聚类分析及k-means算法
- 格式:ppt
- 大小:548.00 KB
- 文档页数:35
数据挖掘聚类方法数据挖掘是从大量数据中发现有用的信息和模式的过程。
聚类是数据挖掘中的一种重要方法,它将数据对象划分为一组相似的子集,称为簇。
聚类方法可以为数据分析和决策提供有用的信息,有助于理解数据之间的关系,以及发现数据中隐藏的模式和结构。
在数据挖掘中,有许多聚类方法可以选择,下面将简要介绍几种常见的聚类方法。
1. K-means聚类算法:K-means是最常用的聚类算法之一、它将数据划分为K个簇,其中K是用户定义的参数。
该算法通过计算每个数据点和簇中心之间的距离来确定每个数据点属于哪个簇。
迭代地更新簇中心直到达到停止准则,例如簇中心不再改变或达到最大迭代次数。
2.层次聚类算法:层次聚类是一种自底向上或自顶向下的聚类方法。
自底向上的层次聚类从每个数据点开始,并将其合并到形成类似的数据点的簇中,最终形成一个完整的层次聚类树。
自顶向下的层次聚类从所有数据点开始,将其划分为较小的簇,并逐渐进行合并,最终形成一个完整的层次聚类树。
层次聚类可以通过不同的相似度度量方法来执行,例如单连接和完整连接。
3. 密度聚类算法:密度聚类是一种根据数据点之间的密度将数据划分为不同簇的方法。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种常见的密度聚类算法。
DBSCAN基于定义半径内存在最小数量数据点的密度来确定核心点,并通过核心点之间的连通性来形成簇。
4. 基于模型的聚类算法:基于模型的聚类方法假设数据是从特定概率分布生成的,并试图通过对数据进行建模来识别簇。
混合高斯模型(Gaussian Mixture Model,GMM)是基于模型的聚类方法的一个例子。
GMM假设数据是由多个高斯分布组成的,通过最大似然估计来确定每个数据点属于哪个高斯分布。
在选择合适的聚类方法时,需要考虑数据的特性、问题的目标以及算法的优缺点。
不同聚类方法适用于不同类型的数据和问题。
Python中的聚类分析方法和应用聚类分析是一种数据挖掘技术,在数据分析、机器学习、人工智能等领域都有广泛的应用。
它的基本思想是将相似的样本归为同一类,不同的样本归为不同的类,从而实现对数据的分类和整理。
Python作为一种强大的编程语言,也提供了多种聚类分析算法的实现,以下是聚类分析在Python中的应用及其方法。
一、K-Means算法K-Means算法是一种经典的聚类算法,常用于分析数量较大的数据集。
K-Means算法通过不断迭代的方式,将数据集中的每一个样本归为k个簇中的某一个。
它的基本流程如下:首先从数据集中随机选取k个样本作为簇的中心点,然后计算数据集中其他样本与这k个簇中心点的距离,并将距离最近的样本分配给它所对应的簇。
接着重新计算每个簇的中心点,并重复这个过程,直到目标函数收敛或达到指定的迭代次数。
在Python中,K-Means算法的实现非常简单,主要依托于scikit-learn库。
引入sklearn.cluster包,并使用KMeans类即可。
以下是一个简单的Python代码示例:```from sklearn.cluster import KMeansimport numpy as npdata = np.random.rand(1000, 2)kmeans = KMeans(n_clusters=3, random_state=0).fit(data) labels = bels_centers = kmeans.cluster_centers_```其中,随机生成1000个二维数据作为数据集,然后使用KMeans 类进行聚类,将数据集划分为3个簇。
最后,通过labels和centers 变量获取分类信息和中心点坐标。
二、层次聚类算法层次聚类算法是另一种经典的聚类算法,在Python中同样得到了广泛的应用。
层次聚类算法又被称为自底向上聚类(bottom-up clustering)或自上而下聚类(top-down clustering),它的基本思想是不断合并距离最近的样本,直到所有的样本都被归为一类为止。
聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。
簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。
目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。
在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。
本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。
一、K-Means算法K-Means算法是一种基于距离的聚类算法。
它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。
K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。
但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。
算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。
它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。
DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。
但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。
算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。
第⼆讲聚类Kmeans算法跟运⽤(K-meanscluster)CLEMENTINE 1212 CLEMENTINE--SEGMENTATION(K-MEANS)何谓集群分析何谓集群分析((CLUSTERING ANALYSIS )集群分析是⼀种将样本观察值进⾏分析,具有某些共同特性者予以整合在⼀起,再将之分配到特定的群体,最后形成许多不同集群的⼀种分析⽅法。
Clementine 12.0中提供的集群分析⽅法有三种:1. K-means2. Two-step3. KohonenK-MEANS的理论背景K-Means是集群分析(Cluster Analysis)中⼀种⾮阶层式((Nonhierarchical))的演算⽅法,由J. B. Mac Queen于1967年正式发表,也是最早的组群化计算技术。
其中,⾮阶层式则是指在各阶段分群过程中,将原有的集群予以打散,并重新形成新的集群。
K-Means是⼀种前设式群集算法,也就是说必须事前设定群集的数量,然后根据此设定找出最佳群集结构。
⽽K-Means算法最主要的概念就是以集群内资料平均值为集群的中⼼。
计算距離并分群的中⼼点重新计算新的距離并分群不断重复步骤三四,直到所设计的停⽌条件发⽣。
⼀般是以没有任何对象变换所属集群为停⽌绦件,也就是所谓的s q u a r e -e r r o r c r i t e r i o n :代表集群的中⼼(平均数),是集群内的物件,则代表集群。
210iKi p CiE p m =∈=?=∑∑i m i p i iC iK-MEANS的基本需求与优缺点建⽴K-means模型的要求:需要⼀个以上的In字段。
⽅向为Out、Both、None的字段将被忽略。
优点:建⽴K-means模型不需要分组数据。
对于⼤型数据集,K-means模型常常是最快的分群⽅法。
缺点:对于初始值的选择相当敏感,选择不同的初始值,可能会导致不同的分群结果。
数据科学中的聚类分析方法使用教程聚类分析是数据科学领域中常用的一种方法,它能够将数据集中的观测对象分成若干个互相独立的组或簇,组内的对象相似性较高,组间的对象相似性较低。
这种方法可以帮助我们从大量的数据中找出相似的群体,以便进行更有效的数据分析和决策。
本文将介绍三种常用的聚类分析方法:K-means、层次聚类和DBSCAN,并讨论它们的使用方法和注意事项。
1. K-means聚类算法K-means算法是最常见且易于理解的聚类算法之一。
它将数据集中的观测对象划分为K个簇,其中K是一个预先设定的参数。
算法的步骤如下:1. 随机选择K个中心点作为初始簇中心。
2. 计算每个观测对象与各个簇中心的距离,并将其归类到离它最近的簇中心。
3. 更新每个簇的中心点,将其设为簇中所有观测对象的均值。
4. 重复步骤2和步骤3,直到触发终止条件(例如簇中心不再发生变化)。
K-means算法的优点是简单易懂,并且在处理大规模数据时效率较高。
然而,它的缺点是对初始簇中心的选择较为敏感,可能会得到不理想的聚类结果。
2. 层次聚类算法层次聚类算法通过逐步合并或分割观测对象来构建聚类结构。
它有两种主要类型:凝聚型层次聚类和分裂型层次聚类。
凝聚型层次聚类从每个观测对象作为一个簇开始,然后不断合并最相似的簇,直到满足终止条件为止。
分裂型层次聚类的过程则相反,从所有观测对象作为一个簇开始,然后不断拆分最不相似的簇,直到满足终止条件为止。
层次聚类算法的优点是它不需要预先设定聚类的数量K,并且它可以生成树状的聚类结构,帮助我们理解数据的层次关系。
然而,层次聚类算法的计算复杂度较高,特别是处理大型数据集时。
3. DBSCAN聚类算法DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法是一种基于密度的聚类方法,它能够识别出任意形状的聚类,并且能够将离群点识别为噪声。
K -means 聚类算法研究综述摘要:总结评述了K -means 聚类算法的研究现状,指出K -means 聚类算法是一个NP 难优化问题,无法获得全局最优。
介绍了K -means 聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K ,初始聚类中心选取,相似性度量和距离矩阵为K -means 聚类算法的3个基本参数。
总结了K -means 聚类算法存在的问题及其改进算法,指出了K -means 聚类的进一步研究方向。
关键词:K -means 聚类算法;NP 难优化问题;数据子集的数目K ;初始聚类中心选取;相似性度量和距离矩阵Review of K-means clustering algorithmAbstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal , main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K , cluster initialization , and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last.Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metricK -means 聚类算法是由Steinhaus 1955年、Lloyed 1957年、Ball & Hall 1965年、McQueen 1967年分别在各自的不同的科学研究领域独立的提出。
k-means聚类法标准化数值概述及解释说明1. 引言1.1 概述在数据分析和机器学习领域中,聚类算法是一种常用的无监督学习方法,它可以将具有相似特征的数据点划分为不同的组或簇。
其中,k-means聚类法是一种经典且广泛使用的聚类算法。
它通过迭代计算数据点与各个簇中心之间的距离,并将数据点划分到距离最近的簇中心。
k-means聚类法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。
1.2 文章结构本文主要围绕着k-means聚类法以及标准化数值展开讨论。
首先介绍了k-means聚类法的原理和应用场景,详细解释了其算法步骤和常用的聚类质量评估指标。
接下来对标准化数值进行概述,并阐述了常见的标准化方法以及标准化所具有的优缺点。
随后,文章从影响因素分析角度探讨了k-means聚类算法与标准化数值之间的关系,并深入剖析了标准化在k-means中的作用及优势。
最后,通过实例解释和说明,对文中所述的理论和观点进行了验证与分析。
1.3 目的本文旨在向读者介绍k-means聚类法及其在数据分析中的应用,并深入探讨标准化数值在k-means聚类算法中扮演的重要角色。
通过本文的阐述,希望读者能够理解k-means聚类法的基本原理、运行步骤以及质量评估指标,并认识到标准化数值对于提高聚类算法性能以及结果准确性的重要性。
最终,通过结论与展望部分,给出对未来研究方向和应用领域的展望和建议,为相关领域研究者提供参考和启示。
2. k-means聚类法:2.1 原理及应用场景:k-means聚类算法是一种常用的无监督学习方法,主要用于将数据集划分为k 个不同的簇(cluster)。
该算法基于距离度量来确定样本之间的相似性,其中每个样本被划分到距离最近的簇。
它的主要应用场景包括图像分割、文本分类、市场细分等。
2.2 算法步骤:k-means聚类算法具有以下几个步骤:1. 初始化: 选择k个随机点作为初始质心。
2. 分配: 对于每个数据点,计算其与各个质心之间的距离,并将其分配到最近的质心所属的簇中。
聚类分析方法比较聚类分析是一种数据挖掘技术,用于将一组样本分为具有相似特征的组或簇。
聚类分析方法有很多种,包括层次聚类、K-means、DBSCAN、SOM等。
这些方法在不同的领域和应用中可能有不同的优势和适用性。
下面将对几种常见的聚类分析方法进行比较。
1. 层次聚类(Hierarchical Clustering)层次聚类是一种自下而上的聚类方法,将样本逐步合并形成层次聚类树。
层次聚类的优点是可视化效果好,可以根据聚类树划分不同的组别。
然而,层次聚类的计算复杂度高,适用于小样本量的情况。
2. K-meansK-means是一种常用的聚类算法,通过计算样本间的欧式距离将样本划分为K 个簇。
K-means的优点是计算速度快,对大规模数据集效果好。
然而,K-means 对初始质心的选择敏感,并且需要预先设定簇的个数。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise) DBSCAN是一种基于密度的聚类方法,通过设定样本周围邻域的密度阈值,将稠密区域划分为簇,将稀疏区域划分为噪声。
DBSCAN的优点是对初始参数不敏感,可以发现任意形状的簇。
然而,DBSCAN对数据分布的要求较高,对密度差异较大的数据集不适用。
4. SOM(Self-Organizing Maps)SOM是一种无监督学习方法,通过将多维样本映射到低维的神经网络空间中,实现样本的聚类。
SOM的优点是可以保留样本的拓扑结构,并且对噪声具有较好的鲁棒性。
然而,SOM的计算复杂度较高,需要预先设定神经网络的参数。
除了以上几种聚类分析方法,还有许多其他的方法,如谱聚类、模糊聚类等。
这些方法的选择应根据具体应用的需求和数据特征来确定。
在选择聚类方法时,需要考虑以下几个因素:1. 数据类型:不同的聚类方法适用于不同类型的数据,如数值型数据、类别型数据、文本数据等。