SAS过程步
- 格式:docx
- 大小:21.17 KB
- 文档页数:8
第4章SAS过程步与过程步语句摘要:本章讲授过程步一般形式,SAS过程步的常用语句,程序设计中通用的SAS语句,学习过程步常用有关语句功能及其用法。
为后面统计分析过程的调用作好准备。
SAS过程步用来调用系统提供的标准常用过程或统计分析过程,对指定的SAS 数据集进行处理,并将分析结果显示输出到OUTPUT窗口。
一个过程步是一个功能程序模块,调用不同的过程可实现用不同方法对数据进行分析。
§4.1 SAS过程步的一般形式通常,SAS过程步的一般形式为:PROC 过程名选择项;[其他相关过程步语句;]RUN;说明:1.PROC表示一个过程的开始;“过程名”可以是后面各章节将要介绍的常用过程名或统计过程名。
不同的过程有不同的专用SAS名,而且各有一些可供选择的选择项(参数),对于同一过程,给定不同的参数,输出不同的计算结果和不同表格形式。
2.选项:选择项一般以关键字为核心构成,常用下面三种形式:①关键字在过程中,一个关键字代表该过程的某一特性,若关键字作为选项出现,则过程处理数据或输出结果时,这一特性予以考虑。
否则,忽略这一特性。
②关键字=值过程的某一特性可取不同的值,则指定该特性的书写格式为:特性关键字=特性值(数字或字符串)。
③关键字=SAS数据集有些过程需要特定的输入数据集,有些过程可以建立一些特殊的数据集。
过程指定特别输入输出数据集的选项书写格式为:关键字=数据集名该形式规定输入或输出的数据集,最常用的是DATA=数据集,指出本过程要处理的数据集名称,若缺省,则使用最新建立的数据集。
如“PROC PRINT DATA=new;”。
3.其他相关过程步语句:有VAR、ID、BY、CLASS、WEIGHT等过程步语句,将在下一节中讲述。
4.RUN的作用是通知系统开始执行本过程程序段,当一个程序文件中有几个过程时,它们可共用一个RUN语句。
5.常用的过程步名称及功能:SAS程序中涉及的过程多达数百种,实现统计功能时常用的过程也有数十种之多,现将最为常用的过程名称及其所能实现的功能列入下表(表4.1),以便各位提前热热身。
20个SAS过程步
1、PROC
MEANS--数据描述:计算均数、标准差、最大值、最小值、变量有效数据个数、变量缺失个数
2、PROC UNIV ARIATE--正态性检验
3、PROC TTEST--两独立样本检验
4、PROC NPAR1WAR--秩和检验
5、PROC ANOV A--方差分析
6、PROC CORR--相关性分析
7、PROC REG--回归分析
8、PROC FREQ--计数资料描述;卡方检验;诊断试验
9、PROC LOGISTIC--结局是二分类的Logisitc回归分析
10、PROC PHREG--生存分析
11、PROC POWER--样本量及把握度计算
12、PROC PRINT--显示数据集
13、PROC GLM--回归分析或协方差分析
14、PROC RANK--给某变量排次或按序分组
15、PROC SORT--按某变量排序
16、PROC SURVEYSELECT--概率抽样
17、PORC IMPORT--导入数据集
18、PROC EXPORT--导出数据集
19、PROC CONTENTS--产生一个数据集的头文件,包含了多种该数据集的信息
20、PROC TABULATE--输出报表。
SAS分析常用的过程过程步大全为区分过程名称的拼写,故意部分小写,以便识别和记忆。
基本SAS程序代码结构:---------PROC MODE data=Arndata.moddat; /* 命令的解释*/var y x1-x6; /* 命令的解释 */model y = x1-x6;run;------------------------------------------正态性检验PROC UNIvariate---------PROCUNIvariate data=Arndata.unidat;var x1;run;------------------------------------------相关分析和回归分析PROC REG 回归---------PROC REG data=Arndata.regdat;var y x1-x6;model y = x1-x6 / selection=stepwise;/* 加入逐步回归选项 */print cli; /* 加入输出预测结果部分,还可以输出acov,all,cli,clm,collin,collinoint,cookd,corrb,covb,dw(时序检验统计量),i,influence,p,partial,pcorr1,pcorr2,r,scorr1,scorr2,seqb,spec,ss1,ss2,stb,tol, vif(异方差检验统计量),xpx*/plot y*x2 / conf95; /* 做散点图 */run;---------------------------------------------------DATA Arndata.regdat;x2x2 = x2*x2;x1x2 = x1*x2;PROC REG data=Arndata.regdat;var y x1 x2 x2x2 x1x2 ; /* 多项式回归,非线性回归 */model y = x1 x2 x2x2 x1x2 / selection=stepwise; /* 加入逐步回归选项*/print cli;plot y*x2 / conf95; /* 做散点图 */run;------------------------------------------PROC RSreg 二次响应面回归PROC ORTHOreg 病态数据回归PROC NLIN 非线性回归PROC TRANSreg 变换回归PROC CALIS 线性结构方程和路径分析PROC GLM 一般线性模型PROC GENmod 广义线性模型方差分析PROC ANOVA 单因素均衡数据和非均衡数据---------PROC ANOVA data=Arndata.anovadat; /* 命令的解释 */class typ; /* 命令的解释 */model y = typ; /* 可以看出此处是单因素方差分析(分类型自变量对数值型自变量的影响) */run;------------------------------------------PROC GLM 多因素非均衡数据:---------PROC GLM data=Arndata.glmdat; /* 命令的解释*/class typea typeb; /* 命令的解释 */model y = typea typeb; /* 可以看出此处是不考虑交互作用的多因素方差分析(分类型自变量对数值型自变量的影响) */run;---------------------------------------------------PROC GLM data=Arndata.glmdat; /* 命令的解释*/class typea typeb; /* 命令的解释 */model y = typea typeb typea*typeb; /* 可以看出此处是考虑交互作用的多因素方差分析(分类型自变量对数值型自变量的影响) */run;------------------------------------------主成分分析PROC PRINcomp---------PROCPRINcomp data=Arndata.pmdat n=4 out=w1 outstat=w2 ;var x1-x6;PROC print data=w1;PROC plot data=w1 vpct=80; /* 一句话,其实print就是plot输出图形的文字形式而已 */plot prin1*prin2 $ districts='*'/haxis=-3.5 to 3 by 0.5 HREF=-2,0,2vaxis=-3 to 4.5 by 1.5 HREF=-2,0,2; /* 主成分的散点图,也就是载荷图 */run;------------------------------------------因子分析PROC FACTOR---------PROC FACTOR data=Arndata.factordat simple corr ;var y x1-x6;title'18个财务指标的分析';title2'主成分解';run;PROC FACTOR data=Arndata.factordatn=4 ; /* 选择4个公共因子 */ var y x1-x6;run;PROC FACTOR data=Arndata.factordat n=4rotate=VARImaxREorder; /* 因子旋转:方差最大因子法 */var y x1-x6;run;------------------------------------------PROC SCORE---------PROC FACTOR data=Arndata.factordat n=4rotate=VARImax REorder score out=score_Out; /* 输出因子得分矩阵 */run;PROC print data=score_Out;var districts factor1 factor2 factor3 factor4;run;PROC plot data=score_Out;plot factor1*factor2 $ districts='*' / href=0 Vref=0; /* 因子的散点图,也就是载荷图 */run;------------------------------------------典型相关分析PROC CANcorr基本SAS程序代码结构:---------DATAjt(TYPE=CORR); /*TYPE=CORR 表明数据类型为相关矩阵,而不是原始数据, type还可以是cov,ucov,factor,sscp,ucorr等*/input names$ 1-2(x1 x2 y1-y3)(6.); /* name $ 表示读取左侧的变量名,1-2表示变量名的字符落在第1,2列上 */cards;x1 1 0.8 ……x2 ……y1 ……y2 ……y3 ……;PROC CANcorrdata=Arndata.cancorrdatedf=70 redundancy; /* 误差自由度的参考值,默认值是n=1000;redundancy表示输出冗余度分析的结果 */var x1 x2;with y1 y2 y3;run;------------------------------------------对应分析 /* 交叉表分析的拓展,寻找行和列的关系,一般行指代各种cases,而列代表各种visions */PROC CORResp---------PROC CORRespdata=Arndata.correspdat out=result;var x1-x6;id Type;run;options ps=40;proc plot data=result;plot dim2*dim1="*" $ Type / boxhaxis=-0.2 to 0.3 by 0.1Vaxis=-0.1 to 0.3 by 0.1Href=0 Vref=0;run;------------------------------------------聚类分析PROC CLUSTER---------PROC CLUSTER data=Arndata.clusdatmethod=ave outtree=clusdat_Out;var x1-x6;id datid;run;proc tree horizontal; /* 做聚类树 */run;------------------------------------------PROC FASTclus---------PROC FASTclus data=Arndata.clusdatmaxclusters=3 list out=clusdat_Out;var x1-x6;id datid;run;------------------------------------------PROC ACEclusPROC VARCLUS---------PROC VARclus data=Arndata.clusdat;/* 系统默认使用主成分法聚类 */var x1-x6;run;---------PROC VARclus hierarchy data=Arndata.clusdat; /* 保证分析过程中不同水平的谱系结构 */var x1-x6;run;---------PROC VARclus centroid data=Arndata.clusdatouttree=clusdat_out; /* 使用重心法聚类 */ var x1-x6;run;------------------------------------------PROC TREE---------PROC TREE data=Arndata.clusdat horizontal; /* 使用TREE过程绘制聚类谱系图*/var x1-x6;run;------------------------------------------判别分析PROC DISCRIM---------PROC DISCRIM data=Arndata.discrimdatlist out=discrimdat_Out distance pool=yes;class Typ; /* 指定分类变量 */var x1-x6; /* 用于建立判别识别函数的变量 */id iddiscrim; /* 标注样本的变量 */run;---------第二种方法,将需要判别的新样本放在testdata里:---------PROC DISCRIM data=Arndata.discrimdat1testdata=Arndata.discrimdat2testlist testout=discrimdat_Out; /* 将原来的几个选项加注test标示 */class Typ; /* 指定分类变量 */var x1-x6; /* 用于建立判别识别函数的变量 */id iddiscrim; /* 标注样本的变量 */run;------------------------------------------PROC STEPdisc:逐步判别分析过程---------PROC STEPdisc method=stepwise data=Arndata.discrimdatSLentry=0.10 SLstay=0.10; /* 设定引入和剔除的显著性水平 */class Typ; /* 指定分类变量 */var x1-x6; /* 用于建立判别识别函数的变量 */run;------------------------------------------PROC CANdisc: Fisher判别分析过程---------PROC CANdiscdata=Arndata.discrimdatout=discrimdat_Outdistance simple;class Typ; /* 指定分类变量 */var x1-x6; /* 用于建立判别识别函数的变量 */run;proc print data=discrimdat_Out;run;-----------------------------------------------------------------------------------------------------------------------------------------------------------友情协助:特征库豆瓣统计学小组 /group/stats。
sas有两种语句:数据步和过程步。
在sas中,通过数据步和过程步来使用sas 语言的元素。
数据步:是一组语句组合:从外部文件中读取数据;将数据写入到外部文件中;读取sas数据文件和视图;创建sas数据文件和视图。
过程步:对sas数据集进行分析和产生报表。
例如:对数据集进行分析、画图、查询和打印等操作。
逻辑库:由一组sas文件组成。
sas软件系统的信息组织有两层,第一层是sas逻辑库,第二层是sas文件。
sas逻辑库是一个逻辑概念,本事并不是物理实体,它对应的实体是操作系统下一个文件夹或几个文件夹中的一组sas文件。
sas逻辑库是一组存储在同一目录下被同一引擎访问的文件,其他文件也可以存放在该目录下,但是只有能被sas识别的文件才能显示在逻辑库中。
建立sas逻辑库:用libname语句libname libref <engine>'sas-data-library'其中libref是逻辑库名,sas-data-library是逻辑库对应的物理地址,engine:引擎名称。
libname resdat 'D:\resdat';--创建逻辑库resdat,对应的物理文件夹为D:\resdatlibname a ('d:\resbd\','d:\resfin\');--多个文件夹创建一个sas逻辑库临时逻辑库;指它的内容只在启动sas时存在,退出sas时内容完全被删除。
系统默认的临时逻辑库为work,引用临时库中的文件时,可以不加库名work。
永久逻辑库:它的内容在sas关闭对话之后仍旧保留,直到再次修改或删除。
sas除了work 以外的逻辑库都是永久库。
引用永久逻辑库的文件时必须加上永久逻辑库名。
例如:sashelp.Abmfolder库引擎:是一组规定格式想逻辑库读写文件的内部命令。
每个sas逻辑库都对应一个库引擎。
sas逻辑库引擎是软件的一个元件用来组建sas与sas逻辑库之间的接口。
SAS过程步简介SAS过程步的一般形式为:PROC 过程名 [ DATA=输入数据集] [选项];过程语句1 [/ 选项 ];过程语句2 [/ 选项];……RUN;1.VAR语句VAR语句在过程步中用于指定分析变量。
VAR语句的语法格式为:VAR 变量名1 变量名2 … 变量名n;变量名列表可以使用省略的形式,如x1-x3 等。
应用实例:var math chinese;2.MODEL语句MODEL语句在统计建模过程中用来指定模型的形式。
语法格式为:MODEL 因变量 = 自变量列表 / 选项; 应用实例:model y=x1 x2 x3 ;3.BY语句BY语句在过程步中用来指定一个或几个分组变量,根据这些分组变量值可以把观测记录分组,然后对每一组观测分别进行指定的分析。
在使用带有BY语句的过程步之前,应先用SORT过程按BY语句指定的变量对数据集排序。
例如,假设我们已经把class1数据集按性别排序,则下面PRINT 过程可以把男、女生分别列出:proc print data=class1 ; by sex;run;4.OUTPUT语句过程步中经常用OUTPUT语句指定输出结果存放的数据集。
不同过程中把输出结果存入数据集的方法各有不同,OUTPUT语句是使用频繁的语句之一。
其语法格式为:OUTPUT OUT=输出数据集名关键字=变量名关键字=变量名…;其中用OUT=给出了存放结果数据集的名字,关键字用于定义输出变量名,用“关键字=变量名”的方式指定了系统自动输出变量与存储变量之间的对应关系。
等号后面的变量名指定了输出数据集中的存储变量名称。
例如:proc means data=data_prg.class1; var math; output out=result02 n=n mean=meanmath var=varmath;run;proc print data=result02; run;在DATA步中也可以用FORMAT语句规定变量的输出格式,用LABEL 语句规定变量的标签,用LENGTH语句规定变量的存储长度,用ATTRIB语句同时规定变量的各属性。
sas处理流程SAS处理流程SAS是一种常用于数据分析和统计建模的软件,其处理流程主要分为数据准备、数据清洗、数据分析和模型建立四个步骤。
以下将详细介绍每个步骤的具体流程。
1. 数据准备数据准备是SAS处理流程的第一步,其目的是将原始数据转化为可进行后续处理的数据格式。
具体而言,数据准备包括数据导入、数据格式转换、数据合并和数据拆分等操作。
其中,数据导入是将原始数据从外部文件中导入到SAS中,常见的数据格式包括Excel、CSV、XML等。
数据格式转换是将数据转化为SAS可以识别的格式,如将日期格式转换为SAS日期格式、将字符型变量转换为数值型变量等。
数据合并是将两个或多个数据集合并成一个数据集,常见的合并方式有追加、合并和交叉等。
数据拆分是将一个数据集拆分为多个数据集,常见的拆分方式有随机抽样、分层抽样和分组抽样等。
2. 数据清洗数据清洗是SAS处理流程的第二步,其目的是检查和修复数据中的错误和异常值,以确保数据的质量和准确性。
数据清洗包括缺失值处理、异常值处理、重复值处理和数据类型检查等操作。
其中,缺失值处理是检查和处理数据中的缺失值,常见的处理方法有删除、替换和插值等。
异常值处理是检查和处理数据中的异常值,常见的处理方法有删除、替换和离群点检测等。
重复值处理是检查和处理数据中的重复值,常见的处理方法有删除和合并等。
数据类型检查是检查数据的类型是否正确,如数值型变量是否为数值型、字符型变量是否为字符型等。
3. 数据分析数据分析是SAS处理流程的第三步,其目的是对数据进行各种分析和统计建模,以发现数据中的规律和趋势。
数据分析包括统计分析、数据可视化和机器学习等操作。
其中,统计分析是使用各种统计方法对数据进行分析,如描述性统计、假设检验和回归分析等。
数据可视化是将数据转化为可视化图形,以便更直观地了解数据的分布和趋势,常见的可视化图形有散点图、直方图和饼图等。
机器学习是使用机器学习算法对数据进行建模和预测,常见的算法有决策树、支持向量机和神经网络等。
20个SAS过程步
1、PROC MEANS--数据描述:计算均数、标准差、最大值、最小值、变量有效数据个数、变量缺失个数
2、PROC UNIVARIATE--正态性检验
3、PROC TTEST--两独立样本检验
4、PROC NPAR1WAR--秩和检验
5、PROC ANOVA--方差分析
6、PROC CORR--相关性分析
7、PROC REG--回归分析
8、PROC FREQ--计数资料描述;卡方检验;诊断试验
9、PROC LOGISTIC--结局是二分类的Logisitc回归分析
10、PROC PHREG--生存分析
11、PROC POWER--样本量及把握度计算
12、PROC PRINT--显示数据集
13、PROC GLM--回归分析或协方差分析
14、PROC RANK--给某变量排次或按序分组
15、PROC SORT--按某变量排序
16、PROC SURVEYSELECT--概率抽样
17、PORC IMPORT--导入数据集
18、PROC EXPORT--导出数据集
19、PROC CONTENTS--产生一个数据集的头文件,包含了多种该数据集的信息
20、PROC TABULATE--输出报表。