K-means聚类分析
- 格式:pdf
- 大小:205.82 KB
- 文档页数:3
K-means聚类分析⼀、原理1. 先确定簇的个数,K2. 假设每个簇都有⼀个中⼼点centroid3. 将每个样本点划分到距离它最近的中⼼点所属的簇中选择K个点做为初始的中⼼点while(1){将所有点分配个K个中⼼点形成K个簇重新计算每个簇的中⼼点if(簇的中⼼点不再改变)break;}⽬标函数:定义为每个样本与其簇中⼼点的距离的平⽅和(theSum of Squared Error, SSE) – µk 表⽰簇Ck 的中⼼点(或其它能代表Ck的点) – 若xn被划分到簇Ck则rnk=1,否则rnk= 0• ⽬标:找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩初始中⼼点通常是随机选取的(收敛后得到的是局部最优解)不同的中⼼点会对聚类结果产⽣不同的影响:1、2、此时你⼀定会有疑问:如何选取"较好的"初始中⼼点?1. 凭经验选取代表点2. 将全部数据随机分成c类,计算每类重⼼座位初始点3. ⽤“密度”法选择代表点4. 将样本随机排序后使⽤前c个点作为代表点5. 从(c-1)聚类划分问题的解中产⽣c聚类划分问题的代表点 结论:若对数据不够了解,可以直接选择2和4⽅法需要预先确定K Q:如何选取K SSE⼀般随着K的增⼤⽽减⼩A:emmm你多尝试⼏次吧,看看哪个合适。
斜率改变最⼤的点⽐如k=2总结:简单的来说,K-means就是假设有K个簇,然后通过上⾯找初始点的⽅法,找到K个初始点,将所有的数据分为K个簇,然后⼀直迭代,在所有的簇⾥⾯找到找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩或者中⼼点不变之后,迭代完成。
成功把数据分为K类。
预告:下⼀篇博⽂讲K-means代码实现。
k-means聚类和fcm聚类的原理概念摘要:一、聚类分析概述1.定义与作用2.常用的聚类算法二、K-means 聚类原理1.算法基本思想2.计算过程3.特点与优缺点三、FCM 聚类原理1.算法基本思想2.计算过程3.特点与优缺点四、K-means 与FCM 聚类的比较1.相似之处2.不同之处3.适用场景正文:一、聚类分析概述聚类分析是一种无监督学习方法,通过将相似的数据对象归为一类,从而挖掘数据集的潜在结构和模式。
聚类分析在数据挖掘、模式识别、图像处理、生物学研究等领域具有广泛应用。
常用的聚类算法有K-means 聚类和FCM 聚类等。
二、K-means 聚类原理1.算法基本思想K-means 聚类是一种基于划分的聚类方法,通过迭代计算数据点与当前中心点的距离,将数据点分配到距离最近的中心点所属的簇,然后更新中心点。
这个过程持续进行,直到满足停止条件。
2.计算过程(1)随机选择k 个数据点作为初始中心点。
(2)计算其他数据点与初始中心点的距离,将数据点分配到距离最近的簇。
(3)计算每个簇的中心点。
(4)重复步骤2 和3,直到中心点不再发生变化或达到最大迭代次数。
3.特点与优缺点特点:简单、易于实现,适用于大规模数据集。
优点:可以处理大规模数据集,对噪声数据具有一定的鲁棒性。
缺点:对初始中心点敏感,可能导致局部最优解;计算过程中需要反复计算距离,计算量较大。
三、FCM 聚类原理1.算法基本思想FCM 聚类是一种基于模糊划分的聚类方法,通过计算数据点与当前中心点的模糊距离,将数据点分配到距离最近的簇。
模糊距离是基于隶属度函数计算的,可以反映数据点对簇的隶属程度。
2.计算过程(1)随机选择k 个数据点作为初始中心点。
(2)计算其他数据点与初始中心点的模糊距离,将数据点分配到距离最近的簇。
(3)计算每个簇的中心点。
(4)重复步骤2 和3,直到中心点不再发生变化或达到最大迭代次数。
3.特点与优缺点特点:考虑了数据点对簇的隶属程度,具有更好的全局优化性能。
Python中的聚类分析方法和应用聚类分析是一种数据挖掘技术,在数据分析、机器学习、人工智能等领域都有广泛的应用。
它的基本思想是将相似的样本归为同一类,不同的样本归为不同的类,从而实现对数据的分类和整理。
Python作为一种强大的编程语言,也提供了多种聚类分析算法的实现,以下是聚类分析在Python中的应用及其方法。
一、K-Means算法K-Means算法是一种经典的聚类算法,常用于分析数量较大的数据集。
K-Means算法通过不断迭代的方式,将数据集中的每一个样本归为k个簇中的某一个。
它的基本流程如下:首先从数据集中随机选取k个样本作为簇的中心点,然后计算数据集中其他样本与这k个簇中心点的距离,并将距离最近的样本分配给它所对应的簇。
接着重新计算每个簇的中心点,并重复这个过程,直到目标函数收敛或达到指定的迭代次数。
在Python中,K-Means算法的实现非常简单,主要依托于scikit-learn库。
引入sklearn.cluster包,并使用KMeans类即可。
以下是一个简单的Python代码示例:```from sklearn.cluster import KMeansimport numpy as npdata = np.random.rand(1000, 2)kmeans = KMeans(n_clusters=3, random_state=0).fit(data) labels = bels_centers = kmeans.cluster_centers_```其中,随机生成1000个二维数据作为数据集,然后使用KMeans 类进行聚类,将数据集划分为3个簇。
最后,通过labels和centers 变量获取分类信息和中心点坐标。
二、层次聚类算法层次聚类算法是另一种经典的聚类算法,在Python中同样得到了广泛的应用。
层次聚类算法又被称为自底向上聚类(bottom-up clustering)或自上而下聚类(top-down clustering),它的基本思想是不断合并距离最近的样本,直到所有的样本都被归为一类为止。
聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。
簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。
目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。
在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。
本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。
一、K-Means算法K-Means算法是一种基于距离的聚类算法。
它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。
K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。
但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。
算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。
它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。
DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。
但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。
算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。
kmeans 聚类算法Kmeans聚类算法Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。
Kmeans算法最初由J. MacQueen于1967年提出,而后由S. Lloyd和L. Forgy独立提出。
目前,Kmeans算法已经成为了机器学习领域中最常用的聚类算法之一。
Kmeans算法的基本思想是将数据集划分为k个不同的簇,每个簇具有相似的特征。
簇的数量k是由用户指定的,算法会根据数据集的特征自动将数据集分成k个簇。
Kmeans算法通过迭代的方式来更新每个簇的中心点,以此来不断优化簇的划分。
Kmeans算法的步骤Kmeans算法的步骤可以概括为以下几个步骤:1. 随机选择k个点作为中心点;2. 将每个数据点与离它最近的中心点关联,形成k个簇;3. 对于每个簇,重新计算中心点;4. 重复2-3步骤,直到簇不再变化或达到最大迭代次数。
Kmeans算法的优缺点Kmeans算法的优点包括:1. 算法简单易实现;2. 能够处理大规模数据集;3. 可以处理多维数据。
Kmeans算法的缺点包括:1. 需要用户指定簇的数量;2. 对于不规则形状的簇,效果不佳;3. 对于包含噪声的数据集,效果不佳。
Kmeans算法的应用Kmeans算法在机器学习和数据挖掘中有着广泛的应用。
以下是Kmeans算法的一些应用:1. 图像分割:将图像分为多个不同的区域;2. 文本聚类:将文本数据划分为多个主题;3. 市场分析:将消费者分为不同的群体,以便进行更好的市场分析;4. 生物学研究:将生物数据分为不同的分类。
总结Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。
Kmeans算法的步骤包括随机选择中心点、形成簇、重新计算中心点等。
Kmeans算法的优缺点分别是算法简单易实现、需要用户指定簇的数量、对于不规则形状的簇效果不佳等。
Kmeans算法在图像分割、文本聚类、市场分析和生物学研究等领域有着广泛的应用。
数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。
聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。
以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。
它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。
该算法通过不断迭代更新簇的中心来优化聚类结果。
2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。
聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。
分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。
3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。
该算法通过确定数据点周围的密度来划分不同的簇。
常见的密度聚类算法有DBSCAN和OPTICS。
4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。
该算法通常适用于高维数据集,可以减少计算复杂度。
5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。
该算法通常用于非线性可分的数据集。
需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。