Aspen模拟
- 格式:ppt
- 大小:5.79 MB
- 文档页数:93
用Aspen 模拟塔单元操作分为操作模拟和设计计算。
两种模拟计算方法有所不同。
1 填料塔操作模拟模拟已知的填料操作可以用radFrace和rateFrace模块。
模拟操作是对已有的塔进行操作模拟,塔的结构参数是已知的,通过调节某些参数来与实际生产情况吻合。
填料塔操作模拟要有两个难点问题:一是平衡级数的选择,二是调节那些参数选择。
1.1 平衡级数rateFrace和radFrace模块要求输入板数,和板式塔模拟操作一样,操作模拟数据应该是实际塔的参数,这里要输入实际塔的板数。
对于板式塔没有问题,但对于填料塔的实际板数如何取?作操作模拟时,和rateFrace和radFrace模块板数(平衡级数)可以任意取,只是计算精度的问题。
然后,设置填料核算(Pack Rating)中的每段填料高度(Section pack height)与之对应。
如:某填料塔实际填料高度15m,进行操作模拟时,塔板数(Number of stages)输入为5,则在下面的Pack Rating 页的Packed height 栏选择Section packed height 并填入3。
这里的实际级数最好不要小于理论级数,在不确定理论级数时应尽量多取。
1.2 调节参数进行塔操作模拟时,通过调节塔板效率来与实际相吻合。
和板式塔一样,如果不输入塔板效率则系统按选择的计算方法计算塔板效率(这个效率计算方法有两种:Vaporization efficiencies和Murphree efficiencies)。
作操作模拟时按计算效率得到的结果和实际值会不一致,这时通过调节塔板效率来与实际相吻合。
2 填料塔设计填料精馏塔与填料吸收塔的设计计算有所区别,对于单进料的精馏塔,与板式塔设计计算一样,首先用简捷模块计算理论板数,然后radFrace或rateFrace模块进行详细计算。
无论用那种模块,设计计算都要用到设计规定,通过调整填料高度来满足设计要求。
Aspen Plus精馏塔设计算例一、工艺条件及要求甲醇-水精馏塔的工艺流程如图1所示图1 甲醇-水精馏塔工艺流程进料温度65℃,压力110 kPa,进料流率为甲醇45 kmol/h,水90 kmol/h,塔顶为全凝器,塔釜釜式再沸器,实际回流比为最小回流比的1.3倍,塔的操作压力为100 kPa,要求塔顶甲醇的回收率为98.38%,塔顶水的回收率为5.16%。
二、模拟运算过程简介及相关计算数据1.选择物性方法待模拟的体系为甲醇-水体系,都是极性化合物,并且为非理想体系,因此可以采用适合非理想体系的NRTL-RK方程进行模拟计算。
2.简捷计算利用DSTWU模块对精馏塔进行简捷设计,得到理论板数、实际板数、最小回流比以、实际回流比、进料板等参数,列部分参数于下表1中:表1 简捷计算重要参数3.严格计算选用RadFrac模块(图2),利用简捷计算得到的数据,进行严格计算,得到物流数据表(表2),气液相负荷(图3)、塔分离因子曲线(以水为基准、图4)。
图2 甲醇-水RadFrac模块严格计算流程图图3 塔内气液相负荷表2 物流数据表ratingStream ID BOTTOMS FEED OVERHEAD From RADFRAC RADFRAC To RADFRACPhase LIQUID LIQUID LIQUID Substream: MIXEDMole Flow kmol/hrCH4O .7405939 45.00000 44.25941 H2O 85.38941 90.00000 4.610594 Mole FracCH4O8.59856E-3 .3333333 .9056559 H2O .9914014 .6666667 .0943440 Mass Flow kg/hrCH4O 23.73023 1441.897 1418.167 H2O 1538.314 1621.375 83.06114 Mass FracCH4O .0151917 .4707049 .9446712 H2O .9848082 .5292951 .0553287 Total Flow kmol/hr 86.13000 135.0000 48.87000 Total Flow kg/hr 1562.044 3063.272 1501.228 Total Flow kcum/hr 1.70557E-3 3.65755E-3 1.91910E-3 Temperature C 98.14100 65.00000 40.00000 Pressure kPa 100.0000 110.0000 100.0000 Vapor Frac 0.0 0.0 0.0 Liquid Frac 1.000000 1.000000 1.000000 Solid Frac 0.0 0.0 0.0 Enthalpy J/kmol-2.7989E+8-2.6702E+8-2.4163E+8 Enthalpy J/kg-1.5433E+7-1.1768E+7-7.8658E+6 Enthalpy Watt-6.6964E+6-1.0013E+7-3.2801E+6 Entropy J/kmol-K-1.4694E+5-1.7541E+5-2.2681E+5 Entropy J/kg-K -8102.260 -7730.369 -7383.387 Density kmol/cum 50.49917 36.91001 25.46506 Density kg/cum 915.8475 837.5215 782.2562 Average MW 18.13589 22.69091 30.71881 Liq V ol 60F kcum/hr 1.57115E-3 3.43956E-3 1.86841E-3图4 塔分离因子曲线4.浮阀塔板水力学校核水力学校核分两步进行:(1)用Tray Sizing命令计算塔径塔板间距取600 mm,塔板形式为浮阀塔(Nutter Float Valve),计算结果如图5所示,得知塔径为0.64 m图5 塔板尺寸计算结果(2)用Tray Rating命令校核塔板水力学将塔径圆整至700 mm进行计算,溢流堰高度取50 mm,甲醇-水属于不易发泡物系,发泡因子取0.95 ,运行结果如图6-7所示,三个重要的水力学参数在表3中列出。
aspen流程模拟一般步骤下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!Aspen流程模拟的一般步骤详解Aspen是一款广泛应用于化工、石油、能源等行业的流程模拟软件,它能够帮助工程师们在设计和优化复杂的过程系统时,进行精确的热力学和流动计算。
ASPENPLUS介绍及模拟实例ASPENPLUS具有广泛的应用领域,包括石化、炼油、化肥、热力、制药、生化工程等。
它可以用于模拟各种化工过程,例如分离、混合、反应、蒸馏、液-液/气-液萃取、吸收、脱吸附、干燥等。
ASPENPLUS使用了一套成熟的计算方法和数学模型,可以准确地预测化工过程的性能指标,为工程师提供决策支持。
ASPENPLUS的建模过程包括定义组分、定义装置流程、定义物理特性、定义热力学模型、定义操作条件、定义单元操作、定义修正参数等。
用户可以根据具体的工艺流程需求,选择不同的模拟单元进行组合,以实现整个过程的模拟。
在模拟过程中,用户可以通过调整操作条件和设备参数,进行优化设计,以实现最佳的性能。
下面以丙烯酸酯生产过程为例,介绍ASPENPLUS的模拟实例。
丙烯酸酯是一种重要的化工原料,广泛应用于合成高分子材料、油墨、粘合剂等。
其主要生产过程是通过异丁烯与甲基丙烯酸酯在催化剂存在下进行反应生成。
为了实现丙烯酸酯的高选择性产率,需要优化反应过程的操作条件和装置结构。
首先,在ASPENPLUS中定义组分,包括异丁烯、甲基丙烯酸酯、丙烯酸酯和副产物。
然后,定义装置流程,包括进料反应器、分离塔和产品收集器。
接下来,定义物理特性,如温度、压力、流量等。
充分考虑物料的热力学性质,确保模拟过程的准确性。
在物理特性定义完成后,需要定义热力学模型。
根据反应过程的实际情况,选择适当的热力学模型,并确定模型参数。
在反应过程中,可以设置反应器的温度、压力和催化剂的用量,以及反应物的摩尔比例。
定义好热力学模型后,需要定义操作条件。
根据实际工艺需求,设置反应器的温度和压力,以及进料和产物的流量。
可以使用ASPENPLUS提供的优化算法,通过调整操作条件,实现产物选择性的优化。
最后,定义单元操作,包括进料反应器、分离塔和产品收集器的模型和参数。
分离塔的模型可以选择蒸馏、吸收或萃取等。
通过定义修正参数,可以对模拟过程进行细致的调整和修改,以实现更准确的模拟结果。