聚类分析—K-means and K-medoids聚类
- 格式:ppt
- 大小:477.50 KB
- 文档页数:32
k-medoids 聚类算法是一种常用的基于距离的聚类方法,它主要用于将数据集中的数据点划分为若干个类别,使得同一类别内的数据点之间的相似度较高,不同类别之间的相似度较低。
与k-means 算法不同的是,k-medoids 算法使用代表性的数据点(medoids)来代表每个类别,从而使得对噪声和异常值更加稳健。
在k-medoids 聚类算法中,我们首先需要确定聚类的数量k,然后从数据集中随机选择k个数据点作为初始的medoids。
接下来的步骤是不断地迭代,直至收敛为止。
具体的迭代过程如下:1. 初始化:随机选择k个数据点作为初始的medoids。
2. 分配数据点:对于每个数据点,计算它与各个medoids 的距离,并将其分配到距离最近的medoids 所代表的类别中。
3. 更新medoids:对于每个类别,选择一个新的medoids 来代表该类别,使得该类别内所有数据点到新medoids 的距离之和最小。
4. 判断收敛:检查新的medoids 是否与旧的medoids 相同,若相同则停止迭代,否则继续进行迭代。
在k-medoids 聚类算法中,距离的计算可以使用各种不同的距离度量方式,例如欧氏距离、曼哈顿距离等。
对于大规模的数据集,k-medoids 算法可能会比k-means 算法更具有优势,因为它在每次迭代时只需要计算medoids 之间的距离,而不需要计算所有数据点之间的距离,从而可以减少计算量。
k-medoids 聚类算法是一种有效且稳健的聚类方法,它在处理一些特定情况下可以取得比k-means 更好的聚类效果。
通过对数据进行有效的分组和分类,k-medoids 聚类算法在数据挖掘和模式识别领域具有广泛的应用前景。
K-medoids clustering algorithm is a widely used distance-based clustering method for partitioning the data points in a dataset into several categories, in which the similarity of data points within the same category is relatively high, while the similarity between different categories is relatively low. Unlike the k-means algorithm, the k-medoids algorithm uses representative data points (medoids) to represent each category, making it more robust to noise and outliers.In the k-medoids clustering algorithm, the first step is to determine the number of clusters, denoted as k, and then randomly select k data points from the dataset as the initial medoids. The following steps involve iterative processes until the algorithm converges.The specific iterative process is as follows:1. Initialization: randomly select k data points as the initial medoids.2. Data point assignment: for each data point, calculate its distance to each medoid and assign it to the category represented by the nearest medoid.3. Update medoids: for each category, select a new medoid to represent the category, so that the sum of the distances from all data points in the category to the new medoid is minimized.4. Convergence check: check whether the new medoids are the same as the old medoids. If they are the same, stop the iteration; otherwise, continue the iteration.In the k-medoids clustering algorithm, various distance metrics can be used for distance calculation, such as Euclidean distance, Manhattan distance, etc. For large-scale datasets, the k-medoids algorithm may have advantages over the k-means algorithm because it only needs to calculate the distance betweenmedoids at each iteration, rather than calculating the distance between all data points, which can reduce theputational workload.In conclusion, the k-medoids clustering algorithm is an effective and robust clustering method that can achieve better clustering results than the k-means algorithm in certain situations. By effectively grouping and classifying data, the k-medoids clustering algorithm has wide application prospects in the fields of data mining and pattern recognition.Moreover, the k-medoids algorithm can be further extended and applied in various domains, such as customer segmentation in marketing, anomaly detection in cybersecurity, and image segmentation inputer vision. In marketing, k-medoids clustering can be used to identify customer segments based on their purchasing behavior, allowingpanies to tailor their marketing strategies to different customer groups. In cybersecurity, k-medoids can help detect anomalies by identifying patterns that deviate from the norm in network traffic or user behavior. Inputer vision, k-medoids can be used for image segmentation to partition an image into different regions based on similarity, which is useful for object recognition and scene understanding.Furthermore, the k-medoids algorithm can also bebined with other machine learning techniques, such as dimensionality reduction, feature selection, and ensemble learning, to improve its performance and scalability. For example, using dimensionality reduction techniques like principalponent analysis (PCA) can help reduce theputational burden of calculating distances in high-dimensional data, while ensemble learning methods like boosting or bagging can enhance the robustness and accuracy of k-medoids clustering.In addition, research and development efforts can focus on optimizing the k-medoids algorithm for specific applications and datasets, such as developing parallel and distributed versions of the algorithm to handle big data, exploring adaptive and dynamic approaches to adjust the number of clusters based on the data characteristics, and integrating domain-specific knowledge or constraints into the clustering process to improve the interpretability and usefulness of the results.Overall, the k-medoids clustering algorithm is a powerful tool for data analysis and pattern recognition, with a wide range of applications and potential for further advancements andinnovations. Its ability to handle noise and outliers, its flexibility in distance metrics, and its scalability to large-scale datasets make it a valuable technique for addressing real-world challenges in various domains. As the field of data science and machine learning continues to evolve, the k-medoids algorithm will likely remain an important method for uncovering meaningful insights fromplex data.。
聚类算法和分类算法总结聚类算法总结原⽂:聚类算法的种类:基于划分聚类算法(partition clustering)k-means:是⼀种典型的划分聚类算法,它⽤⼀个聚类的中⼼来代表⼀个簇,即在迭代过程中选择的聚点不⼀定是聚类中的⼀个点,该算法只能处理数值型数据k-modes:K-Means算法的扩展,采⽤简单匹配⽅法来度量分类型数据的相似度k-prototypes:结合了K-Means和K-Modes两种算法,能够处理混合型数据k-medoids:在迭代过程中选择簇中的某点作为聚点,PAM是典型的k-medoids算法CLARA:CLARA算法在PAM的基础上采⽤了抽样技术,能够处理⼤规模数据CLARANS:CLARANS算法融合了PAM和CLARA两者的优点,是第⼀个⽤于空间数据库的聚类算法FocusedCLARAN:采⽤了空间索引技术提⾼了CLARANS算法的效率PCM:模糊集合理论引⼊聚类分析中并提出了PCM模糊聚类算法基于层次聚类算法:CURE:采⽤抽样技术先对数据集D随机抽取样本,再采⽤分区技术对样本进⾏分区,然后对每个分区局部聚类,最后对局部聚类进⾏全局聚类ROCK:也采⽤了随机抽样技术,该算法在计算两个对象的相似度时,同时考虑了周围对象的影响CHEMALOEN(变⾊龙算法):⾸先由数据集构造成⼀个K-最近邻图Gk ,再通过⼀个图的划分算法将图Gk 划分成⼤量的⼦图,每个⼦图代表⼀个初始⼦簇,最后⽤⼀个凝聚的层次聚类算法反复合并⼦簇,找到真正的结果簇SBAC:SBAC算法则在计算对象间相似度时,考虑了属性特征对于体现对象本质的重要程度,对于更能体现对象本质的属性赋予较⾼的权值BIRCH:BIRCH算法利⽤树结构对数据集进⾏处理,叶结点存储⼀个聚类,⽤中⼼和半径表⽰,顺序处理每⼀个对象,并把它划分到距离最近的结点,该算法也可以作为其他聚类算法的预处理过程BUBBLE:BUBBLE算法则把BIRCH算法的中⼼和半径概念推⼴到普通的距离空间BUBBLE-FM:BUBBLE-FM算法通过减少距离的计算次数,提⾼了BUBBLE算法的效率基于密度聚类算法:DBSCAN:DBSCAN算法是⼀种典型的基于密度的聚类算法,该算法采⽤空间索引技术来搜索对象的邻域,引⼊了“核⼼对象”和“密度可达”等概念,从核⼼对象出发,把所有密度可达的对象组成⼀个簇GDBSCAN:算法通过泛化DBSCAN算法中邻域的概念,以适应空间对象的特点DBLASD:OPTICS:OPTICS算法结合了聚类的⾃动性和交互性,先⽣成聚类的次序,可以对不同的聚类设置不同的参数,来得到⽤户满意的结果FDC:FDC算法通过构造k-d tree把整个数据空间划分成若⼲个矩形空间,当空间维数较少时可以⼤⼤提⾼DBSCAN的效率基于⽹格的聚类算法:STING:利⽤⽹格单元保存数据统计信息,从⽽实现多分辨率的聚类WaveCluster:在聚类分析中引⼊了⼩波变换的原理,主要应⽤于信号处理领域。
1.聚类定义“聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有一些相似的属性”——wikipedia“聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。
它是一种重要的人类行为。
聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
”——百度百科说白了,聚类(clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。
简单理解,如果一个数据集合包含N个实例,根据某种准则可以将这N 个实例划分为m个类别,每个类别中的实例都是相关的,而不同类别之间是区别的也就是不相关的,这个过程就叫聚类了。
2.聚类过程:1) 数据准备:包括特征标准化和降维.2) 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中.3) 特征提取:通过对所选择的特征进行转换形成新的突出特征.4) 聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量;而后执行聚类或分组.5) 聚类结果评估:是指对聚类结果进行评估.评估主要有3 种:外部有效性评估、内部有效性评估和相关性测试评估.3聚类算法的类别没有任何一种聚类技术(聚类算法)可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示的4 个类别.3.聚类算法基于层次聚类算法:基于划分聚类算法(partition clustering)基于密度聚类算法:基于网格的聚类算法:STING :利用网格单元保存数据统计信息,从而实现多分辨率的聚类WaveCluster:在聚类分析中引入了小波变换的原理,主要应用于信号处理领域。
聚类分析(⼆)——K中⼼点算法(k-mediods)K中⼼点算法(K-medoids)前⾯介绍了k-means算法,并列举了该算法的缺点。
⽽K中⼼点算法(K-medoids)正好能解决k-means算法中的 “噪声”敏感这个问题。
如何解决的呢?⾸先,我们得介绍下k-means算法为什么会对“噪声”敏感。
还记得K-means寻找质点的过程吗?对某类簇中所有的样本点维度求平均值,即获得该类簇质点的维度。
当聚类的样本点中有“噪声”(离群点)时,在计算类簇质点的过程中会受到噪声异常维度的⼲扰,造成所得质点和实际质点位置偏差过⼤,从⽽使类簇发⽣“畸变”。
Eg: 类簇C1中已经包含点A(1,1)、B(2,2)、 C(1,2)、 D(2,1),假设N(100,100)为异常点,当它纳⼊类簇C1时,计算质点Centroid((1+2+1+2+100)/5,(1+2+2+1+100)/5)=centroid(21,21),此时可能造成了类簇C1质点的偏移,在下⼀轮迭代重新划分样本点的时候,将⼤量不属于类簇C1的样本点纳⼊,因此得到不准确的聚类结果。
为了解决该问题,K中⼼点算法(K-medoids)提出了新的质点选取⽅式,⽽不是简单像k-means算法采⽤均值计算法。
在K中⼼点算法中,每次迭代后的质点都是从聚类的样本点中选取,⽽选取的标准就是当该样本点成为新的质点后能提⾼类簇的聚类质量,使得类簇更紧凑。
该算法使⽤绝对误差标准来定义⼀个类簇的紧凑程度。
如果某样本点成为质点后,绝对误差能⼩于原质点所造成的绝对误差,那么K中⼼点算法认为该样本点是可以取代原质点的,在⼀次迭代重计算类簇质点的时候,我们选择绝对误差最⼩的那个样本点成为新的质点。
Eg:样本点A –>E1=10样本点B –>E2=11样本点C –>E3=12原质点O–>E4=13,那我们选举A作为类簇的新质点。
与K-means算法⼀样,K-medoids也是采⽤欧⼏⾥得距离来衡量某个样本点到底是属于哪个类簇。
聚类分析原理及步骤聚类分析原理及步骤——将未知数据按相似程度分类到不同的类或簇的过程1》传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。
采用k- 均值、k- 中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS 等。
典型应用1》动植物分类和对基因进行分类2》在网上进行文档归类来修复信息3》帮助电子商务的用户了解自己的客户,向客户提供更合适的服务主要步骤1》数据预处理——选择数量,类型和特征的标度((依据特征选择和抽取)特征选择选择重要的特征,特征抽取把输入的特征转化为一个新的显著特征,它们经常被用来获取一个合适的特征集来为避免“维数灾”进行聚类)和将孤立点移出数据(孤立点是不依附于一般数据行为或模型的数据)2》为衡量数据点间的相似度定义一个距离函数——既然相类似性是定义一个类的基础,那么不同数据之间在同一个特征空间相似度的衡量对于聚类步骤是很重要的,由于特征类型和特征标度的多样性,距离度量必须谨慎,它经常依赖于应用,例如,通常通过定义在特征空间的距离度量来评估不同对象的相异性,很多距离度都应用在一些不同的领域一个简单的距离度量,如Euclidean 距离,经常被用作反映不同数据间的相异性,一些有关相似性的度量,例如PMC和SMC,能够被用来特征化不同数据的概念相似性,在图像聚类上,子图图像的误差更正能够被用来衡量两个图形的相似性3》聚类或分组——将数据对象分到不同的类中【划分方法(划分方法一般从初始划分和最优化一个聚类标准开始,CrispClustering 和Fuzzy Clusterin 是划分方法的两个主要技术,Crisp Clustering ,它的每一个数据都属于单独的类;Fuzzy Clustering ,它的每个数据可能在任何一个类中)和层次方法(基于某个标准产生一个嵌套的划分系列,它可以度量不同类之间的相似性或一个类的可分离性用来合并和分裂类)是聚类分析的两个主要方法,另外还有基于密度的聚类,基于模型的聚类,基于网格的聚类】4》评估输出——评估聚类结果的质量(它是通过一个类有效索引来评价,,一般来说,几何性质,包括类间的分离和类内部的耦合,一般都用来评价聚类结果的质量,类有效索引在决定类的数目时经常扮演了一个重要角色,类有效索引的最佳值被期望从真实的类数目中获取,一个通常的决定类数目的方法是选择一个特定的类有效索引的最佳值,这个索引能否真实的得出类的数目是判断该索引是否有效的标准,很多已经存在的标准对于相互分离的类数据集合都能得出很好的结果,但是对于复杂的数据集,却通常行不通,例如,对于交叠类的集合。
大连理工大学硕士学位论文K-means聚类算法的研究姓名:冯超申请学位级别:硕士专业:软件工程指导教师:吴国伟20071215大连理工大学硕士学位论文摘要聚类是数据挖掘领域中重要的技术之一,用于发现数据中未知的分类。
聚类分析已经有了很长的研究历史,其重要性已经越来越受到人们的肯定。
聚类算法是机器学习、数据挖掘和模式识别等研究方向的重要研究内容之一,在识别数据对象的内在关系方面,具有极其重要的作用。
聚类主要应用于模式识别中的语音识别、字符识别等,机器学习中的聚类算法应用于图像分割,图像处理中,主要用于数据压缩、信息检索。
聚类的另一个主要应用是数据挖掘、时空数据库应用、序列和异常数据分析等。
此外,聚类还应用于统计科学,同时,在生物学、地质学、地理学以及市场营销等方面也有着重要的作用。
本文是对聚类算法K-means的研究。
首先介绍了聚类技术的相关概念。
其次重点对K-means算法进行了分析研究,K-means算法是一种基于划分的方法,该算法的优点是简单易行,时间复杂度为00),并且适用予处理大规模数据。
但是该算法存在以下缺点:需要给定初始的聚类个数K以及K个聚类中心,算法对初始聚类中心点的选择很敏感,容易陷入局部最优,并且一般只能发现球状簇。
本文针对聚类个数足的确定、初始K个聚类中心的选定作了改进,给出了改进的算法MMDBK(Max.Min and Davies.BouldinIndex based K-means,简称MMDBK)。
算法的出发点是确保发现聚类中心的同时使同一类内的相似度大,而不同类之间的相似度小。
算法采用Davies.Bouldin Index 聚类指标确定最佳聚类个数,改进的最大最小距离法选取新的聚类中心,以及聚类中心的近邻查找法来保证各个类之间的较小的相似度。
文中最后使用KDD99数据集作为实验数据,对K-means算法以及MMDBK算法进行了仿真实验。
结果显示改进后的MMDBK算法在入侵检测中是有效的。
k-means聚类算法的研究1.k-means算法简介1.1 k-means算法描述给定n个对象的数据集D和要生成的簇数目k,划分算法将对象组织划分为k个簇(k<=n),这些簇的形成旨在优化一个目标准则。
例如,基于距离的差异性函数,使得根据数据集的属性,在同一个簇中的对象是“相似的”,而不同簇中的对象是“相异的”。
划分聚类算法需要预先指定簇数目或簇中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数收敛时,得到最终聚类结果。
这类方法分为基于质心的(Centroid-based)划分方法和基于中心的(Medoid-based)划分方法,而基于质心的划分方法是研究最多的算法,其中k-means算法是最具代表和知名的。
k-means算法是1967年由MacQueen首次提出的一种经典算法,经常用于数据挖掘和模式识别中,是一种无监督式的学习算法,其使用目的是对几何进行等价类的划分,即对一组具有相同数据结构的记录按某种分类准则进行分类,以获取若干个同类记录集。
k-means聚类是近年来数据挖掘学科的一个研究热点和重点,这主要是因为它广泛应用于地球科学、信息技术、决策科学、医学、行为学和商业智能等领域。
迄今为止,很多聚类任务都选择该算法。
k-means算法是应用最为广泛的聚类算法。
该算法以类中各样本的加权均值(成为质心)代表该类,只用于数字属性数据的聚类,算法有很清晰的几何和统计意义,但抗干扰性较差。
通常以各种样本与其质心欧几里德距离总和作为目标函数,也可将目标函数修改为各类中任意两点间欧几里德距离总和,这样既考虑了类的分散度也考虑了类的紧致度。
k-means算法是聚类分析中基于原型的划分聚类的应用算法。
如果将目标函数看成分布归一化混合模型的似然率对数,k-means算法就可以看成概率模型算法的推广。
k-means算法基本思想:(1)随机的选K个点作为聚类中心;(2)划分剩余的点;(3)迭代过程需要一个收敛准则,此次采用平均误差准则。
K-median算法(2020)聚类算法之k-medoids算法上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的k-medoids 算法,其实从名字上就可以看出来,和k-means 肯定是非常相似的。
事实也确实如此,k-medoids 可以算是 k-means 的一个变种。
k-medoids 和k-means 不一样的地方在于中心点的选取,在k-means 中,我们将中心点取为当前cluster 中所有数据点的平均值:并且我们已经证明在固定了各个数据点的assignment 的情况下,这样选取的中心点能够把目标函数最小化。
然而在 k-medoids 中,我们将中心点的选取限制在当前 cluster 所包含的数据点的集合中。
换句话说,在 k-medoids 算法中,我们将从当前cluster 中选取这样一个点——它到其他所有(当前cluster 中的)点的距离之和最小——作为中心点。
k-means 和k-medoids 之间的差异就类似于一个数据样本的均值 (mean) 和中位数 (median) 之间的差异:前者的取值范围可以是连续空间中的任意值,而后者只能在给样本给定的那些点里面选。
那么,这样做的好处是什么呢?一个最直接的理由就是 k-means 对数据的要求太高了,它使用欧氏距离描述数据点之间的差异(dissimilarity) ,从而可以直接通过求均值来计算中心点。
这要求数据点处在一个欧氏空间之中。
然而并不是所有的数据都能满足这样的要求,对于数值类型的特征,比如身高,可以很自然地用这样的方式来处理,但是类别(categorical)类型的特征就不行了。
举一个简单的例子,如果我现在要对犬进行聚类,并且希望直接在所有犬组成的空间中进行,k-means 就无能为力了,因为欧氏距离在这里不能用了:一只Samoyed 减去一只Rough Collie 然后在平方一下?天知道那是什么!再加上一只German Shepherd Dog 然后求一下平均值?根本没法算,k-means 在这里寸步难行!在 k-medoids 中,我们把原来的目标函数中的欧氏距离改为一个任意的 dissimilarity measure 函数最常见的方式是构造一个 dissimilarity matrix 来代表,其中的元素只狗和第只狗之间的差异程度,例如,两只Samoyed 之间的差异可以设为 0 ,一只German Shepherd Dog 和一只Rough Collie 之间的差异是 0.7,和一只Miniature Schnauzer 之间的差异是 1 ,等等。
聚类算法在医疗影像分析中的前沿探索一、聚类算法概述聚类算法是一种无监督学习技术,其核心目标是将数据集中的样本划分为若干个由相似对象组成的子集或“簇”。
在医疗影像分析中,聚类算法的应用尤为重要,它可以帮助医生和研究人员从大量的影像数据中发现潜在的模式和规律,从而提高疾病的诊断和治疗效率。
聚类算法的基本原理是通过计算样本之间的相似度或距离,将相似的样本聚集在一起,形成不同的簇。
1.1 聚类算法的类型聚类算法主要可以分为几类,包括基于中心的算法、基于连接的算法、基于密度的算法和基于模型的算法。
基于中心的算法,如K-means和K-medoids,通过计算样本与簇中心的距离来进行聚类;基于连接的算法,如层次聚类,通过构建一个连接样本的树状结构来进行聚类;基于密度的算法,如DBSCAN,通过计算样本周围的密度来进行聚类;基于模型的算法,如高斯混合模型,通过假设数据是由多个概率分布生成的来进行聚类。
1.2 聚类算法的应用场景聚类算法在医疗影像分析中的应用场景非常广泛,包括但不限于以下几个方面:- 疾病诊断:通过聚类算法对影像数据进行分析,可以帮助医生发现不同疾病的特征,从而提高诊断的准确性。
- 疾病分类:聚类算法可以将具有相似特征的疾病影像数据聚集在一起,有助于疾病的分类和研究。
- 影像分割:聚类算法可以用于影像的自动分割,将不同的组织和器官从影像中分离出来,便于进一步的分析和处理。
- 特征提取:聚类算法可以用于提取影像中的关键特征,为后续的图像处理和分析提供支持。
二、聚类算法在医疗影像分析中的应用聚类算法在医疗影像分析中的应用是一个复杂而富有挑战的过程,涉及到多个方面的技术和方法。
2.1 影像数据的预处理在进行聚类分析之前,首先需要对影像数据进行预处理。
这包括图像的去噪、增强、标准化等操作,以提高影像数据的质量,减少噪声对聚类结果的影响。
预处理的目的是使影像数据更适合聚类算法的处理,提高聚类的效果。
2.2 特征选择与提取特征选择和提取是聚类分析的关键步骤。
聚类分析算法作为一种有效的数据分析方法被广泛应用于数据挖掘、机器学习、图像分割、语音识别、生物信息处理等,聚类算法还可以应用于商业分析,它可以帮助市场决策人员从消费者数据库中区分出不同的消费群体,并且概括出每一类消费者的消费模式或习惯。
从本质来说聚类算法是将总体中的个体分类以发现数据中的结构,希望一个类中的个体彼此接近或相似,而与其它类中的个体相异,这样就可以对划分出来的每一类进行深入的分析从而概括出每一类的特点。
1 . 聚类分析算法的基本定义给定一个对象集合X = {x 1 , x2 , , xn},假设每个对象 xi , i = 1...n 含有 m 个特征,在此用向量的方式来表示对象的特征,)....,(2,1m i l l l x =,聚类分析的过程就是根据对象的特征来分析对象之间的相似程度,并根据某种聚类决策准则来获得聚类结果。
通常聚类分析算法一般包含四个部分:(1)特征获取与选择;(2)计算相似度;(3)分组;(4)聚类结果展示。
特征获取与选择就是为了获得能够恰当表示对象属性的数据,并且减少数据的冗余度。
计算相似度就是根据对象的特征来计算对象之间的相似程度,在聚类过程中可能一次性的计算所有对象之间的相似度信息,也可能在聚类分析的过程中按需要来计算对象之间的相似度信息。
分组就是根据对象之间的相似程度来判断对象之间的类别信息,将类似的对象分组到同一个类中,不相似的对象分组到不同的类中。
聚类结果展示可以只是简单的输出对象分组信息,也可以用图形化的方式来展示聚类结果,但是目前的研究趋势要求算法能够自动的归纳出每个不同的分组所代表的类信息并抽象出类中对象的共同特性。
2. 聚类分析方法聚类算法主要分为层次化聚类方法,划分式聚类方法,基于密度的聚类方法,基于网格的聚类方法,基于核的聚类算法,基于谱的聚类方法,基于模型的聚类方法,基于遗传算法的聚类方法,基于 SVM 的聚类方法,基于神经网络的聚类方法等等.1)划分式聚类方法对于一个给定的 n 个数据对象的数据集,采用目标函数最小化的策略,初始时选择一定量的聚类中心或数据点,通过某种原则把数据划分到各个组中,每个组为一个簇。