基于 GE 水煤浆气化装置系统隐患排查及优化设计研究
- 格式:pdf
- 大小:334.28 KB
- 文档页数:4
GE水煤浆气化炉锁斗系统在运行中常见问题的优化探讨摘要:本文针对本公司气化装置中锁斗系统运行中常见问题,并根据实际情况作出了故障判断和原因分析以及提出相应处理措施。
关键词:锁斗;收渣:排渣;问题1.锁斗系统简介及工艺流程锁斗系统由一套逻辑联锁系统自动控制,每个循环周期为25min,其中集渣时间为23min,总的排渣时间为2min(其中冲洗时间为15s,排渣时间为15s)。
具体排渣流程为:一段预设的时间后(约23min),计时器触发锁斗排渣。
排渣期间,气化炉与锁斗之间的切断阀123KV013/014关闭。
锁斗循环泵进口切断阀123KV010关闭,自循环阀123KV001打开,转入自循环,123KV017、123XV021打开锁斗泄压到锁斗冲洗水罐123V0109,泄压(锁斗压力小于0.4MPa泄压完成)后123KV017关闭泄压管线冲洗阀123KV020打开用灰水短暂冲洗泄压管线,15S关闭123KV020、123KV017打开;然后锁斗出口冲洗水阀123KV024及锁斗出口阀123KV027打开将渣和水排到渣池123U0102,其中渣由捞渣机123Y0101捞到渣车中装车外送。
123V0109底部冲洗水阀打开对锁斗进行冲洗,同时将锁斗内的物料置换成较冷且干净的水。
锁斗排渣阀在预设时间之后或者在锁斗冲洗水罐达到低液位之后关闭,以保证锁斗始终保持在充满水的状态。
当锁斗高液位开关被激活时,锁斗冲洗水罐冲洗水阀关闭。
使用高压冷凝液或高压灰水完成锁斗充压,当锁斗和气化炉之间的压差小于0.4MPa时,锁斗入口阀重新打开。
与此同时,锁斗循环泵回流阀关闭。
主要流程大致分为泄压、清洗、排渣、充压、集渣五个阶段。
破渣机处于激冷室底部与锁斗之间,用于破碎大块熔渣,保障锁斗正常集渣。
2.锁斗流程简图图1 锁斗流程简图(以第一套为例)3.锁斗系统运行中常见的问题及处理3.1锁斗泄压慢锁斗进入到排渣程序,在泄压阶段保持时间比较长(一般大于2min),压力很难泄到逻辑系统中锁斗压力<0.4MPa,泄压阀一直打开,导致锁斗逻辑系统无法进行,锁斗无法排渣。
浅析水煤浆气化装置项目安全管理随着我国能源需求的不断增长,对清洁能源的需求也越来越迫切。
水煤浆气化技术因其高效、环保的特点成为了备受关注的清洁能源生产技术之一。
在水煤浆气化装置项目的建设和运营过程中,安全管理问题一直备受关注。
本文将从水煤浆气化装置项目的特点出发,浅析水煤浆气化装置项目安全管理的重要性和具体措施。
一、水煤浆气化装置项目的特点水煤浆气化装置是利用水煤浆作为气化剂,通过气化反应将煤转化为合成气的一种生产设备。
与传统煤气化相比,水煤浆气化具有能耗低、生产成本低、环保性好等特点,因此备受煤化工企业的青睐。
水煤浆气化装置项目由于冶炼设备多、工艺复杂、操作环境恶劣等特点,一旦发生事故往往造成严重后果,因此安全管理问题显得尤为重要。
1. 保障人员生命安全水煤浆气化装置项目一般都是在矿区或者工业园区建设,周围通常有大量的人员聚集。
一旦发生事故,不仅会对项目本身造成损失,更会威胁到周边居民的生命安全。
加强安全管理,保障人员生命安全是水煤浆气化装置项目的首要任务。
2. 保障环境安全水煤浆气化项目一旦发生事故,将会排放大量的有害气体和废水,对周围的环境造成污染。
怎样保障项目在运行过程中不对环境造成负面影响,也是水煤浆气化装置项目安全管理的重要内容。
3. 保障项目持续稳定运行水煤浆气化项目通常是以长期投产为目标的大型设备,一旦发生重大事故,将会对项目的运行产生重大影响,甚至可能导致项目停产。
保障项目持续稳定运行也是水煤浆气化装置项目安全管理的核心任务之一。
1. 严格遵守规章制度水煤浆气化装置项目的安全管理需要严格遵守国家和行业规章制度,严格执行相关安全管理标准。
项目的建设和运营过程中要建立健全相关安全管理制度和操作规程,对每一项工序和操作环节进行规范,确保项目的安全生产。
2. 完善安全生产管理体系水煤浆气化装置项目需要建立完善的安全生产管理体系,明确安全管理的组织架构和责任分工,制定安全生产责任制度,加强现场监管,切实做好安全生产工作。
多喷嘴水煤浆气化装置高负荷运行的问题及工艺优化对策1. 引言1.1 背景介绍多喷嘴水煤浆气化装置是一种常用的能源转化设备,广泛应用于煤炭气化工艺中。
随着工业化进程的加速和能源需求的增长,多喷嘴水煤浆气化装置的运行负荷也逐渐增加。
高负荷运行所带来的问题也日益凸显。
为了提高装置的稳定性和运行效率,必须加以有效的优化对策。
当前,多喷嘴水煤浆气化装置在高负荷运行时存在诸多问题,如气化反应温度升高、热量传递效率降低、燃烧稳定性不佳等。
这些问题不仅影响了装置的正常运行,还可能导致设备损坏和安全隐患。
急需研究出相应的工艺优化对策,以提高装置的运行效率和安全性。
本文将针对多喷嘴水煤浆气化装置高负荷运行的问题展开深入分析,提出相应的工艺优化对策,并评估实施效果。
结合风险控制的要求,提出相应的措施,以确保装置的安全稳定运行。
希望通过本文的研究和分析,能为多喷嘴水煤浆气化装置的优化提供一定的参考和指导。
【字数:253】1.2 问题陈述当前,多喷嘴水煤浆气化装置在高负荷运行过程中出现了一系列问题,给设备运行和生产带来了严重影响。
主要问题包括喷嘴磨损严重、气化效率低、设备寿命缩短等,这些问题严重制约了装置的正常运行和生产效率。
针对这些问题,急需制定相应的工艺优化对策,以提高装置的稳定性和效率,确保装置能够长期高效运行。
本文将针对多喷嘴水煤浆气化装置高负荷运行的问题进行分析,并提出相应的工艺优化方案,以期在解决问题的进一步提升装置的性能和产能,为气化工艺的发展提供有力支持。
2. 正文2.1 现有问题分析多喷嘴水煤浆气化装置在高负荷运行过程中,存在着一系列问题需要解决。
高负荷运行会导致设备温度升高,进而增加设备损耗和维护成本。
高负荷情况下气化反应速度加快,可能导致操作不稳定,增加气体组分波动,影响产品质量。
高负荷运行还会增加设备运行压力,可能导致设备泄漏、爆炸等安全隐患。
多喷嘴水煤浆气化装置在高负荷运行时,还存在着气化效率低、磨损严重、产物气温过高等问题。
影响水煤浆气化装置煤耗的因素及优化措施摘要:煤气化是煤炭清洁利用的核心技术之一,是煤化工产业的龙头。
近年来,随着新型洁净煤气化技术的兴起,其广泛应用于合成氨、甲醇、烯烃、乙二醇等产品的合成气制取及煤制油、煤制氢、煤制天然气等行业;在众多的煤气化技术中,水煤浆气化是工艺成熟、运行稳定、应用广泛的一种气化技术。
而水煤浆浓度作为水煤浆气化工艺的重要控制指标,直接影响着煤气化过程的氧耗、煤耗及整个气化装置的生产成本;高浓度水煤浆的制备,对于水煤浆气化装置降低消耗、提高生产能力、提升企业经济效益至关重要。
关键词:水煤浆气化装置;水煤浆浓度;原料煤煤种;优化措施1.煤浆提浓工艺流程某100万t/a煤制油项目煤浆提浓装置的工艺流程示意图见图1。
气化装置煤浆制备系统采用了9台CYM11000型细磨机,单台细磨机水煤浆处理量8t/h~18t/h,正常水煤浆处理量16t/h。
装置的年操作时间按8000h设计。
图1某100万t/a煤制油项目煤浆提浓装置的工艺流程示意图煤浆槽中的水煤浆通过配浆泵将小部分水煤浆和界区外来的工艺水混合后进入振动筛,将水煤浆的质量分数稀释至35%左右,稀释用水从生产供水总管线上直接抽取,利用流量计及配水调节阀控制水量的大小。
振动筛筛上物通过管道自流至地面的小推车,筛下物自流至粗浆槽,然后由粗浆泵将调制合格的粗浆输送至细磨机,经研磨合格后的细浆流入细浆槽,细浆槽的细浆通过细浆泵按照设定的比例和流量返回至棒磨机。
1.影响水煤浆气化装置煤耗的因素2.1原料煤制浆用原料煤首先应满足下游用户对煤质的要求。
原料煤煤质指标主要包括固定碳、水分、挥发分、灰分、灰熔点、发热量、元素分析、可磨性指数、化学活性等。
煤炭的总水分包括外水和内水。
内水是煤的结合水,以吸附态或化合态形式存在于煤中,是影响成浆性能的关键因素。
一般多用哈氏可磨性指数(HGI)表述煤的可磨性,它是指煤样与粉碎性为100的标准煤进行比较而得到的相对粉碎性数值,指数越高则越易粉碎。
1 装置运行情况我公司6.5MPa水煤浆加压气化年产300kt合成氨装置引进美国TEXACO 公司PDP,由日本宇部兴产和化工部第六设计院完成详细工程设计。
设计以陕西黄陵煤为原料,选用6.5MPa压力气化。
气化炉两开一备,单炉投煤量650t/d,单炉产气量(CO+H2)为43000m3/h。
该装置自年月日第一次化工投料试车至今,运行了9个年头,运行性能良好,单炉生产能力达到设计值。
基本实现长周期稳定运行(单炉最长连续运行达51d),年装置连续运行189d。
1.1 装置运行与设计工况比较该装置原设计用黄陵煤,但由于黄陵煤灰熔点高,灰分高,难以稳定运行,于1997年7月改为甘肃华亭煤,实际煤种与设计差别大。
现将煤质数据及运行数值比较列于表1、2。
从表1、2数据可知,虽然煤质与原设计差别很大,煤浆入炉量增加后仍能满足后工序用气量的要求。
说明该装置适应性强,操作弹性大。
1.2 炉砖使用情况耐火砖是德士古水煤浆气化装置能否长周期运行的关键,因为耐火砖质量差或筑炉质量差会导致炉壁超温,尤其是拱顶的筑炉要求很高,我公司气化炉出现过许多次拱顶超温现象,被迫停炉处理。
再之,耐火砖使用寿命短,耐磨炉砖更换就频繁,更换炉砖不但给工厂造成损失,而且更换、养护、升温时间长达一月,在这一月里,没有备炉,给生产运行带来很大压力。
我公司气化炉两开一备,最初耐火砖使用寿命仅为2000~4000h,且多次出现拱顶超温,导致生产运行相当被动。
经过改进,现在耐火砖寿命长达20000h以上,不但解决了装置原来存在的问题,而且寿命超过了国外同类装置耐火砖的最好水平。
1.3 开、停炉情况开、停炉情况列于表3。
从表3可以看出,气化装置在我公司经历了一段艰难的历程。
说明一个新技术、一套新装置,要达到长周期、高负荷运行,需要做大量的工作。
即便是装置运行8年后的今天,在长周期、满负荷、稳定运行方面仍有大量的工作要做。
煤化装置投用以来,组织了国内众多单位参与攻关,解决了许多问题,我公司技术人员不断总结教训,完成了数百项技术改造项目,在此将介绍几个主要的改进,以便相互借鉴,共同提高。
GE水煤浆气化工艺烧嘴压差低原因分析及解决措施摘要:GE水煤浆气化工艺是以煤和氧气为生产原料,即将原料煤、研磨水及水煤浆添加剂按一定配比研磨出合格的煤浆,与来自空分装置的纯氧通过三通道工艺烧嘴预混合后进入气化炉,在一定温度及压力下进行不完全氧化反应,生产为主要成分的粗合成气,粗合成气送至下游净化装置。
在实际生产运行以CO+H2中,经常会出现烧嘴压差低于联锁值(20kPa)触发气化炉跳车,从而严重制约装置的长周期稳定运行。
烧嘴压差是指煤浆进入烧嘴前的压力与气化炉合成气出口压力的差值,烧嘴压差能反映烧嘴喷头的磨蚀及烧嘴喷射雾化效果。
设置烧嘴压差低停车联锁主要是防止高温高压合成气反窜进入煤浆管道引起爆炸事故。
本文详细的对烧嘴压差低的各种原因进行深度剖析,并提供相对应的解决措施,减少因烧嘴压差低导致气化炉跳车的次数。
关键词:烧嘴压差;烧嘴改造;煤浆质量;中心氧;操作调整1、中天合创GE水煤浆气化装置简述中天合创鄂尔多斯煤炭深加工示范项目煤气化装置采用美国GE公司“非催化部分氧化法”水煤浆气化技术,购买水煤浆气化工艺包和专利设备,由中石化宁波工程公司完成基础及详细工程设计(如图1)。
煤气化装置共分为气化一、气化二两个系列,两个系列设置相同,主要包含14套煤浆制备系统、14套气化及合成气洗涤系统、14套四级闪蒸系统及相关公用工程系统。
单台气化炉设计原煤日处理量为1496t,有效气产量(CO+H2)10.7万m3/h,14台气化炉正常生产时11开3备,装置于2013年9月份正式开工建设,2016年6月中交,2016年9月份投料开车。
图1 装置工艺流程2、装置运行状态装置在运行初期极不稳定,气化炉跳车频繁、运行周期短,其中2018年,气化炉非计划停车(连续运行天数<60天)次数多达116次,尤其是烧嘴压差低联锁(T-25)导致气化炉非计划停车次数达到88次,气化炉单炉连续运行时间平均不足30天,大大落后于同行业平均70天的运行水平。
GE 水煤浆气化制浆系统常见问题及处理探析摘要:总结了GE水煤浆气化制浆系统常见问题及处理方法,针对煤浆浓度不合格、煤称重给料机故障及堵煤、棒磨机漏浆、系统管线结垢、低压煤浆泵选型等问题提出了处理办法及处理时的注意事项,希望可以对其他公司制浆系统平稳运行带来借鉴意义。
关键词:煤浆制备;称重给料机;漏浆;煤浆泵;结垢某公司180万吨/年煤制甲醇项目采用6.5MPa(G)、1350℃的GE水煤浆加压气化技术,2010第1台气化炉投料成功。
煤浆制备单元的目的是为气化炉制备、储存及输送合格水煤浆。
制浆系统的稳定性对于整个工艺流程来说至关重要。
整个系统中包含众多设备和管线,运行时会遇到很多问题。
制浆单元主要的工艺流程如下:粒度小于10mm的碎煤由卸储煤装置皮带送入煤储斗,经煤称重给料机称量后送入磨煤机。
在添加剂槽中经过添加新鲜水配制成的浓度适宜的添加剂由泵送入磨煤机。
污泥水、甲醇装置含油废水、研磨水池渣水和低压灰水送入研磨水槽,研磨水由泵加压经磨机给水流量调节阀控制水量送入磨机。
煤、添加剂和工艺水一同送入磨机中,研磨成浓度合格的水煤浆。
水煤浆经滚筒筛滤去大颗粒后溢流至磨机出料槽中,经低压煤浆泵送入煤浆大槽内储存,再经高压煤浆泵泵送至气化炉工艺烧嘴。
以下是对实际生产中制浆单元常见的问题进行的探讨。
1 煤浆浓度问题1.1 GE水煤浆加压气化技术要求水煤浆具有较高的浓度、较好的流动性、较好的稳定性、适宜的粒度分布、适宜的pH值。
其中煤浆浓度是否合格至关重要。
一般要求浓度在60%-65%,研究表明,水煤浆在参与气化反应的过程中,水分的高低将直接影响气化反应过程及反应后合成气的成分。
在气化反应温度相同的情况下,对于同种煤质,煤浆浓度越高,则越利于降低比氧耗、比煤耗。
因此,在保证煤浆稳定性、流动性前提下,应尽可能地提高煤浆浓度。
1.2 控制煤浆浓度合格的措施在实际生产中,煤浆浓度的提高需要各方面综合作用,常用的措施如下:1.2.1严格控制系统开停工和故障处理时冲洗水的用量,用完冲洗水及时将入口加盲板,避免大量冲洗水进入煤浆大槽;1.2.2 现场操作人员加强巡检,提高通过看浆口观察煤浆在滚筒筛挂格格数的频次,发现挂格低时及时联系中控室调整水煤比;1.2.3 分析煤浆浓度数据,及时调整棒磨机钢棒级配;1.2.4 合理安排备用棒磨机与运行磨机的切换,及时进行加减棒操作,维持钢棒级配在合理的范围内;1.2.5 根据煤浆分析数据,控制好煤浆添加剂的配制浓度和添加量。
GE水煤浆气化装置优化改造及总结发布时间:2022-03-24T08:37:09.648Z 来源:《科学与技术》2021年9月25期作者:张军兵[导读] 本文从某工厂GE水煤浆气化炉的实际生产运行情况出发张军兵(国能包头煤化工有限责任公司,内蒙古包头 014000)[摘要]本文从某工厂GE水煤浆气化炉的实际生产运行情况出发,结合水煤浆气化炉在运行中存在的一些不足,搜集材料、整理数据、讨论论证、加以改造,并将改造情况及改造后取得的效果进行详细介绍,从高压煤浆泵入口缓冲罐、煤浆大槽C内壁、分散剂泵出口缓冲罐、添加剂泵改型、研磨水槽厂房异味等方面着手,细致介绍了上述设备在运行中存在的问题,在原因分析的基础上采取了相应的优化改造措施,取得了可喜的成果。
[关键词]GE水煤浆气化直三通下部进料下部出料限流孔板0 引言某气化装置采用美国 GE公司水煤浆加压气化技术,以煤和氧气为主要原料,在6.5MPa(G)压力下进行部分氧化反应,生成以 CO、H2、CO2为主要成份的粗煤气,经增湿、降温、除尘后,送至下游装置进行变换、净化处理。
同时,将系统中产生的黑水送入四级闪蒸、沉降系统处理,以达到回收热量及灰水再生、循环使用的目的,产生的粗渣及细渣送出界区外。
某气化装置有 6 套煤浆制备系统(5开 1 备);有 7 套煤气化系统和渣水处理系统(5 开 2 备),针对近年来在高压煤浆泵入口缓冲罐,气化煤浆大槽C内壁,渣池顶部工作环境,分散剂泵出口缓冲罐,添加剂泵改型,研磨水槽厂房异味,等方面存在的问题在原因分析的基础上采取了相应的优化改造措施,解决了系统存在的问题。
1高压煤浆泵入口缓冲罐改造11问题描述原有高压煤浆泵入口缓冲罐的Y型三通,煤浆是先进入缓冲罐后在进入高压煤浆泵,煤浆逐渐的将缓冲罐内的空气带走,当缓冲罐内空气不足时,缓冲罐就起不到缓冲的作用,最终导致缓冲罐晃动剧烈,入口管线随之也振动加剧,对生产带来风险。
该项目改造前高压煤浆泵在运行一段时间后,入口缓冲罐就开始晃动,只能通过架子杆进行固定,并且高压煤浆泵入口管线振动较为剧烈,焊缝及管线经常出现拉裂情况。
GE水煤浆气化装置灰水水质影响因素分析与控制
杨凯
【期刊名称】《四川化工》
【年(卷),期】2024(27)1
【摘要】气化灰水可谓是水煤浆气化装置的“血液”,灰水水质超标会导致系统设备和管道腐蚀结垢,制约GE水煤浆气化装置的长周期运行,并严重影响污水处理的效能。
对灰水pH值、硬度、碱度、悬浮物含量、浊度、氯离子含量、电导率、氨氮和COD等关键指标对水煤浆气化灰水系统的影响进行分析,并就各影响因素总结出针对性的水质控制措施,以提高气化装置运行的稳定性和经济性。
【总页数】6页(P45-50)
【作者】杨凯
【作者单位】中国石油化工股份有限公司金陵分公司
【正文语种】中文
【中图分类】TQ5
【相关文献】
1.水煤浆加压气化装置水质pH影响因素分析
2.四喷嘴对置式水煤浆气化灰水除硬产水回用分析
3.延安能化研发的“一种水煤浆加压气化灰水高压闪蒸装置”获实用新型专利证书
4.水煤浆气化装置灰水氨浓度预测及控制
5.多喷嘴对置式水煤浆加压气化装置灰水浊度的控制
因版权原因,仅展示原文概要,查看原文内容请购买。