实际问题与一元二次方程(一)传播
- 格式:ppt
- 大小:575.00 KB
- 文档页数:17
九年级数学上分层优化堂堂清二十一章 一元二次方程实际问题与一元二次方程第一课时 传播速度、循环、增长率问题学习目标:1.掌握按照一定速度逐步传播问题;2.培养建立数学建模及应用一元二次方程解决实际问题的能力。
3.掌握根据问题的实际意义,检验所得结果是否合理.4.掌握列方程解应用题的步骤和关键. 老师对你说:一 列一元二次方程解应用题的一般步骤(1)审:读懂题目,弄清题意,明确已知量、未知量,以及它们之间的关系.(2)设:设出未知数.(3)列:找出相等关系,列出方程.(4)解:解方程,求出未知数的值.(5)验:检验方程的解是否符合实际意义.(6)答:写出答案.二 常见实际问题(1)传播问题传染源+第一轮被传染的+第二轮被传染的=第二轮传染后的总数.即:传播、传染问题:原病例数×(1+传播数)传播轮数=总病例数(2)平均增长(降低)率问题①设基数为a ,平均增长率为x ,则第一次增长后的值为()1a x +,两次增长后的值为()21a x +,依次类推,n 次增长后的值为()1n a x +.②设基数为a ,平均降低率为x ,则第一次降低后的值为()1a x -,两次降低后的值为()21a x -,依次类推,n 次降低后的值为()1n a x -即:增长率问题:原数×(1+增长率)增长轮数=总数,原数×(1-下降率)下降轮数=总数。
(3)单双循环问题:单循环:()21+n n =总数;双循环:()1+n n =总数。
(n 表示参与数量)基础提升 教材核心知识点精练知识点1:传播速度问题【例1-1】请根据图片内容,回答下列问题:(1)每轮传染中,平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将新增多少名感染者(假设每轮传染人数相同)?【例1-2】有两人患了流感,经过两轮传染后共有288人患了流感,求每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x 人,则可列方程为_____.知识点2:循环问题【例2-1】毕业之际,九年级数学兴趣小组的同学相约到某礼品店购买礼品,每两个同学都相互赠送一件礼品,共购买礼品30件,设该数学兴趣小组有x 人,根据题意,可列方程为 _____________.【例2-2】某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,则每个支干长出 个小分支.【例2-3】组织一次排球邀请赛,采取单循环的形式,即每两个队都要打一场比赛.(1)如果有四个队参赛,则需要打多少场比赛?(2)写出比赛的总场数y 与参赛队伍数量x 之间的函数关系式;(3)经过最后统计,共打了28场比赛,求这次比赛共有多少个队参加?知识点3:增长率问题【例3-1】小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.()22001242x+=B.()22001242x-=C.()20012242x+=D.()20012242x-=【例3-2】某厂一月份产值为2万元,以后每月产值的增长率都为x,且第一季度总产值为10万元,那么可以列出方程是__________.能力强化提升训练1 .2019年年底以来,湖北省武汉市发现一种新型冠状病毒引起的急性呼吸道传染疾病。
人教版数学九年级上21.3第一课时教学设计探究1 有一人患了流感,经过两轮传染后共有121人患了流 感,每轮传染中平均一个人传染了几个人?思考:1.本题中有哪些数量关系?2.如何理解“两轮传染”?3.如何利用已知的数量关系选取未知数并列出方程? 设每轮传染中平均一个人传染x 个人,那么患流感的这个人在第一轮传染中传染了______人;第一轮传染后,共有______ 人患了流感;在第二轮传染中,传染源是____人,这些人中每一个人又传染了______人,那么第二轮传染了______人,第二轮传染后,共有______人患流感.4.根据等量关系列方程并求解解:设每轮传染中平均一个人传染了x 个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:1+x+x(1+x)=121 解方程得x1=10, x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人. 5.为什么要舍去一解?6.如果按照这样的传播速度,三轮传染后,有多少人患流题的突破口,从而学会运用列一元二次方程解决实际问题。
根据实际举一反三,引导数学知识解决传染病问题,为运用一元二次方程解决实际问题做铺垫。
让学生通过探究问题,体会运用一元二次方程解决实际问题过程,体会数学思想。
感?注意:1.此类问题是传播问题.2.计算结果要符合问题的实际意义. 学生自主解决问题,老师总结解决传播问题的注意事项。
三、重难点精讲例题:某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有100 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?解:设每轮感染中平均一台电脑会感染 x 台电脑,则1+x+x(1+x)=100,即(1+x)2=100.解得 x1=9,x2=-11(舍去) .∴ x=9.归纳:解决此类问题的关键步骤是:明确每轮传播中的传染源个数,以及这一轮被传染的总数.传播问题:学生独立完成,再合作交流,教师最后巡视指导,并总结解题注意事项。
实际问题与一元二次方程传播问题公式一、实际问题与一元二次方程在现实生活中,我们经常会遇到各种各样的问题,其中有些可以通过一元二次方程来进行建模和求解。
一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
通过解一元二次方程,我们可以得到问题的解决方案,帮助我们更好地理解和应对实际问题。
下面就让我们通过一些实际问题,来看看一元二次方程在解决实际问题中的应用。
二、抛物线运动问题与一元二次方程抛物线运动是我们生活中常见的一种运动状态,比如抛出的物体在空中运动,下落到地面的运动轨迹就是一个抛物线。
而描述抛物线运动的运动方程,正是一元二次方程。
根据抛物线的运动特点,我们可以建立出物体的运动方程,进而解一元二次方程,从而求解出物体的运动轨迹、最大高度、最远距离等相关问题。
通过这样的方式,我们可以更好地理解抛物线运动问题,并且通过一元二次方程得到准确的解答。
三、满足条件问题与一元二次方程在某些情况下,我们遇到的问题可能会给出一些条件,要求我们找到满足这些条件的未知数的取值范围。
这时候,我们可以通过建立一元二次方程来解决这类问题。
某一数的平方与另一数之和的平方等于第三个数的平方,这就可以通过一元二次方程来建立并求解。
通过一元二次方程的解,我们可以找到满足条件的未知数取值范围,从而解决实际中的类似问题。
四、个人观点和总结通过以上的例子,我们可以看到一元二次方程在解决实际问题中的广泛应用。
在现实生活中,我们遇到的问题可能需要通过一元二次方程进行建模和求解,从而得到问题的解决方案。
通过掌握一元二次方程的应用,我们可以更深入地理解和应对实际问题,为实际问题的解决提供强有力的数学工具支持。
一元二次方程通过对实际问题的建模和求解,可以帮助我们更好地理解和应对现实生活中的各种问题,具有重要的理论和实际意义。
希望通过本文的共享,你能对实际问题与一元二次方程的传播问题公式有更深入的理解和认识。
一元二次方程是数学中的重要内容,它不仅在理论上有着重要的意义,更在实际生活中有着广泛的应用。