21.3一元二次方程传播类问题
- 格式:ppt
- 大小:600.00 KB
- 文档页数:17
2021-2022学年九年级数学上册课时作业(人教版)第二十一章一元二次方程21.3实际问题与一元二次方程第1课时传播问题及增长率问题分点训练知识点1传播问题1. 禽流感是一种传播速度很快的传染病,一轮传染为一天时间,某养鸡场于某日发现一例,两天后发现共有169只鸡患有禽流感,若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( C )A. 10只B. 11只C. 12只D. 13只2. 有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A. 12x(x-1)=45 B.12x(x+1)=45C. x(x-1)2=45D. x(x+1)2=453. 生物兴趣小组的同学将自己收集的标本向本组其他成员各赠送一件,全组共互赠182件.如果全组有x名同学,则所列方程为.4. 有一人利用手机发短信,获得信息的人也按他的发送人数发送该条信息,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信平均一个人向多少个人发送信息?知识点2增长率问题5. 某市多年举办“桃花节”,观赏人数逐年增加,据有关部门统计,2019年约为20万人次,2021年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是( )A. 20(1+2x)=28.8B. 28.8(1+x)2=20C. 20(1+x)2=28.8D. 20+20(1+x)+20(1+x)2=28.86. 某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为( )A. 8B. 20C. 36D. 187. 某种药品原来售价为100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.8. 随着某市养老机构(养老机构指社会福利院、养老院、社会养老中心等)建设稳步推进,拥有的养老床位数不断增加.该市的养老床位数从2018年底的2万个增长到2020年底的2.88万个. 求该市这两年(从2018年底到2020年底)拥有的养老床位数的平均年增长率.知识点3数字问题9. 一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数.强化提升10. 家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2020年底某市汽车拥有量为16.9万辆,已知2018年底该市汽车拥有量为10万辆,设2018年底至2020年底该市汽车拥有量的年平均增长率为x,根据题意列方程得( )A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1-x)2=16.9D. 10(1-2x)=16.911. 若两个连续整数的积是56,则它们的和为( )A. 11B. 15C. -15D. ±1512. 某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场个.13. 有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染几个人?(2)如果不及时控制,第三轮将又有多少人被传染?14. 某生物实验室需培育一种有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?15. 某蛋糕产销公司A品牌产销线2017年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2016年底就投入资金10.89万元,新增了B品牌产销线,以满足市场对蛋糕的多元需求.B品牌产销线2017年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2018年A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2019年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2020年的销售量;(2)求B品牌产销线2018年平均每份获利增长的百分数.参考答案1. C 【解析】由题意可设每只病鸡传染健康鸡x只,得x+1+x(x+1)=169,整理得x2+2x-168=0,解得x1=12,x2=-14(舍去),故选C.2. C【解析】∵有x支球队参加篮球比赛,每两队之间都比赛一场,∵共比赛场数为12x(x-1),∵共比赛了45场,∵12x(x-1)=45,故选A.3. x(x-1)=182 【解析】由题意可得,x(x-1)=182.4. 解:设平均一个人向x个人发送信息,则x+x2=90,∵x1=9,x2=-10(舍去). 则平均一个人向9个人发送短信.5. C 【解析】设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.6. B 【解析】根据题意列方程得100×(1-x%)2=100-36,解得x1=20,x2=180(不符合题意,舍去).故选B.7. 10%【解析】设每次下降的百分率为x,依题意得100(1-x)2=81,解得x1=0.1=10%,x2=1.9(舍去).故选B.8. 解:设该市这两年(从2018年底到2020年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去). 该市这两年拥有的养老床位数的平均增长率为20%.9. 解:设原来的两位数十位上的数字为x,则个位上的数字为(5-x),依题意得(10x+5-x)[10(5-x)+x]=736,解这个方程得x1=2,x2=3. 当x=2时,5-x=3;当x=3时,5-x=2,∵原来的两位数是23或32.10. A 【解析】设2018年底至2020年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程10(1+x)2=16.9,故选A.11. D 【解析】设这两个连续整数为x,x+1.则x(x+1)=56,解得x1=7或x2=-8,则x+1=8或-7,则它们的和为±15,故选D.12. 5 【解析】设共有x个飞机场.x(x-1)=10×2,解得x1=5,x2=-4(舍去).13. 解:(1)设每轮传染中平均一个人传染了x个人,依题意得:1+x+(1+x)x=64,解得x1=7,x2=-9(舍去),则每轮传染中平均一个人传染了7个人.(2)7×64=448(人),则第三轮将又有448人被传染.14. 解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,由题意得60(1+x)+60x(1+x)=24000,60(1+x)(1+x)=24000,解得x1=19,x2=-21(舍去),∵x=19.(2)由题意,得60×(1+19)3=480000(个).15. 解:(1)A品牌产销线2020年的销售量为9.5-(2020-2017)×0.5=8(万份).(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增的份数为k万份. 依题意可得9.50.5 1.811.41.8231()()()2210.89.()kk x⨯⎧⎨⎩-++=,++=解得0.65kx⎧⎨⎩=,=%或0.6105.kx⎧⎨⎩=,=-%∵x>0,∵0.65kx⎧⎨⎩=,=%,∵2x=10%,即B品牌产销线2018年平均每份获利增长的百分数为10%.。
21.3实际问题与一元二次方程(传播问题)学习目标1、会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题的实际意义,检验所得结果是否合理,进一步培养分析问题和解决问题的能力。
2、会运用方程模型解决传播问题。
3、全新投入,做最好的自己重点:一元二次方程在实际问题中的应用,列方程解应用题;难点:会用含未知数的代数式表示等量关系,能根据问题的实际意义,检验所得的结果是否合理。
学习过程:一、温故知新,自主预习:1、列方程解应用题的步骤是什么?2、完成课本探究1,并补充未完成的过程。
3、生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互了182件,如果全组有x名同学,那么根据题意列出的方程是()A.x(x+1)=182 B.x(x-1)=182C.2x(x+1)=182 D.x(1-x)=182二、学以致用1、参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2、.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?3、.在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参加这次聚会的同学共有人.三、反馈检测:1.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?2.月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?3.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?4.某渔船出海捕鱼,2017年平均每次捕鱼量为10吨,2019年平均每次捕鱼量为8.1吨,求2017年~2019年每年平均每次捕鱼量的年平均下降率.5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?。
21.3实际问题与一元二次方程传播问题一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)设:设未知数,有直接和间接两种设法,因题而异;(2)找:找出等量关系;(3)列:列出一元二次方程;(4)解:求出所列方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:作答。
二、典型题型传播问题:公式:(a+x)n=M 其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数。
例题1、(2018•中山市一模)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?【分析】等量关系为:主干1+支干数目+支干数目×支干数目=91,把相关数值代入计算即可.【解答】解:设每个支干长出x小分支,则1+x+x2=91,解得:x1=9,x2=﹣10,答:每个支干长出9小分支.【点评】考查一元二次方程的应用,得到总数91的等量关系是解决本题的关键.例题2、某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂成若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂成多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?(1)设每轮分裂中平均每个有益菌可分裂成x个有益菌,则第一轮分裂后有60(1+x)【分析】个,第二轮分裂成60(1+x)2个,第二轮后有24000个,建立方程求出其解就可以;(2)根据(1)的结论,就可以得出第三轮共有60(1+x)3个有益菌,将x的值代入就可以得出结论.【解答】解:(1)设每轮分裂中平均每个有益菌可分裂成x个有益菌,由题意,得60(1+x)2=24000,解得x1=19,x2=﹣21,∵x>0,∴x=19.答:每轮分裂中平均每个有益菌可分裂成19个有益菌.(2)由题意,得60×(1+19)3=480000个.答:经过三轮培植后有480000个有益菌.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时分别表示出每轮分解后的总数是关键.三、综合练习一.选择题(共15小题)1.(2018春•利津县期末)有一人患流感,经过两轮传染后,共有121人患上了流感,那么每轮传染中,平均一个人传染的人数为()A.8人B.9人C.10人D.11人2.(2017•迁安市一模)小明在解决一个关于计算机病毒传播的问题时,设计算机有x台,列方程3+x+x(x+3)=48,则方程的解中一定不合题意的是()A.5B.9C.﹣5D.﹣93.(2017秋•江岸区期中)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的分支,主干,分支和小分支的总数是57,则每个支干长出()根小分支.A.5根B.6根C.7根D.8根4.(2017秋•北碚区月考)中秋节当天,小明将收到的一条短信,发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,问小明给()人发了短信?A.10B.11 C.12D.135.(2017秋•江岸区校级月考)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支6.(2017秋•新市区校级月考)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是31,每个支干长出小分支的数量是()A.5B.6C.5 或6D.77.(2017秋•青山区期中)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的分支,主干、支干和小分支的总数是21,则每个支干长出()A.5根小分支B.4根小分支C.3根小分支D.2根小分支8.(2017秋•卫辉市期中)今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到90个红包,则该群一共有()A.9人B.10人C.11人D.12人9.(2017秋•黄陂区月考)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是73,则每个支干长出的小分支数是()A.7个B.8个C.9个D.10个10.(2015秋•东平县期末)元旦当天,小明将收到的一条短信,发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时收到这条短信的人共有157人,问小明给()人发了短信?A.10B.11C.12D.1311.(2015秋•武汉期末)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支12.(2016秋•江都区期中)有一人患了流感,经过两轮传染后共有64人患了流感.则每轮传染中平均一个人传染了几个人?()A.5人B.6人C.7人D.8人13.(2016秋•西陵区校级期中)某种电脑病毒传播的非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若病毒得不到有效控制,三轮感染后,被感染的电脑有()台.A.81B.648C.700D.72914.(2016秋•保亭县校级月考)有一人患了红眼病,经过两轮传染后共有144人患了红眼病,那每轮传染中平均一个人传染的人数为()人.A.10B.11C.12D.1315.(2015•东西湖区校级模拟)卫生部门为了控制前段时间红眼病的流行传染,对该种传染病进行研究发现,若一人患了该病,经过两轮传染后共有121人患了该病.若按这样的传染速度,第三轮传染后我们统计发现有2662人患了该病,则最开始有()人患了该病.A.1B.2C.3D.4二.填空题(共5小题)16.(2017秋•乌鲁木齐期末)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.17.(2017秋•武昌区期中)某种植物主干长出若干数目的枝干,每个分支又长出同样数目的小分支,主干、枝干、小分支的总数是91,每个枝干长出小分支.18.(2017秋•鼓楼区校级期中)秋冬季节为流感病毒的高发期,若一个人患了流感,经过两轮传染后共有144人患流感,则每轮传染中平均一个人传染个人.19.(2017秋•华安县校级月考)某人用手机发短信,获得信息人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信中,平均一个人向个人发送短信.20.(2017秋•龙潭区校级月考)一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出个小分支.三.解答题(共3小题)21.(2018•潮南区一模)甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?22.(2017秋•越秀区期末)有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?23.(2017秋•乐昌市期末)2015年某市曾爆发登革热疫情,登革热是一种传染性病毒,在病毒传播中,若1个人患病,則经过两轮传染就共有144人患病.(1)毎轮传染中平均一个人传染了几个人?(2)若病毒得不到有效控制,按照这样的传染速度,三轮传染后,患病的人数共有多少人?参考答案一.选择题(共15小题)1.C.2.D.3.C.4.A.5.B.6.A.7.B.8.B.9.B.10.C.11.B.12.C.13.D.14.B.15.B.二.填空题(共5小题)16.12.17.9.18.11.19.9.20.7.三.解答题(共3小题)21.设每天传染中平均一个人传染了x个人,1+x+x(x+1)=9,x=2或x=﹣4(舍去).每天传染中平均一个人传染了2个人,9+18=27,27+27×2=81,81+81×2=243,243+243×2=729,729+729×2=2187.故5天后共有2187人得病.22.解:(1)设每轮传染中平均一个人传染x个人,根据题意得:1+x+x(x+1)=81,整理,得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮传染中平均一个人传染8个人.(2)81+81×8=729(人).答:经过三轮传染后共有729人会患流感.23.解:(1)设每轮传染中平均一个人传染了x人,由题意,得1+x+x(x+1)=144,解得x=11或x=﹣13(舍去).答:每轮传染中平均一个人传染了11个人;(2)144+144×11=1728(人).答:三轮传染后,患病的人数共有1728人.。
21.3实际问题与一元二次方程第1课时用一元二次方程解决传播问题基础题知识点1 传播问题1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A.8人 B.9人C.10人 D.11人2.鸡瘟是一种传播速度很快的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A.10只 B.11只C.12只 D.13只3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支.知识点2 握手问题4.“山野风”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )A .x(x +1)=210B .x(x -1)=210C .2x(x -1)=210 D.12x(x -1)=2105.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .x(x -1)=10 B.x (x -1)2=10C .x(x +1)=10 D.x (x +1)2=106.参加一次足球联赛的每两个队之间都进行两场比赛,若共要比赛110场,则共有________个队参加比赛( )A .8B .9C .10D .117.一条直线上有n 个点,共形成了45条线段,求n 的值.知识点3 数字问题8.两个连续偶数的和为6,积为8,则这两个连续偶数是________.9.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是________.10.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数是多少?中档题11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A.4个 B.5个C.6个 D.7个12.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?13.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?14.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和是多少?15.(襄阳中考)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?综合题16.(1)n边形(n>3)其中一个顶点的对角线有________条;(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.参考答案基础题 1.B 2.C3.设每个支干长出x 个小分支,根据题意,得1+x +x 2=111.解得x 1=10,x 2=-11(舍去).答:每个支干长出10个小分支.4.B5.B6.D7.由题意得12n(n -1)=45.解得n 1=10,n 2=-9(舍去).答:n 等于10.8.2和4 9.9810.设这个两位数的个位数字为x ,则十位数字为(x -3),由题意,得x 2=10(x -3)+x.解得x 1=6,x 2=5.当x =6时,x -3=3;当x =5时,x -3=2.答:这个两位数是36或25. 中档题 11.B12.设有x 家公司出席了这次交易会,根据题意,得12x(x -1)=78.解得x 1=13,x 2=-12(舍去).答:有13家公司出席了这次交易会.13.设要向x 个人发送短信.根据题意,得x(x +1)=90,解得x 1=9,x 2=-10(舍去).答:一个人要向9个人发送短信.14.设最小数为x ,则最大数为x +16,根据题意,得x(x +16)=192.解得x 1=8,x 2=-24(舍去).故最小的三个数为8,9,10,下面一行的数字为15,16,17;再下面一行三个数字尾22,23,24.所以这9个数的和为:8+9+10+15+16+17+22+23+24=144.15.(1)设每轮传染中平均每人传染了x 人,则1+x +x(x +1)=64.解得x 1=7,x 2=-9(舍去).答:每轮传染中平均一个人传染了7个人.(2)64×7=448(人).答:第三轮将又有448人被传染. 综合题16.(1)(n -3);(2)设这个凸多边形是n 边形,由题意,得 n (n -3)2=14. 解得n 1=7,n 2=-4(不合题意,舍去). 答:这个凸多边形是七边形. (3)不存在.理由:假设存在n 边形有21条对角线.由题意,得 n (n -3)2=21.解得n =3±1772. 因为多边形的边数为正整数,但3±1772不是正整数,故不合题意.所以不存在有21条对角线的凸多边形.周周练(21.2.3~21.3) (时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.小新在学习解一元二次方程时,做了下面几个填空题:(1)若x 2=9,则x =3;(2)方程mx 2+m 2x =0(m ≠0),则x =-m ;(3)方程2x(x+1)=x+1的解为x=-1.其中,答案完全正确的有( )A.0个 B.1个C.2个 D.3个2.已知α,β满足α+β=5,αβ=6,则以α,β为根的一元二次方程是( ) A.x2-5x+6=0B.x2-5x-6=0C.x2+5x+6=0D.x2+5x-6=03.(衡阳中考)若关于x的方程x2+3x+a=0有一个根为-1,则另一个根为( ) A.-2 B.2C.4 D.-34.解方程3(x-1)2=6(x-1),最适当的方法是( )A.直接求解 B.配方法C.因式分解法 D.公式法5.多项式a2+4a-10的值等于11,则a的值为( )A.3或7 B.-3或7C.3或-7 D.-3或-76.经计算整式x+1与x-4的积为x2-3x-4,则一元二次方程x2-3x-4=0的所有根是( )A.x1=-1,x2=-4B.x1=-1,x2=4C.x1=1,x2=4D.x1=1,x2=-47.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为( )A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1208.(哈尔滨中考改编)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600 m2,那么扩大后的正方形绿地边长为( ) A.120 mB.100 mC.85 mD.80 m二、填空题(每小题4分,共24分)9.(聊城中考)一元二次方程x2-2x=0的解是______________.10.一元二次方程x2+bx+c=0的两根互为倒数,则c=________.11.设一元二次方程x2-7x+3=0的两个实数根分别为x1和x2,则x1+x2=_______,x1x2=_______.12.(南昌中考)已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.13.已知:如图所示的图形是一无盖长方体的铁盒平面展开图.若铁盒的容积为3 m3,则根据图中的条件,可列出方程:____________.14.(巴彦淖尔中考)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请___个队参赛.三、解答题(共44分)15.(20分)用适当的方法解下列方程:(1)(徐州中考)x2-2x-3=0;(2)(x+2)2=2x+4;(3)(3x+1)2-4=0;(4)4x2-12x+5=0;(5)4(x-1)2-9(3-2x)2=0.16.(6分)当x 为何值时,32x 2+14(x -1)和13(x -2)互为相反数?17.(8分)向阳村2013年的人均收入为12 000元,2015年的人均收入为14 520元.求人均收入的年平均增长率.18.(10分)(淮安中考)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?参考答案1.A2.A3.A4.C5.C6.B7.D8.D9.x 1=0,x 2=2 10.1 11.7 3 12.25 13.x(x +1)=3 14. 515.(1)x 1=-1,x 2=3.(2)x 1=0,x 2=-2.(3)x 1=13,x 2=-1.(4)x 1=52,x 2=12.(5)x 1=74,x 2=118. 16.∵32x 2+14(x -1)和13(x -2)互为相反数,∴32x 2+14(x -1)+13(x -2)=0.解得x 1=-1,x 2=1118.∴当x 为-1或1118时,32x 2+14(x -1)和13(x -2)互为相反数.17.设人均收入的年平均增长率为x ,根据题意得12 000(1+x)2=14 520.解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:人均收入的年平均增长率为10%. 18.设购买了x 件这种服装,根据题意,得[80-2(x -10)]x =1 200.解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不合题意,舍去.∴x =20.答:她购买了20件这种服装.。
21. 3.1 实际问题与一元二次方程(一)传播、循环、数字问题【自主导学】有1个人得流感病,第一轮传染6个人,第一轮过后共有人得流感,第二轮传染时平均每人也传染6人,第二轮被传染了人.第二轮过后共有人得流感.【易错点睛】要组织一次蓝球赛,每两个队都赛一场,计划要安排21场比赛,设赛队的个数是x个,则可列方程为A 夯实基础知识点一数字问题1.若两个数的和为7,这两个数的积为12,则这两个数分别为或.2.若两个连续偶数的积为48,则这个两位数的和为()A. 6B. 0C. -8D.14或-14知识点二单循环与双循环问题3.一个初中毕业班的每一位同学都将自己的照片向全班其他同学各送一张表示留念,全班共送了2550张相片.设全班有x名学生,根据题意可列方程为( )A.x (x+l)=2550 B. x(x-l)=2550 C.2x(x+l)=2550 D. x(x-l)=2550×24.在一次生日聚会上,有人提议与会的每名同学都与其他同学握一次手. 已知参加这次聚会的所有与会者共握手105次,那么参加此次聚会的同学共有人.5.(2017金赛)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排45场比赛,求参赛球队的个数.知识点三分支问题6.有一个人患了流感,经过两轮传染后,共有64人患了流感,假设每轮传染中,平均一个人传染了x个人,则依题意可列方程为或.7.有一个人患了流感,经过两轮传染后共有81人患了流感,那么每轮传染中平均一个人传染的人数为()A. 8人B. 9人C. 10人D.11人8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?B 综合运用9.【教材变式】(22页习题6改)一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人.A .12B .10C .9D .810.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为( )A .25B .36C .25或36D .-25或-3611.【教材变式】(17页习题12改)一个多边形有9条对角线,则这个多边形有多少条边( )A .6B .7C .8D .912.有一个人换了流感,经过两轮传染后共有100人患了流感.(1)每轮传染中平均一个人传染了几个人?(2)如果照这样的传染速度,三轮传染后有多少人患流感?13.五个连续整数-2,-1,0,1,2满足下面关系:22222(2)(1)0=12-+-++,即前三个连续整数的平方和等于后两个连续整数的平方和,你能否找出五个连续整数,使它们具有上面的性质?C 拓广探索14.【教材变式】(23页活动改)观察下列图形规律:当n 为多少时,图形“.”的个数和“△”的个数相等?n=4n=3n=2n=1。
人教版九年级上册数学21.3 一元二次方程传播问题、平均变化率、几何图形典型题总结学生姓名:年级:老师:上课日期:时间:课次:第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费) 解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x=-3.2(舍),x2=0.2,所以2月,3月生产收入1的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x=1.8(舍去).∴平均每次下调的百分率为20%;2(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.第3课时几何图形与一元二次方程1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.3.通过探究体会列方程的实质,提高灵活处理问题的能力.一、情境导入如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,你能求出所截去小正方形的边长吗?二、合作探究探究点:用一元二次方程解决图形面积问题【类型一】利用面积构造一元二次方程模型用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=6解析:设一边长为x米,则另外一边长为(5-x)米,根据它的面积为6平方米,即可列出方程得:x(5-x)=6,故选择B.方法总结:理解题意,恰当的设未知数,把题中相关的量用未知数表示出来,用相等关系列出方程.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,求小正方形的边长.解析:设小正方形的边长为x cm,则长方体盒子底面的长、宽均可用含x的代数式表示,再根据面积,即可建立等量关系,列出方程.解:设小正方形的边长为x cm,则可得这个长方体盒子的底面的长是(80-2x)cm,宽是(60-2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面积,方程可列为(80-2x)(60-2x)=1500,整理得x2-70x+825=0,解得x1=55,x2=15.又60-2x>0,∴x=55(舍).∴小正方形的边长为15cm.方法总结:要从已知条件中找出关键的与所求问题有关的信息,通过图形求出面积,解题的关键是熟记各种图形的面积公式,列出符合题意的方程,整理即可.【类型二】整体法构造一元二次方程模型如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.设道路宽为x米,根据题意可列出的方程为______________.解析:解法一:把两条道路平移到靠近矩形的一边上,用含x的代数式表示草坪的长为(22-x)米,宽为(17-x)米,根据草坪的面积为300平方米可列出方程(22-x)(17-x)=300.解法二:根据面积的和差可列方程:22×17-22x-17x+x2=300.方法总结:解答与道路有关的面积问题,可以根据图形面积的和差关系,寻找相等关系建立方程求解;也可以用平移的方法,把道路平移构建特殊的图形,并利用面积建立方程求解.【类型三】利用一元二次方程解决动点问题如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC 向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.解析:这是一道动态问题,可设出未知数,表示出PC与CQ的长,根据面积公式建立方程求解.解:(1)设x s后,可使△PCQ的面积为8cm2,所以AP=x cm,PC=(6-x)cm,CQ=2x cm.则根据题意,得12·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.则根据题意,得12(6-x)·2x=12×12×6×8.整理,得x2-6x+12=0.由于此方程没有实数根,所以不存在使△PCQ的面积等于△ABC面积一半的时刻.三、板书设计与图形有关的问题是一元二次方程应用的常见题型,解决这类问题的关键是将不规则图形分割或补全成规则图形,找出各部分面积之间的关系,运用面积等计算公式列出方程;对图形进行分割或补全的原则:转化成为规则图形时越简单越直观越好.。