当前位置:文档之家› 传热学第七章答案..汇编

传热学第七章答案..汇编

传热学第七章答案..汇编
传热学第七章答案..汇编

第七章

思考题

1.什么叫膜状凝结,什么叫珠状凝结 ?膜状凝结时热量传递过程的主要阻力在什么地方? 答:凝结

液体在壁面上铺展成膜的凝结叫膜状凝结, 膜状凝结的主要热阻在液膜层,

凝结液

体在壁面上形成液珠的凝结叫珠状凝结。

2 ?在努塞尔关于膜状凝结理论分析的

8条假定中,最主要的简化假定是哪两条

答:第3条,忽略液膜惯性力,使动量方程得以简化;第 5条,膜内温度是线性的,即

膜内只有导热而无对流,简化了能量方程。

3 ?有人说,在其他条件相同的情况下?水平管外的凝结换热一定比竖直管强烈,这一说法 一定成

立?

答;这一说法不一定成立,要看管的长径比。

4 ?为什么水平管外凝结换热只介绍层流的准则式?常压下的水蒸气在 厶t = ts - h =

10

c

的水平管外凝结,如果要使液膜中出现湍流,试近似地估计一下水平管的直径要多大 ?

答:因为换热管径通常较小,水平管外凝结换热一般在层流范围。

4二dh t s - t w

对于水平横圆管:

9.161d '4

(t s —tw $4

(g P 2

k 3

P 5

3

4

r

4

由 t s "00 c ,查表:

r

=

2257 kJ / kg

由 t p =95 c ,查表:p =961.85kg /m 3

扎=0.6815W/(m ? K )

= 298.7 10$kg/m*s n^3r

d =976.3 ------------- 1 = 2.07m

(ts -tw l g P 2"

即水平管管径达到 2.07m 时,流动状态才过渡到湍流。

5 ?试说明大容器沸腾的 q

~氏曲线中各部分的换热机理。

6 ?对于热流密度可控及壁面温度可控的两种换热情形,分别说明控制热流密度小于临界热 流密度及温差小于临界温差的意义,并针对上述两种情形分别举出一个工程应用实例。

答:对于热流密度可控的设备, 如电加热器,控制热流密度小于临界热流密度,是为了防止 设备被烧毁,对于壁温可控的设备, 如冷凝蒸发器,控制温差小于临界温差,是为了防止设 备换热量下降。

7 ?试对比水平管外膜状凝结及水平管外膜态沸腾换热过程的异同。

答:稳定膜态沸腾与膜状凝结在物理上同属相变换热,前者热量必须穿过热阻较大的汽 膜,后者热量必须穿过热阻较大的液膜,前者热量由里向外,后者热量由外向里。 8 ?从换热表面的结构而言,强化凝结换热的基本思想是什么 ?强化沸腾换热的基本思想是 什么?

答:从换热表面的结构而言,强化凝结换热的基本思想是尽量减薄粘滞在换热表面上液膜的 厚度,强化沸腾换热的基本思想是尽量增加换热表面的汽化核心数。

9 ?在你学习过的对流换热中?表面传热系数计算式中显含换热温差的有哪几种换热方式? 其他换热方式中不显含温差是否意味着与温差没有任何关系 ?

h =0.729

临界雷诺数

gr

「?d (t s -tw )丿

Re c

= 1600

答:表面传热系数计算式中显含换热温差的有凝结换热和沸腾换热。不显含温差并不意味着与温差无关,温差的影响隐含在公式适用范围和物件计算中。

10 ?在图7-14所示的沸腾曲线中,为什么稳定膜态沸腾部分的曲线会随△ t 的增加而迅速

上升?

答:因为随着壁面过热度的增加,辐射换热的作用越加明显。 习题

基本概念与分析

7-1、试将努塞尔于蒸气在竖壁上作层流膜状凝结的理论解式

Gu = —

Ja =

形式,引入伽里略数

一 2

及雅各布数

C

P t

s — tw o

-gr P ;?j T 4

N u =0.725 -gl r .

r

v C p (t s -t w )

7-2、对于压力为0.1013MPa 的水蒸气,试估算在

= t

w

_t

^ 10

C 的情况下雅各布数之

值,并说明此特征数的意义以及可能要用到这一特征数的那些热传递现象。

r

c

p't ,代表了相变潜热与相应的显热之比,在相变换热(凝 结、沸腾、熔化、凝固等都可以用得上)。 7-3、 t s =40 C 的水蒸气及t s =40

C 的R134a 蒸气.在等温竖壁上膜状凝结,试计算离

开x = 0处为0.1m 、0.5m 处液膜厚度。设'一t = t w -t s=

5

c 。

「 、

#5 入 Atx

(X)=亦

解:

」SI 一 ,近视地用ts 计算物性,则:

对水:人=0.635 , 5= 653.3 "0》,耳=992.2 ,

r =2407

°0

'%g ;

对 R134a :対=0.0750 , 4 =4.286"0上"146.2 =4912.6"0」,1146.2

=(3.573 10‘6)%14 =1.375 10々4

,

(6 — 3)表示成特征数间的函数

h =0.725

解:

3d(t s -t w )

=0.725 Ga.JaR I"

o

解:

J a

r

C p

(t

s

-

103 J

Kg

C

P

= 4220

3

2257.1 10 4220 10

= 53.5 J a r

C p (t s -t w )代表了

汽化潜热与液瞙显热降之比 ;进

,步一般化可写为

3

= 163.23 103

对水:

■' (x)= 4U | 人 Atx

4

.g 邮r

4 653.3 10 0.635

IL 9.8 992.22 2407 103

1

4

X =0

.1、抵(x) =1.357 汉10* 汉0.562 =7.728"0°m =7.728汉10Jmm .

X=0.5、右(x) =1.357 "0,汉 0.5'4

=1.375 ^10° 汉 0.841m = 1.156 "0*mm

=(3.506 10

J6f 4x 14

=2.433 10虫x'4 ,

X

=0-1、右(x) =2.433x10* ><0.1

14

=1.368x10*m =1.368x10-*mm ;

_4

_4

_j

X=0.5、右(x) =2.433x10 x 0.5 4

= 2.433 x 10 x 0.841m = 2.046 x 10 mm 。

7-4、当把一杯水倒在一块赤热的铁板上时?板面立即会产生许多跳动着的小水滴,而且可

以维持相当一段时间而不被汽化掉。试从传热学的观点来解释这一现象 [常称为莱登佛罗斯

特(Leidenfrost)现象],并从沸腾换热曲线上找出开始形成这一状态的点。 解:此时在炽热的表面上形成了稳定的膜态沸腾, 小水滴在气膜上蒸发,被上升的蒸汽带动,

形成跳动,在沸腾曲线上相应于 q min (见图6-11)的点即为开始形成现象的点。

凝结换热

7-5、 饱和水蒸气在高度 1= 1.5m 的竖管外表面上作层流膜状凝结。水蒸气压力为

5

P =2.5 10 Pa ,管子表面温度为

123 C 。试利用努塞尔分析解计算离开管顶为 0.1m 、

0.2m 、0.4m 、0.6m 及1.0 m 处的液膜厚度和局部表面传热系数。

解:水蒸气 p=

2.5 105 Pa

对应的饱和参数:t s

=

12

7.2 c

r

=

2181.8kJ/k

g

定性温度:t m 二 t s t w /2 二 127.2 123 /2 =125 c 查表得,=68.6 10‘W/mK i ; 「=227.6

10 ^kg /(ms)

匸=939kg/m

3

4 ■ t s -t w x "4

4 227.6 10》68.6 10’ 127.2 -123 x 4

9.8T392 汇2181.8"05

=(1.391^10

4B

x f =(0.00013913x )^10^m

h x

9.8 2181.8 103 9392 68.63 10“

4 227.6 10

127.2 -123 x

;1.5917 汇 1015 T 4

x

x 0.1 0.2 0.4 0.6 1.0 3 (伽) 0.061 0.073 0.086 0.096 0.109 h x

11232

9445

7942

7177

6316

7-650C 25.4mm 对 R134a : (x )处

1

tX

g-'r

4 4912.6 10- 0.0750

5 '

」9.8X1146.22 x163.23x103

传热学试卷(1)答案

2007传热学试卷(1)标准答案 一.填空题:(共20分)[评分标准:每个空格1分] 1.表征材料导热能力的物理量是____导热系数_____。 2.努谢尔特准则的表达式是___hL/λ___。式中各符号的意义是 _λ为导热系数_、__L 特征尺寸__、__h 为对流换热系数__。 3.凝结换热有__膜状凝结__和__珠状凝结__两种换热方式,其中_珠状凝结_的换热效果好。 4.饱和沸腾曲线有四个换热规律不同的区域,分别指_自然对流__、核态沸腾__、__过渡沸腾__、__稳定膜态沸腾_。 5.管外凝结换热,长管竖放比横放的换热系数要____小__。是因为 ___膜层较厚___的影响。 6.决定物体导热不稳定状况下的反应速率的物理量是_导温系数_。 7.定向辐射强度与方向无关的规律,称___兰贝特定律___。 8.换热器热计算的两种基本方法是__平均温压法__和__传热单元数法__。 汽化核心数受_壁面材料_和__表面状况、压力、物性__的支配。 二.问答及推倒题:(共50分) 1.名词解释(10分)[评分标准:每小题2分] ①角系数:把表面1发出的辐射能落到表面2上的百分数,称为表面1对表面2的角系数。 ②肋效率:基温度下的理想散热量 假设整个肋表面处于肋肋壁的实际散热量 =f η ③灰体:物体的单色吸收率与投入辐射的波长无关的物体。 ④Bi 准则:Bi=hL/λ=固体内部的导热热阻与外部的对流换热热阻之比。 ⑤定性温度:在准则方程式中用于确定物性参数的温度。 2.设一平板厚为δ,其两侧表面分别维持在温度t 1及t 2,在此温度范围内平板的局部导热系数可以用直线关系式λ=λ0(1+bt )来表示,试导出计算平板中某处当地热流密度的表达式,并对b >0、b =0及b <0的三种情况画出平板中温度分布的示意曲线。(10分) 解:应用傅里叶定律:dx dt bt dx dt q )1(0+-=-=λλ ——————2分 分离变量:dt bt qdx )1(0+-=λ

传热学第四版课后题答案第七章.

第七章 思考题 1.什么叫膜状凝结,什么叫珠状凝结?膜状凝结时热量传递过程的主要阻力在什么地方? 答:凝结液体在壁面上铺展成膜的凝结叫膜状凝结,膜状凝结的主要热阻在液膜层,凝结液体在壁面上形成液珠的凝结叫珠状凝结。 2.在努塞尔关于膜状凝结理论分析的8条假定中,最主要的简化假定是哪两条? 答:第3条,忽略液膜惯性力,使动量方程得以简化;第5条,膜内温度是线性的,即 膜内只有导热而无对流,简化了能量方程。 3.有人说,在其他条件相同的情况下.水平管外的凝结换热一定比竖直管强烈,这一说法一定成立? 答;这一说法不一定成立,要看管的长径比。 4.为什么水平管外凝结换热只介绍层流的准则式?常压下的水蒸气在10=-=?w s t t t ℃的水平管外凝结,如果要使液膜中出现湍流,试近似地估计一下水平管的直径要多大? 答:因为换热管径通常较小,水平管外凝结换热一般在层流范围。 对于水平横圆管: () r t t dh R w s e ηπ-= 4 ()4 1 3 2 729.0? ??? ??-=w s t t d gr h ηλρ 临界雷诺数 () () 1600 161.9Re 4 3 45 4 1 3 2 4 3 4 3 =-= r g t t d w s c ηλρ 由100=s t ℃,查表:kg kJ r /2257= 由 95 =p t ℃,查表:3 /85.961m kg =ρ ()K m W ?=/6815.0λ ()s m kg ??=-/107.2986 η ()() m g t t r d w s 07.23 .9763 1 3 2 35 =-=λρη 即水平管管径达到2.07m 时,流动状态才过渡到湍流。 5.试说明大容器沸腾的t q ?~曲线中各部分的换热机理。 6.对于热流密度可控及壁面温度可控的两种换热情形,分别说明控制热流密度小于临界热流密度及温差小于临界温差的意义,并针对上述两种情形分别举出一个工程应用实例。 答:对于热流密度可控的设备,如电加热器,控制热流密度小于临界热流密度,是为了防止设备被烧毁,对于壁温可控的设备,如冷凝蒸发器,控制温差小于临界温差,是为了防止设备换热量下降。 7.试对比水平管外膜状凝结及水平管外膜态沸腾换热过程的异同。 答:稳定膜态沸腾与膜状凝结在物理上同属相变换热,前者热量必须穿过热阻较大的汽 膜,后者热量必须穿过热阻较大的液膜,前者热量由里向外,后者热量由外向里。 8.从换热表面的结构而言,强化凝结换热的基本思想是什么?强化沸腾换热的基本思想是什么? 答:从换热表面的结构而言,强化凝结换热的基本思想是尽量减薄粘滞在换热表面上液膜的厚度,强化沸腾换热的基本思想是尽量增加换热表面的汽化核心数。 9.在你学习过的对流换热中.表面传热系数计算式中显含换热温差的有哪几种换热方式?其他换热方式中不显含温差是否意味着与温差没有任何关系?

高等传热学知识重点(含答案)2019

高等传热学知识重点 1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。 Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度) 2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布: 电子的统计分布:Fermi-Dirac(费米-狄拉克)分布: 声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布; 高温下,FD,BE均化为MB;

4.什么是光学声子和声学声子,其波矢或频谱分布各有特性? 答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量; 光学声子:与光子相互振动,发生散射,故称光学声子; 声学声子:类似机械波传动,故称声学声子; 5.影响声子和电子导热的散射效应有哪些? 答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因): ①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的; ②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散 射、Mie散射,这与光子非常相似; ③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、 吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型: Einstein(爱因斯坦)模型: 7.分子动力学理论中,L-J势能函数的表达式及其意义。 答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

专升本《工程传热学》_试卷_答案

专升本《工程传热学》 一、 (共18题,共156分) 1. 说明得出导热微分方程所依据的基本定律。 (8分) 标准答案:能量守恒方程和傅利叶定律。 2. 写出肋效率的定义。对于等截面直肋,肋效率受哪些因素影响? (8分) 标准答案: 3. 在液体沸腾过程中一个球形汽泡存在的条件是什么?为什么需要这样的条件? (8分) 标准答案:在液体沸腾过程中一个球形汽泡存在的条件是液体必须有一定的过热度。这是因为从汽泡的力平衡条件得出 ,只要汽泡半径不是无穷大,蒸汽压力就大于液体压力,它们 各自对应的饱和温度就不同有 ;又由汽泡热平衡条件有 ,而汽泡存在必须保持其 饱和温度,那么液体温度,即大于其对应的饱和温度,也就是液体必须过热。 4. 什么是速度边界层?动量方程在热边界层中得到简化所必须满足的条件是什么?这样的简化有何好处? (8分) 标准答案:流体流过壁面时流体速度发生显著变化的一个薄层。 动量方程得以在边界层中简化,必须存在足够大的Re 数,也就是具有的数量级。 此时动量扩散项才能够被忽略。从而使动量微分方程变为抛物型偏微分方程,成为可求解的形式。 5. 在导热过程中产生了Bi 数,而在对流换热过程中产生了Nu 数,写出它们的物理量组成,并指出它们之间的差别是什么? (8分) 标准答案: 从物理量的组成来看,Bi 数的导热系数 为固体的值,而 Nu 数的则为流体的值;Bi 数的特征尺寸Ls 在固体侧定义,而Nu 数的Lf 则在流体侧定义。从物理意义上看,前者反映了导热系统同环境之间的换热性能与其导热性能的对比关系,而后者则反映了换热系统中流体与壁面地换热性能与其自身的导热性能的对比关系。 6. 外径为50mm ,表面温度为180 的圆筒,在它的外面用导热系数为0.14W/ 的保温材料 包扎起来,保温材料的厚度为 30mm 。要求外表面温度小于60,试计算每米管道的散热量。如 果将保温材料换成导热系数为0.034 W/的保温材料,导热量同上,其它条件也不变。试计算 新保温材料的厚度。 (12分) 标准答案: 7. 针对如下导热微分方程写出方程各项的含义,并说明得出导热微分方程所依据的基本定律? (8 分) 标准答案: 导热微分方程所依据的基本定律是傅里叶定律和导热微分方程。 8. 写出Bi 数的定义式并解释其意义。在Bi 0 的情况下,一初始温度为t0的平板突然置于温度为的流体中冷却(如图1 ),粗略画出τ=τ1>0和 时平板附近的流体和平板的温度分布。 (8分) 标准答案:反映了导热系统同环境之间的换热性能与其导热性能的对比关系。

传热学总复习试题及答案【第五版】【精】【_必备】

总复习题 基本概念 : ?薄材 : 在加热或冷却过程中 , 若物体内温度分布均匀 , 在任意时刻都可用一个温度来代表整个物体的温度 , 则该物体称为 ----. ?传热 : 由热力学第二定律 , 凡是有温差的地方 , 就有热量自发地从高温物体向低温物体转移 , 这种由于温差引起的热量转移过程统称为 ------. ?导热 : 是指物体内不同温度的各部分之间或不同温度的物体相接触时 , 发生的热量传输的现象 . 物体各部分之间不发生相对位移,仅依靠物体内分子原子和自由电子等微观粒子的热运动而产生的热能传递成为热传导简称导热 ?对流 : 指物体各部分之间发生相对位移而引起的热量传输现象 . 由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷热流体相互渗混所导致的热量传递过程 ?对流换热 : 指流体流过与其温度不同的物体表面时 , 流体与固体表面之间发生的热量交换过程称为 ------. ?强制对流 : 由于外力作用或其它压差作用而引起的流动 . ?自然对流 : 由于流体各部分温度不同 , 致使各部分密度不同引起的流动 . ?流动边界层 : 当具有粘性的流体流过壁面时 , 由于粘滞力的作用 , 壁面附近形成一流体薄层 , 在这一层中流体的速度迅速下降为零 , 而在这一流层外 , 流体的速度基本达到主流速度 . 这一流体层即为 -----. ?温度边界层 : 当具有粘性的流体流过壁面时 , 会在壁面附近形成一流体薄层 , 在这一层中流体的温度迅速变化 , 而在这一流层外 , 流体的温度基本达到主流温度 . 这一流体层即为 -----. ?热辐射 : 物体由于本身温度而依靠表面发射电磁波而传递热量的过程称为 ------. 物体由于本身温度而依靠表面发射电磁波而传递热量的过程成为热辐射 ?辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的全部波长的辐射能的总量 . ?单色辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的波长在λ -- λ +d λ 范围内的辐射能量 . ?立体角 : 是一个空间角度 , 它是以立体角的角端为中心 , 作一半径为 r 的半球 , 将半球表面上被立体角切割的面积与半径平方 r 2 的比值作为 ------ 的大小 . ?定向辐射强度 : 单位时间内 , 在单位可见面积 , 单位立体角内发射的全部波长的辐射能量称为 ----. ?传质 : 在含有两种或两种以上组分的流体内部 , 如果有浓度梯度存在 , 则每一种组分都有向低浓度方向转移 , 以减弱这种浓度不均匀的趋势 . 物质由高浓度向低浓度方转移过程称为 ----.

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

2012高等传热学试卷

合肥工业大学机械与汽车工程学院研究生考试试卷 课程名称 高等传热学 考试日期 2012-12-19 姓名 年级 班级 学号 得分 所有答案写在答题纸上,写在试卷上无效!! 一、简答题(每题10分,共50分) 1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类? 2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么? 3. 什么是形函数?形函数的两个最基本特征是什么? 4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。 5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么? 二、计算题(第1, 2题各15分,第3题20分,共50分) 1. 线性三角元的顶点坐标(单位:cm )为:i (2, 2)、j (6, 4)、k (4, 6),温度分别为 200℃, 180℃和 160℃,热导率k =0.5W/m ℃。试计算: (1)点(3,4)的温度及x 和y 方向的热流分量; (2)绘制170℃等温线。 2. 计算图1所示的二次三角元在点(2, 5)处的y N x N ????66和。 3. 图2所示一维方肋处于热稳定状态,截面2mm ×2mm ,长3cm ,热导率为k =100W/m ℃。左端面维持恒定温度150℃,右端面绝热,其余表面和空气间的对流换热系数h =120W/m 2,空气温度T a =20℃。请采用3个一维线元计算距左侧端面分别为1cm 、2cm 的截面和右侧端面的温度。提示:稳态导 热有限元代数方程:[]{}{}f T K =。单元截面积A ,截面周长P ,单元刚度矩阵:[]??????+??????--=211261111hPl l Ak e K ,单元载荷项:{}??????=112Pl hT a e f 。 -------------------------------------------------------------------------------------------------------------------------------------------------------- 装 订 线 T=150℃ 绝热 3cm 2mm 图1 图2

浙江大学传热学复习题参考答案

高等传热学复习题答案 热动硕士2015 吕凯文 10、燃用气、液、固体燃料时火焰辐射特性。 答:燃料的燃烧反应属于比较剧烈的化学反应。由于燃烧温度较高,而且燃料的化学成分一般都比较复杂,所以燃烧反应的过程是非常复杂的过程,一般的燃料燃烧时火焰的主要成分还有CO 2、H 2O 、N 2、O 2等,有的火焰中还有大量的固体粒子。火焰中还存在大量的中间参悟。在不同的工况下,可能有不同的中间产物和燃烧产物。火焰的辐射光谱是火焰中的各种因素作用的结果。 燃烧中间产物或燃烧产物受火焰加热,要对外进行热辐射。在火焰的高温环境下,固体粒子的辐射光谱多为热辐射的连续光谱,而气体分子的发射光谱多为分段的发射或选择性吸收。此外,还有各物质的特征光谱对火焰的辐射的影响。在工业火焰的温度水平下,氧、氢等结构对称的双原子分子没有发射和吸收辐射的能力,它们对于火焰光谱的影响比较小。而CO 2和H 2O 等结构不对称的分子以及固体粒子对火焰光谱的影响起主导作用。在火焰中大量的中间产物虽然存在时间很短,但对火焰辐射光谱也有一定的影响。(该答案仅供参考) 11、试述强化气体辐射的各种方法。 答:气体辐射的特点有:①不同种类的气体的辐射和吸收能力各不相同;②气体辐射对波长具有强烈的选择性;③气体的辐射和吸收是在整个容积中进行的,辐射到气体层界面上的辐射能在辐射行程中被吸收减弱,减弱的程度取决于辐射强度及途中所遇到的分子数目。 气体的辐射和吸收是气层厚度L 、气体的温度T 和分压p (密度)的函数,(,)f T pL λα=。由贝尔定律,,0k L L I I e λλλ-=?可知,单色辐射在吸收性介质中传播时其强度按指数递减。 由上述可知,强化气体辐射的方法有:提高气体的温度;减小气体层的厚度,;选择三原子、多原子及结构不对称的双原子气体;减小气体的分压。(该答案仅供参考) 12、固体表面反射率有哪几种? 答:被表面反射的能量与投射到表面的能量之比定义为表面反射率。固体表面反射率有: ①双向单色反射率;②单色定向-半球反射率;③单色半球-定向发射率。

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

高等传热学部分答案.

7-4,常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 12121 Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程

22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t 引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量1Re ()y y x x ηδ= == 有 11()(()22x x x ηη ηηη?Θ?Θ?''==Θ-=-Θ??? ()y y ηηη?Θ?Θ?'==???;22()U y x ηυ∞ ?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内 速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2d f d η''Θ'=-'Θ,求解可得 12 12 ()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努

传热学第5.7章答案

第七章 凝结与沸腾换热 1.凝液量:m=(kg/s) 2.水平放置时,凝水量m=(kg/s) 3.壁温t w =1000 , h=12029 w/(m 2·k) 4. 5.此时管下端液膜内已出现紊流。 H=6730 w/(m 2·k) 6.竖壁高 h= mm 7.单管与管束平均表面传热系数之比:管束 单h h = 8.凝结水量 m=? (kg/s) 9.考虑过冷度时,m=?(kg/s) 相差: %39.0%10014 .512 .514.5=?- 10.管长 m L 1= ,管长减少量31 5 .115.1= - 11.凝结表面传热系数 h= w/(m 2·k) 凝液量:m=?(kg/s) 12. 管长能缩短 13.用于水时, h= w/(m 2·k)

与11题相比换热系数倍率 63.72 .7001 .5341= 15.氟利昂 12: φ=42143(W ) 氟利昂 22: φ=50810(W ) 差异:% 16.用电加热时,加热方式是控制表面的热流密度。而采用蒸汽加热则是壁面温度可控的情形。由大容器饱和沸腾曲线可知,当加热功率q 稍超过max q 值时,工况将沿max q 虚线跳至稳定膜态沸腾线,使壁面温度飞升,导致设备烧坏。总之,电加热等依靠控制热流来改变工况的设备,一旦热流密度超过峰值,工况超过热流密度峰值后,沸腾温差将剧烈上升到1000℃左右,壁温也急剧升高,发生器壁烧毁现象。 采用蒸气加热时,工况点沿沸腾曲线依次变化。不会发生壁面温度急剧上升情况。 18.由式(7)t T R s ?= υγρσ2min ,在一定的s T t ,,,,υργσ?五个量中,只有υ ρ随压强变化最大,P 增加时,υρ的增加值将超过T s 的增值和γ的减少,最终使R min 随P 的增加而减小。 19.h=? w/(m 2·k) 20. h=67140 w/(m 2·k) 21.温度降为183℃ h=1585 w/(m 2·k) 与自然对流相比较, 485.01585 769 == 沸腾 自然对然h h 22.Q= w/(m 2·k) ,t w =℃

同济大学传热学题库共6套含答案

传热学(一) ?名词解释(本大题共 5 小题,每小题 4 分,共 20 分) 21. 导热基本定律 22. 非稳态导热 23. 凝结换热 24. 黑度 25. 有效辐射 ?简答题 ( 本大题共 2 小题 , 每小题 8 分 , 共 16 分 ) 26. 简述非稳态导热的基本特点。 27. 什么是临界热绝缘直径?平壁外和圆管外敷设保温材料是否一定能起到保温的作用,为什么? ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 一内径为 300mm 、厚为 10mm 的钢管表面包上一层厚为 20mm 的保温材料,钢材料及保温材料的导热系数分别为 48 和 0.1 ,钢管内壁及保温层外壁温度分别为220 ℃及 40 ℃,管长为 10m 。试求该管壁的散热量。 29. 一内径为 75mm 、壁厚 2.5mm 的热水管,管壁材料的导热系数为 60 ,管内热水温度为 90 ℃,管外空气温度为 20 ℃。管内外的换热系数分别为和 。试求该热水管单位长度的散热量。 ?名词解释 ( 本大题共 5 小题 , 每小题 4 分 , 共 20 分 ) 21. 导热基本定律 : 当导热体中进行纯导热时 , 通过导热面的热流密度 , 其值与该处温度梯度的绝对值成正比 , 而方向与温度梯度相反。

22. 发生在非稳态温度场内的导热过程称为非稳态导热。 或:物体中的温度分布随时间而变化的导热称为非稳态导热。 23. 蒸汽同低于其饱和温度的冷壁面接触时 , 蒸汽就会在壁面上发生凝结过程成为流液体。 24. 物体的辐射力与同温度下黑体辐射力之比。 25. 单位时间内离开单位表面积的总辐射能。 ?简答题(本大题共 2 小题,每小题 8 分,共 16 分) 26. ( 1 )随着导热过程的进行 , 导热体内温度不断变化 , 好象温度会从物体的一部分逐渐向另一部分转播一样 , 习惯上称为导温现象。这在稳态导热中是不存在的。 ( 2 )非稳态导热过程中导热体自身参与吸热(或放热),即导热体有储热现象,所以即使对通过平壁的非稳态导热来说,在与热流方向相垂直的不同截面上的热流量也是处处不等的,而在一维稳态导热中通过各层的热流量是相等的。 ( 3 )非稳态导热过程中的温度梯度及两侧壁温差远大于稳态导热。 27. ( 1 )对应于总热阻为极小值时的隔热层外径称为临界热绝缘直径。 ( 2 )平壁外敷设保温材料一定能起到保温的作用,因为增加了一项导热热阻,从而增大了总热阻,达到削弱传热的目的。 ( 3 )圆筒壁外敷设保温材料不一定能起到保温的作用,虽然增加了一项热阻,但外壁的换热热阻随之减小,所以总热阻有可能减小,也有可能增大。 ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 解:已知 d 1 =300mm d 2 =300+2 × 10=320mm d 3 =320+2 × 20=360mm m t w1 =220 ℃ t w2 =40 ℃ =9591.226W 29. 解:已知 d 1 =75mm=0.075m d 2 =75+2 × 2.5=80mm=0.08m t f1 =90 ℃ t f2 =20 ℃

工程热力学与传热学试题及答案样本

《工程热力学与传热学》 一、填空题(每题2分,计20分) 1.如果热力系统与外界之间没有任何形式能量互换,那么这个热力系统一定是( ) 2.抱负气体比热容只与( )参数关于。 3.若构成热力系统各某些之间没有热量传递,热力系统将处在热平衡状态。此时热力系统内部一定不存在( )。 4.若构成热力系统各某些之间没有相对位移,热力系统将处在力平衡状态。此时热力系统内部一定不存在( )。 5.干饱和蒸汽被定熵压缩,将变为:( )。 6.湿空气压力一定期,其中水蒸气分压力取决于( )。 7. 再热循环目是( )。 8. 回热循环重要目是( )。 9.热辐射可以不依托( ),在真空中传播。 10. 流动功变化量仅取决于系统进出口状态,而与( )过程无关。 二. 判断题(每题1分,计20分) 1.孤立系统热力状态不能发生变化;() 2.孤立系统就是绝热闭口系统;() 3.气体吸热后热力学能一定升高;() 4.只有加热,才干使气体温度升高;() 5.气体被压缩时一定消耗外功;()

6.封闭热力系内发生可逆定容过程,系统一定不对外作容积变化功;() 7.流动功变化量仅取决于系统进出口状态,而与工质经历过程无关;() 8.在闭口热力系中,焓h是由热力学能u和推动功pv两某些构成。() 9.抱负气体绝热自由膨胀过程是等热力学能过程。() 10.对于拟定抱负气体,其定压比热容与定容比热容之比cp/cv大小与气体温度无关。() 11.一切可逆热机热效率均相似;() 12.不可逆热机热效率一定不大于可逆热机热效率;() 13.如果从同一状态到同一终态有两条途径:一为可逆过程,一为不可逆过程,则不可逆过程熵变等于可逆过程熵变;() 14.如果从同一状态到同一终态有两条途径:一为可逆过程,一为不可逆过程,则不可逆过程熵变不不大于可逆过程熵变;() 15.不可逆过程熵变无法计算;() 16.工质被加热熵一定增大,工质放热熵一定减小;() 17.封闭热力系统发生放热过程,系统熵必然减少。() 18.由抱负气体构成封闭系统吸热后其温度必然增长;() 19.懂得了温度和压力,就可拟定水蒸气状态;() 20.水蒸气定温膨胀过程满足Q=W;() 三. 问答题(每题5分,计20分) 1. 阐明什么是准平衡过程?什么是可逆过程?指出准平衡过程和可逆过程关系。

传热学思考题参考答案

传热学思考题参考答案 第一章: 1、用铝制水壶烧开水时,尽管炉火很旺,但水壶仍安然无恙。而一旦壶内的水烧干后水壶很快就被烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 2、什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各 串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传 热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 第二章: 1、扩展表面中的导热问题可以按一维问题处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题处理,你同意这种观点吗? 答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。 2、肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热流量会下降,试分析该观点的正确性。 答:的确肋片高度增加会导致肋效率下降及散热表面积增加,但是总的导热量是增加的,只是增加的部分的效率有所减低,所以我们要选择经济的肋片高度。 第三章: 1、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。你认为对吗?答:错,方程的边界条件有可能与λ有关,只有当方程为拉普拉斯方程和边界条件为第一边界条件时才与λ无关。 2、对二维非稳态导热问题,能否将表面的对流换热量转换成控制方程中的内热源产生的热量? 答:不能,二维问题存在边界微元和内边界微元,内边界微元不一定与边界换热,所以不存在源项。 第四章: 1、在第一类边界条件下,稳态无内热源导热物体的温度分布与物体的导热系数是否有关?为什么? 答:无关,因为方程为拉普拉斯方程,边界为第一边界条件均与λ无关。 2、非稳态导热采用显式格式计算时会出现不稳定性,试述不稳定性的物理含义。如何防止这种不稳定性? 答:物理意义:显示格式计算温度时对时间步长和空间步长有一定的限制,否则会出现不合

传热学试题(答案)培训资料

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全?( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流 ?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30 A.强制对流换热 B.凝结对流换热 31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33 A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增加,有时减小

传热学7第七章

第七章 凝结与沸腾传热 气态工质在饱和温度下,由气态转变为液态的过程称为凝结或冷凝;而液态工质在饱和温度下以产生气泡的形式转变为气态的过程称为沸腾。 第一节 凝结传热 二、膜状凝结传热 1.层流膜状凝结理论解 图7-1 膜状凝结传热膜内温度及速度场 在建立并求解液膜运动微分方程及能量微分方程中,努氏对液膜的速度场和温度场,如图7-1(a )所示,作了若干合理的设定,把它简化为图7-1(b )的情况,这些设定是: (1) 纯蒸气在壁上凝结成层流液膜,且物性为常量; (2) 液膜表面温度t δ = t s (饱和温度),即蒸气—液膜交界面无温度梯度,这样,在交界面上仅发生凝结传热而无对流传热与辐射传热; (3) 蒸气是静止的,且认为蒸气对液膜表面无黏滞应力作用,故液膜表面 0y u y δ =?? ?= ????; (4) 液膜很薄且流动速度缓慢,可忽略液膜的惯性力和对流作用; (5) 凝结热以导热方式通过液膜,因为液膜薄,膜内温度视为线性分布; (6) 忽略液膜的过冷度,即凝结液的焓为饱和液体的焓H',(实际凝结液的温度将低于饱和温度t s ,故蒸气不但释放出潜热,还有显热,但两者中潜热远大于显热,以致可以忽略显热)。

在建立并求解液膜运动微分方程及能量微分方程中,努氏对液膜的速度场和温度场,如图7-1(a )所示,作了若干合理的设定,把它简化为图7-1(b )的情况,这些设定是: (1)纯蒸气在壁上凝结成层流液膜,且物性为常量; (2)液膜表面温度t δ = t s (饱和温度),即蒸气—液膜交界面无温度梯度,这样,在交界面上仅发生凝结传热而无对流传热与辐射传热; (3)蒸气是静止的,且认为蒸气对液膜表面无黏滞应力作用,故液膜表面 0y u y δ =?? ?= ????; (4)液膜很薄且流动速度缓慢,可忽略液膜的惯性力和对流作用; (5)凝结热以导热方式通过液膜,因为液膜薄,膜内温度视为线性分布; (6)忽略液膜的过冷度,即凝结液的焓为饱和液体的焓H',(实际凝结液的温度将低于饱和温度t s ,故蒸气不但释放出潜热,还有显热,但两者中潜热远大于显热,以致可以忽略显热)。 22d d u u p u u v g x y x y ρρμ???????+=-+ ? ???????? (1) d d p x = ρv g ()2v 2d 0d u g y μρρ+-= 因为在一般压力条件下,ρ?ρv ,上式变为 22d 0d u g y μρ+= (2) y = 0, u =0 y = δ, d 0d u y = 212g u y y ρδμ?? = - ??? (3) y = 0, u =0 y = δ, d 0d u y =

10高等传热学标准答案

2010高等传热学标准答案 合肥工业大学机械与汽车工程学院研究生考试试卷课程名称高等传热学考试日期2011-12-30姓名年级班级学号得分--------------------------------------------------------------------------------------------------------------------------------------------------------共 4 页第 1 页本试卷共5题,每题20分一、厚度为50mm的无限大平壁在稳态时壁内温度分布为t=100-10000x2,平壁材料的导热系数为40W/(),试计算:壁内单位体积内热源生成热;平壁中心面、两外表面的热流密度及这三个热流密度与内热源生成热之间的关系。2?d2t?d????t??40??2?104?8?105W/m3 ?0求得?解:根据2??dxdx2??(2)q???dt??40??2?104x?8?105

x dx??装订线平壁中心面:x=0,q=0;中心面是对称面;左外表面:x=-25mm,q=-2×104W/m2 右外表面:x=25mm, q=2×104W/m2 2d????t,所以q???dt???dx???x 因为:?2?dxdx0x二、用热电偶测量气流的温度,热电偶结点看成圆球,若气流和热电偶结点间的对流表面换热系数h=400W/m2K,定压比热容cp=400J/(),密度ρ=8500kg/m3 (1) 若时间常数为1s,求热电偶结点的直径; (2) 若将初始温度为25℃,时间常数为1s的热电偶放入200℃的气流中,热电偶结点温度达到199℃需要多少时间? (3) 若环境温度为25℃的大空间,热电偶结点的发射率为,忽略热电偶的导热损失,热电偶测得的气流温度为195℃,求气流的实际温度。解:时间常数:4?cpV?cpR3?c????1hA3hh?4?R23h?c3?4 00?1R???? ?cp8500?400?cp?R3D?2 R???hA???exp???可得???0?cVp??????cpVhAln?8500?400?? 200??ln? ?03?40025?200 考虑到辐射影

相关主题
文本预览
相关文档 最新文档