,∴a =2.又∵log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4,∴b =2.∴f (x )=x 2-x +2.∴f (log 2x )=(log 2x )2-log 2x +2=(log 2x -12)2+74.∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意知⎩⎪⎨⎪⎧ (log 2x )2-log 2x +2>2,log 2(x 2-x +2)<2.∴⎩⎪⎨⎪⎧log 2x <0或log 2x >1,0<x 2-x +2<4. ∴⎩⎪⎨⎪⎧0<x <1或x >2,-1<x <2.∴0<x <1. B 组1.(2009年高考北京卷改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点________.解析:∵y =lg x +310=lg(x +3)-1,∴将y =lg x 的图象上的点向左平移3个单位长度得到y =lg(x +3)的图象,再将y =lg(x +3)的图象上的点向下平移1个单位长度得到y =lg(x +3)-1的图象.答案:向左平移3个单位长度,再向下平移1个单位长度2.(2010年安徽黄山质检)对于函数f (x )=lg x 定义域中任意x 1,x 2(x 1≠x 2)有如下结论:①f (x 1+x 2)=f (x 1)+f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2);③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1+x 22)<f (x 1)+f (x 2)2.上述结论中正确结论的序号是________.解析:由运算律f (x 1)+f (x 2)=lg x 1+lg x 2=lg x 1x 2=f (x 1x 2),所以②对;因为f (x )是定义域内的增函数,所以③正确;f (x 1+x 22)=lg x 1+x 22,f (x 1)+f (x 2)2=lg x 1+lg x 22=lg x 1x 2,∵x 1+x 22≥x 1x 2,且x 1≠x 2,∴lg x 1+x 22>lg x 1x 2,所以④错误.答案:②③3.(2010年枣庄第一次质检)对任意实数a 、b ,定义运算“*”如下:a *b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=log 12(3x -2)*log 2x 的值域为________.解析:在同一直角坐标系中画出y =log 12(3x -2)和y =log 2x 两个函数的图象,由图象可得f (x )=⎩⎪⎨⎪⎧log 2x (0<x ≤1)log 12(3x -2) (x >1),值域为(-∞,0].答案:(-∞,0]4.已知函数y =f (x )与y =e x 互为反函数,函数y =g (x )的图象与y =f (x )的图象关于x 轴对称,若g (a )=1,则实数a 的值为________.解析:由y =f (x )与y =e x 互为反函数,得f (x )=ln x ,因为y =g (x )的图象与y =f (x )的图象关于x 轴对称,故有g (x )=-ln x ,g (a )=1⇒ln a =-1,所以a =1e.答案:1e5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是________.解析:由log 2x |x |有意义可得x >0,所以,f (2x +|x |)=f (1x ),log 2x |x |=log 2x ,即有f (1x )=log 2x ,故f (x )=log 21x=-log 2x .答案:f (x )=-log 2x ,(x >0)6.(2009年高考辽宁卷改编)若x 1满足2x +2x =5,x 2满足2x +2log 2(x -1)=5,则x 1+x 2=________.解析:由题意2x 1+2x 1=5,①2x 2+2log 2(x 2-1)=5,②所以2x 1=5-2x 1,x 1=log 2(5-2x 1),即2x 1=2log 2(5-2x 1).令2x 1=7-2t ,代入上式得7-2t =2log 2(2t -2)=2+2log 2(t -1),∴5-2t =2log 2(t -1)与②式比较得t =x 2,于是2x 1=7-2x 2.∴x 1+x 2=T 2.答案:727.当x ∈[n ,n +1),(n ∈N )时,f (x )=n -2,则方程f (x )=log 2x 根的个数是________.解析:当n =0时,x ∈[0,1),f (x )=-2; 当n =1时,x ∈[1,2),f (x )=-1; 当n =2时,x ∈[2,3),f (x )=0; 当n =3时,x ∈[3,4),f (x )=1; 当n =4时,x ∈[4,5),f (x )=2;当n =5时,x ∈[5,6),f (x )=3.答案:2 8.(2010年福建厦门模拟)已知lg a +lg b =0,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是________.解析:由题知,a =1b ,则f (x )=(1b)x =b -x ,g (x )=-log b x ,当0<b <1时,f (x )单调递增,g (x )单调递增,②正确;当b >1时,f (x )单调递减,g (x )单调递减.答案:② 9.已知曲线C :x 2+y 2=9(x ≥0,y ≥0)与函数y =log 3x 及函数y =3x 的图象分别交于点A (x 1,y 1),B (x 2,y 2),则x 12+x 22的值为________.解析:∵y =log 3x 与y =3x 互为反函数,所以A 与B 两点关于y =x 对称,所以x 1=y 2,y 1=x 2,∴x 12+x 22=x 12+y 12=9.答案:910.已知函数f (x )=lg kx -1x -1(k ∈R 且k >0).(1)求函数f (x )的定义域;(2)若函数f (x )在[10,+∞)上是单调增函数,求k 的取值范围.解:(1)由kx -1x -1>0及k >0得x -1k x -1>0,即(x -1k )(x -1)>0.①当0<k <1时,x <1或x >1k ;②当k =1时,x ∈R 且x ≠1;③当k >1时,x <1k或x >1.综上可得当0<k <1时,函数的定义域为(-∞,1)∪(1k,+∞);当k ≥1时,函数的定义域为(-∞,1k)∪(1,+∞).(2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110.又f (x )=lg kx -1x -1=lg(k +k -1x -1),故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2),即lg(k +k -1x 1-1)<lg(k +k -1x 2-1),∴k -1x 1-1<k -1x 2-1,∴(k -1)·(1x 1-1-1x 2-1)<0,又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1.综上可知k ∈(110,1).11.(2010年天津和平质检)已知f (x )=log a 1+x1-x(a >0,a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并给予证明;(3)求使f (x )>0的x 的取值范围.解:(1)由1+x1-x>0 ,解得x ∈(-1,1).(2)f (-x )=log a 1-x1+x=-f (x ),且x ∈(-1,1),∴函数y =f (x )是奇函数.(3)若a >1,f (x )>0,则1+x 1-x >1,解得0<x <1;若0<a <1,f (x )>0,则0<1+x1-x<1,解得-1<x <0.12.已知函数f (x )满足f (log a x )=a a 2-1(x -x -1),其中a >0且a ≠1.(1)对于函数f (x ),当x ∈(-1,1)时,f (1-m )+f (1-m 2)<0,求实数m 的集合; (2)x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.解:令log a x =t (t ∈R ),则x =a t ,∴f (t )=a a 2-1(a t -a -t ),∴f (x )=a a 2-1(a x -a -x ).∵f (-x )=a a 2-1(a -x -a x )=-f (x ),∴f (x )是R 上的奇函数.当a >1时,a a 2-1>0,a x 是增函数,-a -x 是增函数,∴f (x )是R 上的增函数;当0<a <1,a a 2-1<0,a x 是减函数,-a -x 是减函数,∴f (x )是R 上的增函数.综上所述,a >0且a ≠1时,f (x )是R 上的增函数.(1)由f (1-m )+f (1-m 2)<0有f (1-m )<-f (1-m 2)=f (m 2-1),∴⎩⎪⎨⎪⎧1-m <m 2-1,-1<1-m <1,-1<m 2-1<1.解得m ∈(1,2).(2)∵f (x )是R 上的增函数,∴f (x )-4也是R 上的增函数,由x <2,得f (x )<f (2), ∴f (x )-4<f (2)-4,要使f (x )-4的值恒为负数,只需f (2)-4≤0,即a a 2-1(a 2-a -2)-4≤0,解得2-3≤a ≤2+3, ∴a 的取值范围是2-3≤a ≤2+3且a ≠1.第三节 幂函数与二次函数的性质A 组1.若a >1且0<b <1,则不等式a log b (x -3)>1的解集为________.解析:∵a >1,0<b <1,∴a log b (x -3)>1⇔log b (x -3)>0⇔log b (x -3)>log b 1⇔0<x -3<1⇔3<x <4.答案:{x |3<x <4}2.(2010年广东广州质检)下列图象中,表示y =x 32的是________.解析:y =x 32=3x 2是偶函数,∴排除②、③,当x >1时,32xx =x 31>1,∴x >x 32,∴排除①.答案:④3.(2010年江苏海门质检)若x ∈(0,1),则下列结论正确的是__________.①2x >x 21>lg x ②2x >lg x >x 21 ③x 21>2x >lg x ④lg x >x 21>2x 解析:∵x ∈(0,1),∴2>2x>1,0<x 21<1,lg x <0.答案:① 4.(2010年东北三省模拟)函数f (x )=|4x -x 2|-a 恰有三个零点,则a =__________.解析:先画出f (x )=4x -x 2的图象,再将x 轴下方的图象翻转到x 轴的上方,如图,y =a 过抛物线顶点时恰有三个交点,故得a 的值为4.答案:45.(原创题)方程x 12=log sin1x 的实根个数是__________.解析:在同一坐标系中分别作出函数y 1=x 21 和y 2=log sin1x 的图象,可知只有惟一一个交点.答案:16.(2009年高考江苏卷)设a 为实数,函数f (x )=2x 2+(x -a )·|x -a |.(1)若f (0)≥1,求a 的取值范围;(2)求f (x )的最小值;(3)设函数h (x )=f (x ),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h (x )≥1的解集.解:(1)因为f (0)=-a |-a |≥1,所以-a >0,即a <0.由a 2≥1知a ≤-1.因此,a 的取值范围为(-∞,-1].(2)记f (x )的最小值为g (a ).则有f (x )=2x 2+(x -a )|x -a |=⎩⎪⎨⎪⎧3(x -a 3)2+2a 23,x >a , ①(x +a )2-2a 2,x ≤a , ②(ⅰ)当a ≥0时,f (-a )=-2a 2,由①②知f (x )≥-2a 2,此时g (a )=-2a 2.(ⅱ)当a <0时,f (a 3)=23a 2.若x >a ,则由①知f (x )≥23a 2;若x ≤a ,则x +a ≤2a <0,由②知f (x )≥2a 2>23a 2.此时g (a )=23a 2.综上,得g (a )=⎩⎪⎨⎪⎧-2a 2, a ≥0,2a 23, a <0.(3)(ⅰ)当a ∈(-∞,-62]∪[22,+∞)时,解集为(a ,+∞); (ⅱ)当a ∈[-22,22)时,解集为[a +3-2a 23,+∞);(ⅲ)当a ∈(-62,-22)时,解集为(a ,a -3-2a 23]∪[a +3-2a 23,+∞).B 组1.(2010年江苏无锡模拟)幂函数y =f (x )的图象经过点(-2,-18),则满足f (x )=27的x 的值是__________.解析:设幂函数为y =x α,图象经过点(-2,-18),则-18=(-2)α,∴α=-3,∵x -3=27,∴x =13.答案:132.(2010年安徽蚌埠质检)α则不等式f (|x |)≤2的解集是解析:由表知22=(12)α,∴α=12,∴f (x )=x 12.∴(|x |)12≤2,即|x |≤4,故-4≤x ≤4.答案:{x |-4≤x ≤4}3.(2010年广东江门质检)设k ∈R ,函数f (x )=⎩⎪⎨⎪⎧1x (x >0),e x (x ≤0),F (x )=f (x )+kx ,x ∈R .当k =1时,F (x )的值域为__________.解析:当x >0时,F (x )=1x+x ≥2;当x ≤0时,F (x )=e x +x ,根据指数函数与幂函数的单调性,F (x )是单调递增函数,F (x )≤F (0)=1,所以k =1时,F (x )的值域为(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)4.设函数f (x )=⎩⎪⎨⎪⎧-2 (x >0),x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为__________.解析:由f (-4)=f (0),得b =4.又f (-2)=0,可得c =4,∴⎩⎪⎨⎪⎧ x ≤0,x 2+4x +4≤1或⎩⎪⎨⎪⎧x >0,-2≤1,可得-3≤x ≤-1或x >0.答案:{x |-3≤x ≤-1或x >0}5.(2009年高考天津卷改编)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是__________.解析:函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,4x -x 2,x <0,的图象如图. 知f (x )在R 上为增函数. ∵f (2-a 2)>f (a ),即2-a 2>a . 解得-2<a <1.答案:-2<a <16.(2009年高考江西卷改编)设函数f (x )=ax 2+bx +c(a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a 的值为__________.解析:由题意定义域D 为不等式ax 2+bx +c ≥0的解集.∵ax 2+bx +c =a (x +b 2a )2+4ac -b24a ,∵a <0,∴0≤y ≤ 4ac -b 24a,∴所有点(s ,f (t )),(s ,t ∈D )构成一个正方形区域,意味着方程ax 2+bx +c =0的两根x 1,x 2应满足|x 1-x 2|= 4ac -b 24a,由根与系数的关系知4ac -b 24a =b 2a 2-4c a =b 2-4aca 2,∴4a =-a 2.∵a <0,∴a =-4.答案:-47.(2010年辽宁沈阳模拟)已知函数f (x )=⎩⎪⎨⎪⎧-2+x ,x >0,-x 2+bx +c ,x ≤0.若f (0)=-2f (-1)=1,则函数g (x )=f (x )+x 的零点的个数为__________.解析:∵f (0)=1,∴c =1.又f (-1)=-12,∴-1-b +1=-12,∴b =12.当x >0时,g (x )=-2+2x =0,∴x =1;当x ≤0时,g (x )=-x 2+12x +1+x =0,∴x 2-32x -1=0,∴x =2(舍)或x =-12,所以有两个零点.答案:28.设函数f (x )=x |x |+bx +c ,给出下列四个命题:①c =0时,f (x )是奇函数;②b =0,c >0时,方程f (x )=0只有一个实根;③f (x )的图象关于(0,c )对称;④方程f (x )=0至多有两个实根.其中正确的命题是__________.解析:c =0时,f (-x )=-x |-x |+b (-x )=-x |x |-bx =-f (x ),故f (x )是奇函数;b =0,c >0时,f (x )=x |x |+c =0,∴x ≥0时,x 2+c =0无解,x <0时,f (x )=-x 2+c =0,∴x =-c ,有一个实数根.答案:①②③9.(2010年湖南长沙质检)对于区间[a ,b ]上有意义的两个函数f (x )与g (x ),如果对于区间[a ,b ]中的任意数x 均有|f (x )-g (x )|≤1,则称函数f (x )与g (x )在区间[a ,b ]上是密切函数,[a ,b ]称为密切区间.若m (x )=x 2-3x +4与n (x )=2x -3在某个区间上是“密切函数”,则它的一个密切区间可能是________.①[3,4] ②[2,4] ③[2,3] ④[1,4]解析:|m (x )-n (x )|≤1⇒|x 2-5x +7|≤1,解此绝对值不等式得2≤x ≤3,故在区间[2,3]上|m (x )-n (x )|的值域为[0,1],∴|m (x )-n (x )|≤1在[2,3]上恒成立.答案:③10.设函数f (x )=x 2+2bx +c (c <b <1),f (1)=0,方程f (x )+1=0有实根.(1)证明:-3<c ≤-1且b ≥0;(2)若m 是方程f (x )+1=0的一个实根,判断f (m -4)的正负并加以证明.解:(1)证明:f (1)=0⇒1+2b +c =0⇒b =-c +12.又c <b <1,故c <-c +12<1⇒-3<c <-13.方程f (x )+1=0有实根,即x 2+2bx +c +1=0有实根,故Δ=4b 2-4(c +1)≥0,即(c +1)2-4(c +1)≥0⇒c ≥3或c ≤-1.又c <b <1,得-3<c ≤-1,由b =-c +12知b ≥0.(2)f (x )=x 2+2bx +c =x 2-(c +1)x +c =(x -c )(x -1),f (m )=-1<0, ∴c <m <1,∴c -4<m -4<-3<c ,∴f (m -4)=(m -4-c )(m -4-1)>0, ∴f (m -4)的符号为正.11.(2010年安徽合肥模拟)设函数f (x )=ax 2+bx +c ,且f (1)=-a2,3a >2c >2b ,求证:(1)a >0且-3<b a <-34;(2)函数f (x )在区间(0,2)内至少有一个零点;(3)设x 1、x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.证明:(1)∵f (1)=a +b +c =-a2,∴3a +2b +2c =0.又3a >2c >2b ,∴3a >0,2b <0,∴a >0,b <0.又2c =-3a -2b ,由3a >2c >2b ,∴3a >-3a -2b >2b .∵a >0,∴-3<b a <-34.(2)∵f (0)=c ,f (2)=4a +2b +c =a -c ,①当c >0时,∵a >0,∴f (0)=c >0且f (1)=-a2<0,∴函数f (x )在区间(0,1)内至少有一个零点.②当c ≤0时,∵a >0,∴f (1)=-a2<0且f (2)=a -c >0,∴函数f (x )在区间(1,2)内至少有一个零点.综合①②得f (x )在(0,2)内至少有一个零点.(3)∵x 1、x 2是函数f (x )的两个零点,则x 1、x 2是方程ax 2+bx +c =0的两个根,∴x 1+x 2=-b a ,x 1x 2=c a =-32-b a ,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2= (-b a )2-4(-32-b a )=(b a +2)2+2.∵-3<b a <-34,∴2≤|x 1-x 2|<574. 12.已知函数f (x )=ax 2+4x +b (a <0,a 、b ∈R ),设关于x 的方程f (x )=0的两实根为x 1、x 2,方程f (x )=x 的两实根为α、β.(1)若|α-β|=1,求a 、b 的关系式;(2)若a 、b 均为负整数,且|α-β|=1,求f (x )的解析式;(3)若α<1<β<2,求证:(x 1+1)(x 2+1)<7.解:(1)由f (x )=x 得ax 2+3x +b =0(a <0,a 、b ∈R )有两个不等实根为α、β,∴Δ=9-4ab >0,α+β=-3a ,α·β=ba.由|α-β|=1得(α-β)2=1,即(α+β)2-4αβ=9a 2-4ba=1,∴9-4ab =a 2,即a 2+4ab =9(a <0,a 、b ∈R ).(2)由(1)得a (a +4b )=9,∵a 、b 均为负整数, ∴⎩⎪⎨⎪⎧a =-1a +4b =-9或⎩⎪⎨⎪⎧ a =-9a +4b =-1或⎩⎪⎨⎪⎧a =-3,a +4b =-3,显然后两种情况不合题意,应舍去,从而有⎩⎪⎨⎪⎧a =-1,a +4b =-9,∴⎩⎪⎨⎪⎧a =-1,b =-2.故所求函数解析式为f (x )=-x 2+4x -2.(3)证明:由已知得x 1+x 2=-4a ,x 1·x 2=b a ,又由α<1<β<2得α+β=-3a <3,α·β=ba<2,∴-1a <1,∴(x 1+1)(x 2+1)=x 1·x 2+(x 1+x 2)+1=b a -4a +1<2+4+1=7,即(x 1+1)(x 2+1)<7.第四节 函数的图像特征A 组1.命题甲:已知函数f (x )满足f (1+x )=f (1-x ),则f (x )的图象关于直线x =1对称.命题乙:函数f (1+x )与函数f (1-x )的图象关于直线x =1对称.则甲、乙命题正确的是__________.解析:可举实例说明如f (x )=2x ,依次作出函数f (1+x )与函数f (1-x )的图象判断.答案:甲2.(2010年济南市高三模拟考试)函数y =x |x |·a x(a >1)的图象的基本形状是_____.解析:先去绝对值将已知函数写成分段函数形式,再作图象即可,函数解析式:y =⎩⎪⎨⎪⎧ax (x >0)-ax (x <0),由指数函数图象易知①正确.答案:①3.已知函数f (x )=(15)x -log 3x ,若x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为__________(正负情况).解析:分别作y =(15)x 与y =log 3x 的图象,如图可知,当0<x 1<x 0时,(15)x1>log 3x 1,∴f (x 1)>0.答案:正值4.(2009年高考安徽卷改编)设a <b ,函数y =(x -a )2(x -b )的图象可能是_____.解析:∵x >b 时,y >0.由数轴穿根法,从右上向左下穿,奇次穿偶次不穿可知,只有③正确.答案:③5.(原创题)已知当x ≥0时,函数y =x 2与函数y =2x 的图象如图所示,则当x ≤0时,不等式2x ·x 2≥1的解集是__________.解析:在2x ·x 2≥1中,令x =-t ,由x ≤0得t ≥0, ∴2-t ·(-t )2≥1,即t 2≥2t ,由所给图象得2≤t ≤4, ∴2≤-x ≤4,解得-4≤x ≤-2. 答案:-4≤x ≤-26.已知函数f (x )=⎩⎨⎧.(2,5]∈,3-,1,2]-[∈,-32x x x x(1)画出f (x )的图象;(2)写出f (x )的单调递增区间.解:(1)函数f (x )的图象如图所示.,(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].B 组 1.(2010年合肥市高三质检)函数f (x )=ln 1-x1+x的图象只可能是__________.解析:本题中f (x )的定义域为{x |-1<x <1},从而排除②③选项.又由于u (x )=-1+21+x在定义域{x |-1<x <1}内是减函数,而g (x )=ln x 在定义域(0,+∞)内是增函数,从而f (x )=ln 1-x 1+x =ln(-1+21+x )在定义域{x |-1<x <1}是减函数. 答案:①2.家电下乡政策是应对金融危机、积极扩大内需的重要举措.我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下图所示.在这四种方案中,运输效率(单位时间的运输量)逐步提高的是解析:运输效率是运输总量Q 与时间t 的函数的导数,几何意义为图象的切线,切线斜率的增长表明运输效率的提高,从图形看,②正确.答案:②3.如图,过原点O 的直线与函数y =2x 的图象交于A ,B 两点,过B作y 轴的垂线交函数y =4x的图象于点C ,若AC 平行于y 轴,则点A 的坐标是__________.解析:设C (a,4a ),所以A (a,2a ),B (2a,4a ),又O ,A ,B 三点共线,所以2a a =4a 2a,故4a =2×2a ,所以2a =0(舍去)或2a =2,即a =1,所以点A 的坐标是(1,2).答案:(1,2)4.已知函数f (x )=4-x 2,g (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,当x >0时,g (x )=log 2x ,则函数y =f (x )·g (x )的大致图象为__________.解析:f (x )为偶函数,g (x )是奇函数,所以f (x )·g (x )为奇函数,图象关于原点对称,当x →+∞时,f (x )→-∞,g (x )→+∞,所以f (x )·g (x )→-∞答案:②5.某加油机接到指令,给附近空中一运输机加油.运输机的余油量为Q 1(吨),加油机加油箱内余油Q 2(吨),加油时间为t 分钟,Q 1、Q 2与时间t 的函数关系式的图象如右图.若运输机加完油后以原来的速度飞行需11小时到达目的地,问运输机的油料是否够用?________.解析:加油时间10分钟,Q 1由30减小为0.Q 2由40增加到69,因而10分钟时间内运输机用油1吨.以后的11小时需用油66吨.因69>66,故运输机的油料够用.答案:够用 6.已知函数y =f (x )(x ∈R )满足f (x +2)=f (x ),且x ∈(-1,1]时,f (x )=|x |,则y =f (x )与y =log 7x 的交点的个数为__________.解析:由f (x +2)=f (x )知函数y =f (x )为周期为2的周期函数,作图. 答案:67.函数y =x mn (m ,n ∈Z ,m ≠0,|m |,|n |互质)图象如图所示,则下列结论正确的是__________.①mn >0,m ,n 均为奇数②mn <0,m ,n 一奇一偶 ③mn <0,m ,n 均为奇数 ④mn >0,m ,n 一奇一偶解析:由于幂函数在第一象限的图象趋势表明函数在(0,+∞)上单调递减,此时只需保证mn<0,即mn <0,有y =x m n =x -|m ||n |;同时函数只在第一象限有图象,则函数的定义域为(0,+∞),此时|n |定为偶数,n 即为偶数,由于两个数互质,则m 定为奇数.答案:②8.(2009年高考福建卷改编)定义在R 上的偶函数f (x )的部分图象如图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是①y =x 2+1②y =|x |+1③y =⎩⎪⎨⎪⎧2x +1,x ≥0x 3+1,x <0④y =⎩⎪⎨⎪⎧e x ,x ≥0e -x ,x <0解析:∵f (x )为偶函数,由图象知,f (x )在(-2,0)上为减函数,而y =x 3+1在(-∞,0)上为增函数.答案:③9.(2010年安徽合肥模拟)已知函数图象C ′与C :y (x +a +1)=ax +a 2+1关于直线y =x 对称,且图象C ′关于点(2,-3)对称,则a 的值为__________.解析:∵C ′与C :y (x +a +1)=ax +a 2+1关于直线y =x 对称,∴C ′为x (y +a +1)=ay +a 2+1.整理得,y +1+a =1-ax -a.∵C ′关于点(2,-3)对称,∴a =2.答案:2 10.作下列函数的图象:(1)y =1|x |-1;(2)y =|x -2|(x +1);(3)y =1-|x ||1-x |;(4)y =|log 2x -1|;(5)y =2|x -1|.解:(1)定义域{x |x ∈R 且x ≠±1},且函数是偶函数.又当x ≥0且x ≠1时,y =1x -1.先作函数y =1x 的图象,并将图象向右平移1个单位,得到函数y =1x -1(x ≥0且x ≠1)的图象(如图(a)所示).又函数是偶函数,作关于y 轴对称图象,得y =1|x |-1的图象(如图(b)所示).(2)函数式可化为y =⎩⎨⎧(x -12)2-94 (x ≥2),-(x -12)2+94(x <2).其图象如图①所示.(3)函数式化为y =⎩⎪⎨⎪⎧1+x 1-x (x <0),1 (0≤x <1),-1 (x >1).其图象如图②所示.(4)先作出y =log2x 的图象,再将其图象向下平移1个单位长度,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方,即得y =|log2x -1|的图象,如图③所示.(5)先作出y =2x的图象,再将其图象在y 轴左边的部分去掉,并作出y 轴右边的图象关于y 轴对称的图象,即得y =2|x |的图象,再将y =2|x |的图象向右平移1个单位长度,即得y=2|x -1|的图象,如图④所示.11.已知函数f (x )=-a a x +a(a >0且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.解:(1)证明:函数f (x )的定义域为R ,任取一点(x ,y ),它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知,y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a.,f (1-x )=-a a 1-x +a =-a a a x+a =-a ·a x a +a ·a x =-a xa x +a .∴-1-y =f (1-x ).即函数y =f (x )的图象关于点(12,-12)对称.(2)由(1)有-1-f (x )=f (1-x ).即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.12.设函数f (x )=x +b ax -1(x ∈R ,且a ≠0,x ≠1a ).(1)若a =12,b =-32,指出f (x )与g (x )=1x 的图象变换关系以及函数f (x )的图象的对称中心;(2)证明:若ab +1≠0,则f (x )的图象必关于直线y =x 对称.解:(1)a =12,b =-32,f (x )=x -3212x -1=2x -3x -2=2+1x -2,∴f (x )的图象可由g (x )的图象沿x 轴右移2个单位,再沿y 轴上移2个单位得到,f (x )的图象的对称中心为点(2,2).(2)证明:设P (x 0,y 0)为f (x )图象上任一点,则y 0=x 0+bax 0-1,P (x 0,y 0)关于y =x 的对称点为P ′(y 0,x 0).由y 0=x 0+b ax 0-1得x 0=y 0+bay 0-1.∴P ′(y 0,x 0)也在f (x )的图象上.故f (x )的图象关于直线y =x 对称.。
高三第一轮复习数学——指数函数与对数函数一、教学目标:1 •掌握指数函数与对数函数的概念、图象和性质;2 •能利用指数函数与对数函数的性质解题.二、教学重点:运用指数函数、对数函数的定义域、单调性解题.三、教学过程:(一)主要知识:1、指数函数y=a x与对数函数y=log a x (a>0 , a工1)互为反函数,从概念、图象、性质去理解它们的区别和联系如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。
(二)主要方法:1 •解决与对数函数有关的问题,要特别重视定义域;2 •指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;3 •比较几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差(三)例题分析:例 1 已知f(x)=a x,g(x)=log a X(a>0,a 丰 1),若f(3) x g(3)<0,那么f(x)与g(x)在同一坐标系内的图象可能为(c)『变式』当a>1时,在同一坐标系中,函数f(x)=a -x与g(x)=log a X的图象为()解:选A[评析]利用函数的底数与图象关系。
确定函数图象可能的情况1 13 2 3 3 3例2、比较下列各数的大小:log 2 0.35 lg 25 lg15 235 5解:(见轻舟P63)0 7 6『变式』比较① 6 ' , 0.7 , log 0.76 ②log 1.1 0.7 , log 1.20.71“ b …“ a “ .b…》 A. 1 a b 1 a B.1 a1 b ③当0 <a<b<1,下列不等式正确的有bC.1 a ba1 a2 D.1 ab1 b解:① log O .7 6〈 0.76〈 60.7 ②Iog i.i 0.7 〈 log 1.20.7 ③D[评析]利用指对函数的单调性和图象的特点,比较几个因式的大小例3、函数y=a 2x +2a x -1(a>0,a 丰1)在区间[-1,1]上的最大值为14,求a 的值。
x2解:令 u=a ,y=(u+1) -2.因为-1 <x < 1当a>1时u 1C,a] [ 1,a), 14 a 2 2a 1 a 3或a 5(舍)当0<a<1时,u [a,1][ 1,),1421 21 1 a-或a】(舍)aaa3 5综上得,a 3或a 3『变式』已知f(x)=log 4(2X +3-X 2)求(1) f(x)的单调区间;(2)求函数f(x)的最大值及对 应的x 的值. 增区间为(-1,1],减为区间[1,3 )■/ u=-(x-1) +4= 4, ••• x=1 时 y=1 为最大值[评析]指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题 的重要途径例4、设函数f(x)=loga(x-3a) (a>0 , a * 1),当点P(x,y)是函数y=f(x)图象上的点时,点 Q(x-2a,-y)是函数y=g(x)的图象上的点(1 )写出函数y=g(x)的解析式(2)若当x € [a+2,a+3]时,恒有丨f(x)-g(x) | < 1,试确定的取值范围。
解: (1)设点 Q(x , y ),则 xx 2a, yy(2)x 3aa 2 3a 2a2 0 -10又a 0且a 1, 0 a 1x a a 3 a0 a 1, a 2 2a 故函数r(x) =x 2 24ax 3a 在区间 x € [a+2,a+3] 上为增函数0 a 1—— 9 < 57问题转化为 log a 9 6a 1 0a- 一12 log a 4 4a 1[评析]本题综合性较强,主要考查函数思想,化归思想,综合思维能力 【备用】已知a>0 , a 丰1, f Iog a x (1) 当f(x)的定义域为(-1,1 )时,解关于 m 的不等式f(1-m)+f(1-m 2)<0;(2)若f(x)-4 恰在(-a ,2)上取负值,求a 的值a解: (1 )令 t=log a x,可得 f(t)=— a t a t f x f x f x 为奇函数 a 2 1a a 2 1[评析]用函数思想去处理有关问题,是 要.(四) 巩固练习:(3)设 x0, 且 a xb x1 (a 0 L b0), 则a 与 :b 的大小关系是 ((A ) b a 1(B )ab 1(< C ) 1 b a (D )1 a b(1 )由 a 2b a 1得 - a , 故log b b _lOgb 'a 1 lOg ab .aa(2)令 2X 3y 5z t ,则 t 1 ,X lgt y lgt z lgt ,lg2 ' Ig3 ' lg5•- 2x 3y2lg t 3lgt lgt (lg9 lg8) 0, • 2x 3y ;lg 2 lg3lg2 lg |3同理可得: 2x 5z 0 ,• 2x 5z , • 3y 2x 5z . (3) 取 X1 , 知选(B )已知函数f (Xa x 2(a 1),3y )上为增函数; 方程 f(x) 0没有负数根.(2) X1解: 2. 求证:(1) 证明:(1) 1. (1)若 a 2(2)若 2X X 2 ,5z ,且x , y , z 都是正数,则2x , 3y , 5z 从小到大依次为 X函数f(x)在(1,设1a>1 时 a X1 a X2,a 2 0<a<1 时 a X1 a X2, a 2f X 1 f X 2 0为增函数(2)由题意,当x,2 , f x4,且 f 24 0种重要的思想方法,特别在综合题目中,尤为重bb a 1,则log b - , lo g b a , log a b 从小到大依次为 ______________ a 则 f (x 1)f (X 2) a 51 X i x i 2 1a X2 a 51 X 2 x-i 2 1 x-i3(X 1 X 2X 2)X 1 0, X 2x 2 2 x 2 1x 2 2 x 2 1 0 ,Xa 51 X 2a X23(X 1 X 2) (X 1 1)(X 2 1)' 1 x-i x 2,且 a 1 , • a x a X2 , • a 51 a X2 0,• f (X 1) f (X 2)0,即 f (X 1) f (X 2), •函数f (x)在( 1,)上为增函数;(2)假设X 0是方程f(x)0的负数根, 且 X 01,则 a x °X 2 0,X 0 1即 a x 02x 。
3(X 0 1) 3 1 ,①X 0 1X 0X 0 1当1 X 0 0时, 0 X 01 1 , •-3-3 ,•31 2 ,而由a 1知a X0;(人 1)(X 2 1)1XX 0•••①式不成当X 01时, X 0 1 30,• “X 。
10 ,• 3 X 0 111,而 a X0 0 ,•①式不成立.综上所述,方程 f(x)0没有负数根.3.已知函数 f (x) log a (a x 1) ( a 0 且 a 1). (《咼考A 计划》考点15,例4)求证:(1)函数 f (x)的图象在y 轴的一侧;(2)函数f(x)图象上任意两点连线的斜率都大于 0 •证明:(1)由 a x 1 0 得:a x 1 ,•••当a 1时,x 0,即函数f(x)的定义域为(0,),此时函数f (x)的图象在y 轴的右 侧; 当0 a 1时,x 0,即函数f(x)的定义域为(,0),此时函数f(x)的图象在y 轴 的左侧. •函数f(x)的图象在y 轴的一侧;(2)设 A(X 1,yJ 、B(X 2,y 2)是函数 a 1•函数f (x)图象上任意两点连线的斜率都大于0 .四、小结:1、指数函数y=a x 与对数函数y=log a x (a>0 , a 工1)互为反函数,从概念、图象、性质去理 解它们的区别和联系2、比较两个幕值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相 同,可以利用指数函数的底数与图象关系(对数式比较大小同理)3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题, 讨论复合函数的单调性是解决问题的重要途径。
五、作业:则直线 AB 的斜率ky 1 y 2 y 1 y 2log a (a x1) log a (aX 1 X 2当a1时, 由(1) 知0 X 1X 2 , • 1a X1 a X2,• 0a Xa X1 1• 0 a X2 -1,「1-y 1y 20,又 x 1X 2 0 , • k 0 ;当0a 1 时,由( 1 )知 X 1 X 2 0 ,• •• a X1 a^1, • a 51a X111,• y 1 y 2 0, 又 X 1 X 2 0 ,• k 0.X 2X 2X 2f (x)图象上任意两点,且为X 2。