第九章吸光光度法分析
- 格式:doc
- 大小:522.00 KB
- 文档页数:16
第九章吸光光度法知识点吸光光度法是基于分子对光的选择性吸收而建立的一种分析方法,包括比色法、紫外一可见吸光光度法、红外光谱法等。
1.吸光光度法的基本原理①物质对光的选择性吸收:当光照射到物质上时,会产生反射、散射、吸收或透射。
若被照射的物质为溶液,光的散射可以忽略。
当一束白光照射某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过,溶液的颜色由透射光的波长所决定。
吸收光与透射光互为补色光(它们混合在一起可组成白光)。
分子与原子、离子一样,都具有不连续的量子化能级,在一般情况下分子处于最低能态(基态)。
当入射光照射物质时,分子会选择性地吸收某些频率的光子的能量,由基态跃迁到激发态(较高能级),其能级差E激发态一E基态与选择性吸收的光子能量hv的关系为Hv=E激发态一E基态分子运动包括分子的转动、分子的振动和电子的运动。
分子转动、振动能级间隔一般小于1 eV,其光谱处于红外和远红外区。
电子能级间的能量差一般为1~20 eV,由电子能级跃迁而产生的吸收光谱位于紫外及可见光区,其实验方法为比色法和可见-紫外吸光光度法。
②吸收曲线:以波长为横坐标,以吸收光的强度为纵坐标绘制的曲线,称为吸收光谱图,也称吸收曲线。
它能清楚地描述物质对不同波长的光的吸收情况。
③光的吸收定律——朗伯一比尔定律:当一束平行单色光垂直通过一厚度为b、非散射的均匀吸光物质溶液时,吸光物质吸收光能,致使透射光强度减弱。
若用I。
表示入射光强度,I t表示透射光强度,I。
与I t之比称为透光率或透光度T,T=I。
/I t,吸光物质对光的吸收程度,还常用吸光度A表示,A=lgT=log I。
/I t。
实验证明,当一束平行单色光垂直照射某一均匀的非散射吸光物质溶液时,溶液的吸光度A与溶液浓度c和液层厚度b的乘积成正比,此即朗伯一比尔定律,其数学表达式为A=lgT=log I。
/I t =abc式中,a为吸收系数。
溶液浓度以g·L-1为单位、液层厚度以cm 为单位时,a的单位为L·g-1·cm-1。
第9章吸光光度法一、选择题1.所谓可见光区,所指的波长范围是()(A)200~400nm(B)400~750nm(C)750~1000nm(D)100~200nm2.一束()通过有色溶液时,溶液的吸光度与溶液浓度和液层厚度的乘积成正比。
(A)平行可见光(B)平行单色光(C)白光(D)紫外光3.下列说法正确的是()(A)朗伯-比尔定律,浓度c与吸光度A之间的关系是一条通过原点的直线(B)朗伯-比尔定律成立的条件是稀溶液,与是否单色光无关(C)最大吸收波长λmax是指物质能对光产生吸收所对应的最大波长(D)同一物质在不同波长处吸光系数不同,不同物质在同一波长处的吸光系数相同4.符合比耳定律的有色溶液稀释时,其最大的吸收峰的波长位置()(A)向长波方向移动(B)向短波方向移动(C)不移动,但峰高降低(D)无任何变化5.标准工作曲线不过原点的可能的原因是()(A)显色反应得酸度控制不当 (B)显色剂得浓度过高(C)吸收波长选择不当(D)参比溶液选择不当6.某物质摩尔吸光系数很大,则表明()(A)该物质对某波长光的吸光能力很强(B)该物质浓度很大(C)测定该物质的精密度很高(D)测量该物质产生的吸光度很大7.吸光性物质的摩尔吸光系数与下列()因素有关(A)比色皿厚度(B)该物质浓度(C)吸收池材料(D)入射光波长8.已知KMnO4的相对分子质量为158。
04,ε545nm=2。
2×103 L/(mol·cm)今在545nm处用浓度为0.0020% KMnO4溶液,3.00cm比色皿测得透射比为()(A)15%(B)83%(C)25%(D)53%9.有AB两份不同浓度的有色溶液,A溶液用1。
0cm吸收池,B溶液用3。
0cm吸收池,在同一波长下测得的吸光度值相等,则它们的浓度关系为 ()(A)A是B的1/3(B)A等于B(C)B是A的3倍(D)B是A的1/310.某有色溶液,当用1cm吸收池时,其透射比为T,若改用2cm吸收池,则透射比应为()(A)2T(B)2lgT(C)T 1/2 (D)T211.用分光光度计测量有色化合物,浓度测量产生的相对误差最小时的吸光度为()(A)0.368(B)0.334(C)0.443(D)0.43412.在分光光度测定中,如试样溶液有色,显色剂本身无色,溶液中除被测离子外,其它共存离子与显色剂不生色,此时应选()为参比.(A)溶剂空白(B)试液空白(C)试剂空白(D)褪色参比13.用邻菲罗啉法测定锅炉水中的铁,pH需控制在4~6之间,通常选择()缓冲溶液较合适。
吸光光度法讲解吸光光度法是一种广泛应用于化学分析和生物科学研究中的定量分析方法。
它通过测量样品溶液对特定波长的光的吸收程度来定量分析物质的浓度。
吸光光度法基于光的著名的“比尔-朗伯定律”,该定律描述了物质溶液对光的吸收与其浓度之间的关系。
通过测量光的吸收度,我们可以推算出浓度。
吸光光度法的基本原理是根据物质溶液对特定波长的光的吸收程度与溶液中物质的浓度之间的线性关系。
具体来说,当光通过物质溶液时,物质分子或离子会吸收光的能量,使光强度降低。
根据比尔-朗伯定律,光的吸光度(A)与物质的浓度(c)之间存在如下关系:A=εlc,其中ε是吸光度的摩尔吸光系数,l是光程长。
通过测量光的吸光度和已知的吸光度摩尔吸光系数,我们可以计算出溶液中物质的浓度。
在实践中,吸光光度法通常使用分光光度计来进行测量。
分光光度计可以发射一束特定波长的光,并测量光通过样品溶液前后的光强度差异。
这种差异可以转化为吸光度,并用于计算物质的浓度。
吸光光度法有许多应用领域。
在化学分析中,吸光光度法可以用于分析金属离子、化学物质的浓度、酸碱度等。
它可以通过配备合适的试剂和仪器来满足不同的分析需求。
在生物科学研究中,吸光光度法被广泛应用于测量DNA、蛋白质和酶的浓度。
通过测量DNA和蛋白质在特定波长下的吸光度,可以确定它们的浓度,进而研究其相互作用、结构和功能。
吸光光度法还可以用于测量酶的活性,通过测量酶和底物之间的反应,可以确定酶的催化能力。
吸光光度法有许多优点。
首先,它是一种快速、简单和经济的分析方法。
与其他方法相比,吸光光度法仪器简单、成本低,且操作方便。
其次,吸光光度法具有较高的选择性和灵敏度。
通过选择合适的波长和试剂,可以实现对特定物质的高度选择性测量。
此外,吸光光度法对微量物质的测量也非常敏感,可以达到微克或纳克级别的浓度测量。
然而,吸光光度法也存在一些限制。
首先,该方法对于有色的物质比较适用。
对于无色物质,需要经历一系列的试剂反应使其形成有色产物,才能进行吸光度测量。
第九章吸光光度法本章介绍的吸光光度法是一种仪器分析方法(其中目视比色法不必用仪器)。
一种方法能用来进行物质的定量分析,测量的物理量与被测组分的浓度之间必须存在确定的定量的关系。
这是定量测量方法的理论基础。
另一方面,还需要考虑仪器设备的设计和测试条件的选择,以保证方法符合定量基本关系式,并保证有较高的准确度和可操作性。
利用光信号测定物质含量的方法很多,基于物质对光具有选择吸收的特性而建立起来的分析方法,称为吸光光度法。
根据产生光吸收的质点不同,又可分为分子吸收光谱法和原子吸收光谱法。
本章中讨论的紫外-可见吸光光度法是分子吸收光谱法的一种。
9.1 概述9.1.1 光的基本性质光是一种电磁波,按照波长(或频率)排列,可得到电磁波谱图:光具有波粒二象性,一定波长的光具有一定的能量,波长越长(频率越低),光量子的能量越低。
具有相同能量(相同波长)的光为单色光,由不同能量(不同波长)的光组合在一起的称为复合光。
若两种不同颜色的单色光按一定的强度比例混合得到白光,那么就称这两种单色光为互补光,这种现象称为光的互补。
白光是复合光,让一束白光通过分光元件,它将分解成红、橙、黄、绿、青、蓝、紫等各种颜色的光。
即可见光谱。
9.1.2 光与物质的作用当光照射到物质上时,会产生反射、散射、吸收或透射现象,若被照射的物质为溶液,光的散射可以忽略。
当一束白光照射某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过,溶液的颜色由透射光的波长所决定。
吸收光与透射光互为补色光。
如硫酸铜溶液吸收白光中的黄色光而呈现蓝色;高锰酸钾溶液吸收黄绿色的光而呈紫红色。
分子、原子和离子,都具有不连续的量子化能级,在一般情况下分子处于最低能态(基态)。
当入射光照射物质时,分子会选择性地吸收了某些波长的光,由基态跃迁到激发态(较高能级),其能级差E 激发态-E 基态与选择性吸收的光子能量h ν 的关系为:h ν = E 激发态-E 基态 分子运动包括分子的转动、分子的振动和电子的运动。
分子转动、振动能级间隔一般小于1ev ,其光谱处于红外和远红外区。
电子能级间的能量差一般为1~20ev ,由电子能级跃迁而产生的吸收光谱位于紫外及可见光区,其实验方法为比色法和可见、紫外吸光光度法。
9.1.3 定性分析及定量分析的基础1. 定性分析基础吸收光谱取决于分子的结构,以及分子轨道上电子的性质,不同的物质具有不同的吸收光谱,因此,吸收光谱可提供定性分析的信息。
2. 定量分析基础对同一物质而言,浓度不同,对特定波长光的吸收强度不同,因此,吸收强度可提供定量分析的信息。
从不同浓度的高锰酸钾溶液的吸收光谱图可知,在波长535nm 处的吸光强度与浓度间存在定量的关系,可由此进行定量分析。
9.1.4 吸收定律1. 朗伯—比尔定律一束平行单色光通过任何均匀、非散射的固体、液体或气体介质时,一部分被吸收,一部分透过介质,一部分被器皿的表面反射。
设入射光强度为I 0',吸收光强度为I a ,透过光强度为I t ,反射光强度为I r 。
则r t a '0I I I I ++=在吸光光度法中,通常将试液和空白溶液分别置于同样材质及同样厚度的吸收皿中,因此反射光的强度基本相同,其影响可以相互抵消,故可以忽略反射光的影响,可得到下式:t a o I I I +=。
即光强为I 0的入射光通过试液皿后,一部分光被吸收,一部分光被透射。
I t 与I 0之比称为透光率或透光度T , T = I t /I 0吸光物质对光的吸收程度,还常用吸光度A 表示:A = - lg T =lg (I 0/I t )实验证明,当一束平行单色光垂直照射某一均匀的非散射吸光物质溶液时,溶液的吸光度A 与溶液浓度c和液层厚度b 的乘积成正比,此即朗伯—比尔(Lambert —Beer )定律,其数学表达式为:KbcI I A t==0lg 2. 摩尔吸收系数和桑德尔灵敏度当溶液浓度以mol/L 为单位时,液层厚度以cm 为单位时,K 常用ε 代替,ε 称为摩尔吸收系数,其单位为L .mol -1.cm -1。
此时朗伯-比尔定律可写为:A =εbc摩尔吸收系数ε是吸光物质在给定波长和溶剂下的特征常数,数值上等于1mol/L 吸光物质溶液和液层厚度为1cm 时溶液的吸光度,它表示吸光物质对指定频率的光子的吸收本领。
ε 越大,表示该物质对某波长光的吸收能力越强,该测定方法的灵敏度也就越高。
一般认为,ε<104,则方法的灵敏度较低; ε在104~5⨯104时,方法的灵敏度为中等;ε在5⨯104~105时,灵敏度高;ε>105,属超高灵敏度。
还可用桑德尔灵敏度(灵敏度指数)S 表示方法的灵敏度,Sandell 对S 的定义是:在一定的波长下,测得的吸光度A=0.001时,1 cm 2截面积内所含的吸光物质的量,其单位为μg/cm 2。
S 与ε的关系的推导: A =0.001=εbc ,bc =0.001/εb 为吸收池的厚度,单位为cm ,c 的单位为mol/L , bc 乘以待测物的摩尔质量M (g/mol),就是单位截面积内待测物的质量,即S =b (cm)⨯c(mol/dm 3)⨯M (g/mol)⨯106μg/g =30.00110M Mεε⨯⨯=(μg/cm 2)。
例1. 某试液用2cm 比色皿测量时,T =60%,若改用1cm 或3cm 比色皿,T 及A 分别等于多少?解:设某试液用2cm 比色皿测量时的吸光度为A o ,用1cm 和3cm 比色皿测得的吸光度为A 1和A 2。
因为A 与T 之间的关系是A = -lg T ,所以A o =0.22。
根据朗伯-比尔定律可知:A =εb 1c ,所以A 1=A 0b 1/b o =0.11,T 1=110A -=0.78.A 2=A 0b 2/b o =0.33, T 3=310A -=0.47.例2. 已知含Fe 2+浓度为500g/L 的溶液,用邻二氮菲比色测定铁,比色皿厚度为2cm ,在波长508nm 处测得吸光度A =0.19,计算摩尔吸收系数。
解:L/mol 109.885.551050066Fe--⨯=⨯=c)cm mol (L 101.1109.8219.01146---⋅⋅⨯=⨯⨯==bc A ε例3. 双硫腙显色法测定铅的ε=6.8⨯10411cm mol L --⋅⋅,求桑德尔灵敏度 S 。
解:S =M /ε=207/6.8⨯104=0.0030(μg/cm 2)9.2 目视比色法与分光光度法朗伯—比尔定律是光度法定量分析的基础。
可以通过仪器测吸光度,然后通过与标准的比较法或标准曲线法得到被测组分的浓度。
也可通过肉眼直接观测颜色的深浅判断组分含量。
9.2.1 目视比色法目视比色法是用眼睛观察、比较溶液颜色深度以确定物质含量的方法。
一般采用标准系列法。
即在一套等体积的比色管中配置一系列浓度不同的标准溶液,并按同样的方法配置待测溶液,待显色反应达平衡后,从管口垂直向下观察(对于高含量的试样,也可从管侧面观察) ,比较待测溶液与标准系列中哪一个标准溶液颜色相同,便表明二者浓度相等。
如果待测试液的颜色介于某相邻两标准溶液之间,则待测试样的含量可取两标准溶液含量的中间值。
优点是操作简便,适宜于野外或现场快速测定,可在复合光-白光下进行测定,某些不符合朗伯-比尔定律的显色反应,仍可用该法进行测定。
主要缺点是准确度不高,标准系列不能久存,需要在测定时临时配制。
9.2.2 分光光度法1. 分光光度计分光光度计按工作波长范围分类,可分为紫外-可见分光光度计和可见光分光光度计。
按照光路的设计方式可分为单光束、双光束和单波长、双波长分光光度计等。
尽管分光光度计的种类和型号繁多,但它们都是以下基本部件组成的。
(1) 分光光度计的主要组成部件:光源、单色器、吸收池、检测器和显示装置。
光源:(Light source):光源的作用是提供所需波长范围内的连续光谱,光源要有足够的光强度,能量分布均匀,稳定。
电源电压的微小波动会引起灯光强度的很大变化,因此需要用稳压电源。
可见分光光度计的光源多属热光源,如钨灯、碘钨灯等,钨灯发射光谱波长范围为400~1000nm,在可见和近红外区。
碘钨灯发射光谱波长范围320 ~2500 nm。
紫外区使用氢灯或氘灯(180 ~375 nm)。
单色器:(monochromator):将光源发出的连续光谱分解为单色光的装置。
比色计的单色器一般是滤光片,分光光度计的单色器通常由棱镜或光栅等色散元件及狭缝和透镜等组成。
可见分光光度计常用玻璃棱镜,玻璃棱镜适合的波长为350 ~3200 nm;紫外-可见分光光度计常用石英棱镜,这是由于玻璃对紫外光有较强吸收的缘故,石英棱镜适合的波长为185 ~4000 nm。
光栅是利用光的衍射与干涉作用制成的色散元件,它具有适用波长范围宽、分辨性能好和色散均匀等优点。
吸收池也称比色皿(coloritrough) :吸收池用来盛放试液。
按制作材料可分为石英和玻璃吸收池,前者用于紫外和可见区,后者仅用于可见区。
检测器(detector):利用光电效应,将光能转成电流讯号。
常用的有光电池,光电管,光电倍增管、光电二极管、光导摄象管等。
显示装置 :检流计、微安表、数字显示记录仪等。
(2) 几种不同类型分光光度计单光束分光光度计(single beam spectrophotometer),如721型分光光度计为可见光单光束分光光度计的类型。
仪器光路示意图如下。
双波长分光光度计(double wavelength spectrophotometer)、双光束分光光度计(double beam spectrophotometer)或双波长—双光束分光光度计:双光束分光光度计是将单色光分成两束,一束通过参比池,另一束通过样品池,经一次测量,检测器直接得到的是样品池与参比池吸光度的差,即空白样A A A -=∆。
双波长分光光度计是将同一光源发出的光分成两束,以一定的频率交替照射同一吸收池,经光电倍增管和电子控制系统,由指示器显示出两个波长处的吸光度之差,即。
利用双波长光度计可消除干扰组分或混浊试样背景对测定的影响,往往可提高方法的灵敏度和选择性。
该类型仪器与单光束仪器的比较如下图。
光学多通道分光光度计(optical multichannel spectrophotometer )是20世纪80 年代问世的产品,是一种具有全新光路系统的仪器。
由钨灯或氘灯发射的复合光先通过样品池后再经全息光栅色散,色散后的单色光由光二极管阵列中的光二极管接收,一个光二极管阵列一般能容纳数百个光二极管,可覆盖190~900nm 波长范围。
全部波长同时被检测,所以响应非常快。