实时定量PCR实验方案优化
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
实时荧光定量PCR的研究进展及其应用一、本文概述实时荧光定量PCR(Real-Time Quantitative PCR,简称qPCR)是一种在分子生物学领域广泛应用的分子生物学技术,它能够在PCR 扩增过程中实时监测反应产物的积累,从而精确地定量目标DNA或RNA的初始浓度。
自20世纪90年代诞生以来,qPCR技术以其高灵敏度、高特异性、快速性和定量准确等优点,在基因表达分析、病原体检测、基因型鉴定、基因突变分析、药物研发等多个领域发挥了重要作用。
随着技术的不断发展和完善,实时荧光定量PCR已成为现代生物学研究中不可或缺的工具。
本文旨在全面综述实时荧光定量PCR技术的最新研究进展,包括其原理、方法、技术优化、应用领域的拓展以及面临的挑战等。
文章首先简要介绍qPCR技术的基本原理和常用方法,然后重点论述近年来在技术优化、多重PCR、数字化PCR等方向上的进展。
接着,本文详细探讨实时荧光定量PCR在基因表达分析、病原体检测、基因型鉴定、基因突变分析、药物研发等领域的应用案例和前景。
文章还将讨论实时荧光定量PCR面临的挑战,如引物设计、数据分析等问题,并提出相应的解决方案。
通过本文的综述,读者可以对实时荧光定量PCR技术的最新进展和应用有一个全面的了解,为相关研究提供参考和借鉴。
二、实时荧光定量PCR的基本原理与技术特点实时荧光定量PCR(Real-time Fluorescent Quantitative PCR,简称qPCR)是一种在PCR扩增过程中,通过对荧光信号的实时检测,对特定DNA片段进行定量分析的技术。
其基本原理是利用荧光染料或荧光标记的特异性探针,在PCR反应过程中实时检测PCR产物量的变化,从而得到DNA模板的初始浓度。
实时性:通过荧光信号的实时检测,可以实时了解PCR产物的生成情况,无需PCR结束后进行电泳等后续操作,大大缩短了实验时间。
定量性:通过标准曲线的建立,可以准确地计算出DNA模板的初始浓度,实现了PCR的定量分析。
实时荧光定量PCR的原理操作及其应用实时qPCR的基本原理是利用DNA模板进行PCR扩增,并通过特定荧光探针或抑制剂标记扩增产物,荧光信号的强度与目标模板数量成正比。
PCR扩增过程中,荧光信号逐渐累积,通过荧光检测系统实时监测荧光的强度变化,可以获取PCR扩增曲线,并通过比较样品的荧光信号与标准曲线建立一个浓度与荧光信号的转换关系,从而确定样品中目标物质的数量。
实时qPCR的操作过程通常包括以下几个步骤:1.准备反应体系:根据所需扩增物质选择合适的引物和探针,并根据样品数量和扩增条件计算所需反应体系的配方。
反应体系中通常包括DNA模板、引物、探针、dNTPs、缓冲液和DNA聚合酶等。
2.设定PCR程序:根据不同引物的特性和样品的要求,设置PCR程序。
PCR程序通常包括一个初始变性步骤,多个循环变性/退火/延伸步骤和一个终止步骤。
循环变性/退火/延伸步骤的温度和时间通常根据引物的需求进行设定。
3.反应体系装填:将反应体系装入PCR管或耐热反应板中,确保样品和反应物均匀分布。
4.实时监测:将PCR反应体系置于实时荧光PCR仪中,根据设定的PCR程序进行扩增,并实时监测荧光信号的累积变化。
5.数据分析:根据荧光信号的变化情况,可以绘制PCR扩增曲线,并通过计算荧光信号的阈值周期数(Ct值)来确定样品中目标物质的相对数量。
比较不同样品的Ct值,可以进行定量分析。
实时qPCR具有广泛的应用。
1.基因表达分析:可以通过实时qPCR检测特定基因在不同组织或样品中的表达水平,从而研究基因在生理和病理过程中的作用。
2.病原体检测:实时qPCR可以用于快速、准确地检测和鉴定病原体,如细菌、病毒和寄生虫等,对于临床诊断和流行病学研究具有重要意义。
3.检测基因突变:实时qPCR可以用于检测个体中基因突变的存在与否,并进行基因型分析,从而研究与疾病相关的突变和遗传变异。
4.微生物学研究:可以通过实时qPCR检测微生物的数量和动态变化,了解其在环境中的分布和生物地理学特征,以及其在食品安全、环境保护等方面的应用。
实时荧光定量PCR技术的实验研究研究目的:本实验旨在通过实时荧光定量PCR技术,快速、准确地测量特定基因在不同组织样本中的表达水平,并探究其与疾病发生的相关性。
实验设计:1.提取样本:分别从正常组织和疾病组织中提取总RNA,并使用逆转录酶反应合成cDNA。
2. primer设计:根据目标基因序列设计引物,确保引物的特异性和合适的退火温度。
3. qPCR反应:设置qPCR反应体系,包括引物、模板cDNA、TaqMan探针、Master Mix等,进行PCR扩增反应。
4.扩增曲线分析:采集PCR反应过程中实时荧光数据,绘制扩增曲线,分析扩增效率和PCR产物的数量。
5. 目标基因表达分析:使用cycle threshold(Ct)值表示基因的表达量,计算相对表达量或绝对表达量。
实验步骤:1.提取样本:根据不同实验要求,选择合适的方法提取样本的总RNA,并检测RNA浓度和纯度。
2.逆转录反应:将相同量的RNA经过逆转录反应,合成对应的cDNA,用于后续的qPCR反应。
3. 引物设计:根据基因序列信息,使用PCR primer设计软件设计引物,确保引物的特异性和合适的退火温度,合成引物。
4. qPCR反应体系设置:根据厂家说明书或实验室常规操作,根据引物设计结果设置反应体系,包括引物、模板cDNA、探针和Master Mix。
5.qPCR反应:将反应体系装入PCR管或微孔板中,并进行qPCR反应。
设置实验组和对照组,确保实验结果的可靠性。
6.实时荧光数据采集:在PCR反应过程中,使用荧光分析仪实时记录PCR过程中的荧光信号。
7.扩增曲线分析:将荧光信号与PCR周期数进行关联分析,绘制扩增曲线,计算扩增效率和PCR产物数量。
8.目标基因表达分析:根据生成的扩增曲线,计算每个样品的Ct值,并通过对照组进行定量计算,得到相对或绝对的基因表达量。
9.数据统计与分析:使用统计学软件对实验结果进行统计学分析,确定基因表达水平的差异性。
PCR技术操作程序和优化方法PCR(Polymerase Chain Reaction)技术是在生物学研究、医学诊断和基因工程等领域广泛应用的一种分子生物学技术。
PCR技术的操作程序和优化方法对于实验结果的质量和准确性起到至关重要的作用。
1.样品准备:收集样品并保持其完整性和纯度,如血液、组织、细胞等。
对于一些样品,可能需要经过一定的处理步骤,如细胞裂解、DNA提取等。
2.DNA模板扩增:将所需扩增的目标DNA分子加入PCR反应体系中作为DNA模板。
可以是基因组DNA、cDNA或已知序列DNA等。
3.引物设计和合成:设计并合成两个与目标DNA序列两端互补的DNA 引物。
引物的末端一般要加入辅助序列,如限制性内切酶切位点、荧光染料、标记物等。
4.PCR反应体系的配制:根据反应所需的材料类型和浓度计算PCR反应的总体积,并将各种试剂按照计量摔入试管中。
反应体系由DNA模板、引物、dNTPs、聚合酶、缓冲液、酶稳定剂等组成。
5.PCR循环:PCR反应一般包括3个步骤:变性、退火和延伸。
PCR 循环通常包括以下几个步骤:变性,将反应体系中的DNA模板变性为单链状态;退火,使两个互补的引物与DNA模板互补结合;延伸,通过DNA聚合酶将新的DNA链合成。
6.PCR循环程序:PCR反应可以采用恒温PCR或温度梯度PCR。
恒温PCR循环通常设置在94-96℃的高温变性步骤和50-72℃的低温退火和延伸步骤之间进行切换。
温度梯度PCR则是在每一个PCR循环中,通过温度梯度的方式调节退火步骤的温度,以确定最佳退火温度。
7.PCR循环次数:PCR循环的次数通常为20-40次。
循环次数过低会导致DNA浓度不足,循环次数过多会增加非特异性产物的生成。
8.PCR产物分析:通过琼脂糖凝胶电泳或其他方法对PCR产物进行分离和检测,可以对所进行的PCR反应进行验证和分析。
1.引物设计与优化:选择合适的引物序列是PCR反应成功的重要因素之一、引物的长度一般在18-30个核苷酸之间。
实时定量PCR应用中的问题及优化方案聚合酶链式反应(polymerase chain reaction , PCR)自诞生之日起就决定了它不仅是一种高敏感、高特异的检测核酸分子的定性方法,而且也是一个能对核酸分子进行精确定量的有力工具[1]。
随着分子生物学技术研究的不断进展,定量PCR技术取得了突飞猛进的发展,不仅建立了一系列的方法,而且也诞生了许多与这些方法相匹配的新型热循环仪和实验材料。
实时定量PCR(real-time quantitative PCR)技术便是一种具有革命性意义的定量PCR技术,所谓实时定量PCR是指在PCR指数扩增期间通过连续监测荧光信号强弱的变化来即时测定特异性产物的量,并据此推断目的基因的初始量[2]。
目前它作为一个极有效的实验方法,已被广泛地应用于分子生物学研究的各个领域,仅2000-2001年,收录在Medline上的以real-time PCR为关键词的文章就达一千多篇。
实时PCR技术较之与以前的以终点法进行定量的PCR技术具有无与伦比的优势。
首先,它不仅操作简便、快速高效,而且具有很高的敏感性和特异性。
其次,由于是在封闭的体系中完成扩增并进行实时测定,大大降低了污染的可能性并且无须在扩增后进行操作。
另外,它还可以通过不同的引物设计在同一反应体系中同时对多个靶基因分子进行扩增,即多重扩增[3,4,5]。
本文将对实时定量PCR目前的应用状况、仪器应用、新材料进展以及实验条件的优化作一综述。
实时定量PCR的应用现状实时定量PCR技术自1996年诞生以来,由于它显著的优越性,不仅广泛的应用于分子生物学的各个研究领域,而且也开始作为一种诊断手段应用于临床。
其应用涉及到的范围包括DNA、mRNA和病毒荷载量的定量,核酸多态性分析,基因突变分析等多个领域[3]。
Giulietti 等人[6]对用实时定量PCR测定细胞因子基因的表达作了详细的描述。
细胞因子是一种调节蛋白,它对免疫反应、炎症反应具有重要的调节作用,其量的改变常常与一些疾病,如炎症反应、自身免疫性疾病、移植排斥有密切的关系。
实时荧光定量P C R的原理及实验实时荧光定量PCR的原理及实验无论是对遗传病(如地中海贫血和血友病)、传染病(如肝炎和艾滋病)或肿瘤进行基因诊断,还是研究药物对基因表达水平的影响,或者监控药物和疗法的治疗效果,定量pcr技术都可以发挥很大作用。
定量pcr技术的最新进展是实时荧光定量。
该技术借助于荧光信号来检测pcr产物,一方面提高了灵敏度,另一方面还可以做到pcr每循环一次就收集一个数据,建立实时扩增曲线,准确地确定ct值,从而根据ct值确定起始dna拷贝数,做到了真正意义上的dna 定量。
这是dna定量技术的一次飞跃。
根据最终得到的数据不同,定量pcr可以分为相对定量和绝对定量两种。
典型的相对定量如比较经过不同方式处理的两个样本中基因表达水平的高低变化,得到的结果是百分比;绝对定量则需要使用标准曲线确定样本中基因的拷贝数或浓度。
根据所使用的技术不同,荧光定量pcr又可以分为taqman 探针和sybr green i荧光染料两种方法。
比较而言,探针杂交技术在原理上更为严格,所得数据更为精确;荧光染料技术则成本更为低廉,实验设计更为简便。
在选择实验方案时要根据实验目的和对数据精度的要求来决定。
定量实验与定性实验最大的不同,是要考虑统计学要求并对数据进行严格的校正,以消除偶然误差。
因此重复实验和设立内对照非常重要。
由于各种各样的客观原因,这一点在实践中往往被轻视或忽视,需要着重强调。
当然,与定性实验一样,定量pcr也要设立阴性和阳性对照,以监控试剂和实验操作方面可能出现的问题。
1为什么终点定量不准确?我们都知道理论上pcr是一个指数增长的过程,但是实际的pcr扩增曲线并不是标准的指数曲线,而是s形曲线。
这是因为随着pcr循环的增多,扩增规模迅速增大,taq酶、dntp、引物,甚至dna模板等各种pcr要素逐渐不敷需求,pcr的效率越来越低,产物增长的速度就逐渐减缓。
当所有的taq酶都被饱和以后,pcr就进入了平台期。
定量PCR反应体系优化及实验实例定量PCR(Quantitative PCR,qPCR)是一种用于精确测量靶标DNA 或RNA分子在样本中的相对和绝对数量的技术。
在进行定量PCR反应时,有几个关键因素需要优化,包括引物和探针的选择和设计、PCR反应体系的优化以及PCR程序的设置。
下面将介绍如何优化定量PCR反应体系,并给出一个实验实例。
1.反应体系组分的优化:-模板DNA或RNA的浓度:根据样本中目标分子的预期含量来确定合适的模板浓度。
通常情况下,应在反应开始时进行浓度递减实验,并在样本的线性范围内选择最佳浓度。
-引物和探针的浓度:引物和探针的浓度也需要优化,以确保在合适的浓度范围内扩增特定的靶标。
通常情况下,可以选择不同的引物和探针浓度进行实验,并选择产生最佳信号的浓度。
- 酶的浓度:比如Taq DNA聚合酶的浓度也需要进行优化,确保反应酶活性处于最佳状态。
通过实验,可以确定在不同酶浓度下扩增产物的线性范围。
2.反应条件的优化:-引物和探针的退火温度:引物和探针的退火温度是非常重要的,它们直接影响特异性和效率。
合适的退火温度可以提高PCR产物的特异性,避免非特异性扩增。
-延伸时间:合适的延伸时间可以确保反应中的扩增产物达到最大的量,但时间过长可能会导致非特异性扩增或降低效率。
通过递增延伸时间进行优化可以找到最佳时间。
- Annealing时间:引物的退火时间也需要进行优化。
合适的退火时间可以确保引物结合到模板的特定位点,并在此过程中提高特异性。
下面是一个实例,用于定量PCR分析一个基因在不同组织中的表达水平:1.实验目的:测量特定基因在肝脏和肺组织中的表达水平。
2.实验步骤:-收集肝脏和肺组织样本,提取总RNA。
-利用逆转录酶将RNA转录成cDNA。
-设计引物和探针:根据目标基因序列,设计特异性的引物和探针。
-优化PCR反应体系:-测试不同模板浓度,并选择产生最佳信号的浓度。
-优化引物和探针的浓度。
PCR定量实验方案实验目的本实验旨在通过聚合酶链式反应(PCR)定量检测目标DNA的数量。
通过PCR 定量实验,可以快速、准确地确定目标DNA的含量,为后续实验提供数据支持。
实验原理PCR定量实验基于聚合酶链式反应的基本原理,通过反复复制目标DNA序列,使其数量呈指数增加,并通过荧光信号在PCR循环的各个阶段实时监测目标DNA的增长情况。
荧光信号的强度与目标DNA的初始量成正比,从而可以定量测量目标DNA的数量。
实验步骤1.样本处理:–收集待检测样本,并提取目标DNA。
–使用核酸定量仪检测目标DNA的浓度,并计算出适当的稀释倍数。
–将目标DNA按照所需的浓度稀释,并制备出一系列不同浓度的DNA标准曲线样品。
2.PCR反应体系准备:–准备PCR反应混合液,包括模板DNA、引物、荧光探针、酶和缓冲液等。
–按照所需的PCR反应体系,按比例向反应管中加入相应的试剂,确保反应混合液的配制准确。
3.反应条件设置:–设置PCR反应的温度和时间参数,包括初始变性、循环变性、退火和延伸等步骤。
–根据目标序列的特性和引物设计,调整PCR反应的温度梯度、循环次数等参数,以实现最佳放大效果。
4.PCR反应实施:–将PCR反应混合液分装到反应管中,注意避免产生交叉污染。
–将反应管放入PCR仪中,按照设定的温度和时间参数运行PCR反应。
–实时监测PCR反应过程中荧光信号的强度变化,记录关键点的荧光信号值。
5.数据分析:–将PCR反应过程中记录的荧光信号值绘制成实时荧光曲线图。
–根据所制备的DNA标准曲线样品,通过荧光信号值反推目标DNA的初始量。
–根据目标DNA的初始量和稀释倍数,计算样本中目标DNA 的浓度。
实验注意事项1.实验操作前,准备好PCR反应所需的所有试剂和设备,并保持反应管和工作台的清洁。
2.操作过程中,注意避免产生交叉污染,尤其是在样本处理和PCR反应准备阶段。
3.严格按照PCR反应体系准备说明书中的比例和操作要求进行试剂的配制和混合。
实时定量PCR实验方案优化
2006-3-30 20:24:46 来源:生命经纬由于各家公司生产的热循环仪提供的各种实验方案不太一致,所以优化的策略也不尽相同,然而在各种方案中,前文所述的那些影响实时PCR 反应的因素却总是相通的。
只要能较好地控制实验条件,优化实验步骤,要想获得满意的实验结果并不一定都是困难的。
下面本文将就影响到实验结果的一些基本参数和实验步骤谈一谈关于实时定量PCR的优化。
1. 基本参数的优化:
1.1 MgCl2的浓度在PCR反应中,MgCl2的浓度对影响酶的活性是至关重要的,不仅如此,合适的MgCl2的浓度还能在反应中得到较低的Cp(crossing point)值,较高的荧光信号强度以及良好的曲线峰值。
所以对其的深度选择应慎重。
一般来说,对以DNA或cDNA为模板的PCR反应,应选择2-5mM浓度的MgCl2,对以mRNA为模板的RT-PCR而言,则应选择的浓度为4-8mM。
1.2 模板的浓度:如果研究者是进行首次实验,那么应选择一系列稀释浓度的模板来进行实验,以选择出最为合适的模板浓度,如果条件困难,也至少要选择两个稀释度(高和中、低浓度)来进行实验。
一般而言,使Cp位于15-30个循环比较合适,若大于30则应使用较高的模板浓度,如果Cp小于15则应选择较低的模板深度。
对于Cp值的确定,经验上是SYBR Green I探针的荧光信号比本底高2倍,杂交探针的荧光强度比本底高0.3倍。
2. 使用SYBR Green I测定DNA时的条件优化:
2.1 MgCl2的浓度:大多数引物-模板对其的要求是2-4 mM。
2.2 模板的浓度:初次实验要求做一系列的稀释浓度,如条件限制,至少完成两个稀释的度的测定。
基因组DNA在50ng-5pg之间选择,质粒DNA在10^6拷贝数左右选择。
2.3 PCR抑制子:通常用于消除抑制子的办法是将样本进行稀释,但是在某些条件下,抑制子的浓度高,而模板量少,稀释法就不再能达到好的效果,反会使反应的敏感度降低,所以,研究者若要进行实时定量PCR研究,最好选用纯化的模板。
2.4 引物的浓度:引物的浓度是一个影响PCR反应的关键因素,其浓度太低,会致使反应不完全,若引物太多,则发生错配以及产生非特异的产物的可能性会大大增加。
对于大多数PCR反应,0.5uM是个合适的浓度,若初次选用这个浓度不理想,可在0.3-1.0uM之间进行选择,直至达到满意的结果。
2.6退火温度:首次实验设置的退火温度应比计算得出的Tm值小5℃,然后在1-2℃内进行选择。
一般地,退火温度要根据经验来确定,这个经验值往往会同计算得到的Tm值有较大的差距。
3. 用SYBR Green I进行一步法RT-PCR的条件优化:
3.1 MgCl2的浓度:不同的靶分子选用不同的浓度,通常是在4-8mM之间选择。
3.2模板的浓度:RT-PCR实验既可以选用总RNA,又可以选用mRNA,其浓度应在1pg-1ug之间选择。
对于低模板浓度,可以增加适量的MS2或用alternative RNA 作为载体进行测定。
3.3对照设置:每一引物都应设有阴性对照,阳性对照和污染对照。
4. 杂交探针测定DNA
4.1 MgCl2的浓度:在2-4mM的基础上加0.5-1.0mM,但是不要超过2.0mM。
4.2杂交探针的浓度:初次实验每个探针用0.2uM,如果信号强度达不到要求,可以增加至0.4uM。
4.3对照设置:每一引物都要设阴性对照,每一探针都要设阴性对照。
每次实验都要设阳性对照。
4.4 其它的条件同SYBR Green I。
5 用杂交探针实时定量RT-PCR:
5.1 MgCl2的浓度:在4-8mM之间进行选择。
5.2杂交探针的浓度:初实验用0.2 uM,如果荧光信号强度不足,可以增加至0.4uM。
5.3模板浓度设置:优化的扩增须进行一系列知释度的实验,在条件有困难的条件下,至少要进行两个稀释度的测定。
选用1pg-1ug的总RNA或是mRNA,若是模板的浓度过小(小于10ng/ul),则可加入MS2或alternative RNA作为载体。
5.4 对照设置:每个引物都要设无模板对照,阳性对照以及污染对照。
6.关于杂交探针的评价:在使用杂交探针进行实验时,必须注意防止探针-引物二聚体的形成和其本身在反应过程中的延伸。
引物-探针二聚体的形成,主要是因为探针可与引物的3’末端杂交,其形成以后,会致使此二聚体扩增,从而同目的基因竞争反应的原料,致反应的效率下降。
探针其本身能同目的基因相结合,且其解链温度高于引物,所以它可能作为引物而引发延伸反应,为了防止发生这种现象,通常是将其3’末端完全磷酸化,使之不能延伸,若此磷酸化不完全或是没有磷酸化,就会产生目的基因的副产品,从而干扰实验结果。
鉴于以上这两点,所以应对探针精心设计,并将其末端完全磷酸化。
目前的实时定量PCR技术进展迅速,本文是结合本实验室的工作经验以及文献资料写成的,文中提到的一系列方案、实验材料和仪器设备都有其各自的优缺点,也有各自的使用范围,不能一概而论。
所以不论研究者想进行何种研究,都应根据自己的情况首先找到适合自己研究目的的条件,本文仅供有意于运用实时定量PCR进行研究的人员参考。