传热学-第七章
- 格式:ppt
- 大小:14.41 MB
- 文档页数:64
7. 单相流体对流换热及其实验关联式7.1 知识结构1. 实验关联式应用条件:适用范围,定性温度,特征尺度,特征流速,修正系数(入口、弯道、特性)。
2. 常用实验关联式:管内强制对流(紊流、层流及过渡流)(非圆形管道的当量直径计算); 外掠(平板、单管、管束)强制对流; 自然对流(大空间、有限空间)。
7.2 重点内容剖析由于对流换热问题的复杂性,大多数工程问题不能依靠分析解,而是依靠相似理论指导下的实验解。
在应用实验关联式(准则方程)时要注意以下几个方面:(1) 实验范围(已定准则范围)内的相似现象一般不能外推; (2) 注意关联式所规定的定性温度、特征尺度、特征流速; (3) 正确选用各种修正系数(物性,入口,弯管……)7.2.1 强制对流换热及其实验关联式 一、管槽内强制对流换热特征 1.流动状态Re :0 2300 10000层流 过渡流 湍流 2.速度分布温度对流速分布的影响是通过粘性作用的。
液体粘性随温度升高而降低,气体粘性随温度升高而增加。
相同切应力作用下,粘度越大,速度在壁面法线方向的变化率越小。
3.典型边界条件恒热流:边界处热流密度恒定不变,如电加热器。
恒壁温:边界处温度恒定不变,如冷凝器。
湍流时(除液态金属外)两种边界条件对传热系数的影响可忽略不计,但对层流和低Pr 介质,两种边界条件下传热系数的差别不容忽视。
4.原则性准则方程()Pr Re,f Nu = (7-1)5.入口效应:入口段:从入口至流动边界层在管道中心汇合处。
层流入口段长径比(比湍流大):Pr Re 05.0≈d l 湍流入口段长径比:60<d l 充分发展段:流动边界汇合处下游。
入口效应:由于入口段边界层较薄,平均表面传热系数比充分发展段大,入口段有强化传热的作用。
(短管强化传热)6.努塞尔特准则的物性修正系数: (温度场不均匀→物性场不均匀)nw f nwf nwf T T ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛Pr Pr ,,ηη下标:f ——流体温度下参数w ——壁面温度下参数二、管内湍流换热实验关联式nf ff Nu Pr Re 023.08.0= (7-2)加热液体时:n=0.4 冷却液体时:n=0.3定性温度:流体平均温度(管道进出口平均温度)特性尺度:管道内径(由关联式分析可知:h~d -0.2 →小管强化传热) 适用范围:Ref=104~1.2⨯105,Prf=0.7~120,l/d>60, 对于短管或弯管:乘以相应修正系数对于非圆形管道:用当量直径代替管道直径气体:不超过50 ℃ 传热温差 水:不超过30 ℃ 油:不超过10 ℃温差超出范围时,参考文献[1]P165有推荐公式和使用条件 注:① 非圆形管道(当量直径):UAde d 4== (7-3) A ——流动截面积 U ——湿周长② 入口效应修正系数(l/d<60)7.01⎪⎭⎫⎝⎛+=l d c l (7-4)③ 弯管修正(二次环流强化传热)(弯管强化传热)对于气体Rdc r 77.11+= (7-5) R 为弯道半径(曲率半径)对于液体33.101⎪⎭⎫⎝⎛+=R d c r (7-6)三、管内层流换热实验关联式(层流充分发展段) 对于恒热流边界条件:36.4=Nu 对于恒壁温边界条件:66.3=Nu(对于非圆形管道参见参考文献[1]P168~169表5-3、4) 管内层流换热实验关联式的应用要注意以下几点: (1) 对于同一截面形状的通道,恒热流Nu>恒壁温Nu(2) 等截面直通道内的层流充分发展段Nu 与Re 无关(自模化)(3) 对于层流,当量直径只是一几何参数,不能用它来统一不同截面通道的换热和阻力计算表达式。
第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。
太阳对大地的照射是最常见的辐射现象。
高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。
特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。
本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。
第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。
比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。
人们根据电磁波不同效应把电磁波分成若干波段。
波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。
可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。
因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。
一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。
当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。