第九章吸光光度法解析
- 格式:ppt
- 大小:2.69 MB
- 文档页数:75
第九章吸光光度法知识点吸光光度法是基于分子对光的选择性吸收而建立的一种分析方法,包括比色法、紫外一可见吸光光度法、红外光谱法等。
1.吸光光度法的基本原理①物质对光的选择性吸收:当光照射到物质上时,会产生反射、散射、吸收或透射。
若被照射的物质为溶液,光的散射可以忽略。
当一束白光照射某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过,溶液的颜色由透射光的波长所决定。
吸收光与透射光互为补色光(它们混合在一起可组成白光)。
分子与原子、离子一样,都具有不连续的量子化能级,在一般情况下分子处于最低能态(基态)。
当入射光照射物质时,分子会选择性地吸收某些频率的光子的能量,由基态跃迁到激发态(较高能级),其能级差E激发态一E基态与选择性吸收的光子能量hv的关系为Hv=E激发态一E基态分子运动包括分子的转动、分子的振动和电子的运动。
分子转动、振动能级间隔一般小于1 eV,其光谱处于红外和远红外区。
电子能级间的能量差一般为1~20 eV,由电子能级跃迁而产生的吸收光谱位于紫外及可见光区,其实验方法为比色法和可见-紫外吸光光度法。
②吸收曲线:以波长为横坐标,以吸收光的强度为纵坐标绘制的曲线,称为吸收光谱图,也称吸收曲线。
它能清楚地描述物质对不同波长的光的吸收情况。
③光的吸收定律——朗伯一比尔定律:当一束平行单色光垂直通过一厚度为b、非散射的均匀吸光物质溶液时,吸光物质吸收光能,致使透射光强度减弱。
若用I。
表示入射光强度,I t表示透射光强度,I。
与I t之比称为透光率或透光度T,T=I。
/I t,吸光物质对光的吸收程度,还常用吸光度A表示,A=lgT=log I。
/I t。
实验证明,当一束平行单色光垂直照射某一均匀的非散射吸光物质溶液时,溶液的吸光度A与溶液浓度c和液层厚度b的乘积成正比,此即朗伯一比尔定律,其数学表达式为A=lgT=log I。
/I t =abc式中,a为吸收系数。
溶液浓度以g·L-1为单位、液层厚度以cm 为单位时,a的单位为L·g-1·cm-1。
吸光光度法讲解吸光光度法是一种广泛应用于化学分析和生物科学研究中的定量分析方法。
它通过测量样品溶液对特定波长的光的吸收程度来定量分析物质的浓度。
吸光光度法基于光的著名的“比尔-朗伯定律”,该定律描述了物质溶液对光的吸收与其浓度之间的关系。
通过测量光的吸收度,我们可以推算出浓度。
吸光光度法的基本原理是根据物质溶液对特定波长的光的吸收程度与溶液中物质的浓度之间的线性关系。
具体来说,当光通过物质溶液时,物质分子或离子会吸收光的能量,使光强度降低。
根据比尔-朗伯定律,光的吸光度(A)与物质的浓度(c)之间存在如下关系:A=εlc,其中ε是吸光度的摩尔吸光系数,l是光程长。
通过测量光的吸光度和已知的吸光度摩尔吸光系数,我们可以计算出溶液中物质的浓度。
在实践中,吸光光度法通常使用分光光度计来进行测量。
分光光度计可以发射一束特定波长的光,并测量光通过样品溶液前后的光强度差异。
这种差异可以转化为吸光度,并用于计算物质的浓度。
吸光光度法有许多应用领域。
在化学分析中,吸光光度法可以用于分析金属离子、化学物质的浓度、酸碱度等。
它可以通过配备合适的试剂和仪器来满足不同的分析需求。
在生物科学研究中,吸光光度法被广泛应用于测量DNA、蛋白质和酶的浓度。
通过测量DNA和蛋白质在特定波长下的吸光度,可以确定它们的浓度,进而研究其相互作用、结构和功能。
吸光光度法还可以用于测量酶的活性,通过测量酶和底物之间的反应,可以确定酶的催化能力。
吸光光度法有许多优点。
首先,它是一种快速、简单和经济的分析方法。
与其他方法相比,吸光光度法仪器简单、成本低,且操作方便。
其次,吸光光度法具有较高的选择性和灵敏度。
通过选择合适的波长和试剂,可以实现对特定物质的高度选择性测量。
此外,吸光光度法对微量物质的测量也非常敏感,可以达到微克或纳克级别的浓度测量。
然而,吸光光度法也存在一些限制。
首先,该方法对于有色的物质比较适用。
对于无色物质,需要经历一系列的试剂反应使其形成有色产物,才能进行吸光度测量。