磺基水杨酸与Fe3 配合物
- 格式:ppt
- 大小:695.50 KB
- 文档页数:19
磺基水杨酸与三价铁离子配合物的颜色磺基水杨酸是一种常见的有机酸,它和三价铁离子可以形成配合物,这些配合物具有不同的颜色。
在配合物中,三价铁离子是中心离子,它通过与磺基水杨酸中的羧基或酚羟基结合形成络合物。
不同的络合物会因其化学结构而产生不同的颜色。
例如,当磺基水杨酸和三价铁离子形成暗蓝色的配合物时,这是由于磺基水杨酸中的两个羧基与三价铁离子形成了六角形配位团。
这种配合物的颜色深浅取决于铁离子的浓度和pH值。
当磺基水杨酸中的羰基和酚羟基结合三价铁离子时,会形成橙色的配合物。
这种配合物在酸性溶液中更容易形成,而在碱性条件下会分解。
总之,磺基水杨酸与三价铁离子形成的配合物具有多种颜色,这些颜色的不同是由于它们的化学结构不同。
通过研究这些配合物的颜色,我们可以了解它们的化学性质和反应条件。
- 1 -。
实验六 磺基水杨酸铁(Ⅲ)配离子的组成和稳定常数的测定一、实验目的1.采用浓度连续变更法测量配合物的组成和配位化合物的稳定常数。
2.学习分光光度计的使用及实验数据的处理方法。
二、实验原理磺基水杨酸与Fe 3+离子可形成稳定的配合物:起始浓度/mol·dm -3 c 0 0 平衡浓度/ mol·dm -3 c-c α c α c α()n eq Leq eqc c c K ⋅=MML (表观)不稳 或()eq neq Leqc c c K MLM⋅=(表观)稳97.21010⋅=(表观)稳稳K K当pH=2~3时,生成1:1型紫红色螯合物ML ,其表观稳定常数:2MLM 1ααc c c c K eq eqL eq -=⋅=稳 121-DDD =αα配合物的解离度:—朗伯比尔定律:有色溶液的吸光度D 与溶液的浓度成正比()1 c b D ⋅⋅=ε当温度、液层厚度及溶液性质一定时,()1式可写成:()2 kc D =以吸光度D 为纵坐标,以配体的物质的量分数为横坐标作图。
n n ML L M +LM ML n n +三、实验内容1.溶液的配制(1)配制3dm mol 0010.0-⋅ +3Fe溶液:准确吸取35.00cm 3dmmol 0100.0-⋅()()244SO Fe NH 溶液于350cm 容量瓶中,用3dmmol 0100.0-⋅4HClO 溶液稀释至刻度,摇匀备用。
(2)配制3dm mol 0010.0-⋅磺基水杨酸溶液:准确吸取35.00cm 3dm mol 0100.0-⋅磺基水杨酸溶液于350cm 容量瓶中,用3dm mol 0100.0-⋅4HClO 溶液稀释至刻度,摇匀备用。
2.浓度连续变更法配制配离子溶液及吸光度的测定(1)按下表配制溶液于310.00cm 比色管中,注意比色管编号,用3dm mol 0100.0-⋅4HClO 溶液稀释至310.00cm 刻度线,摇匀。
磺基水杨酸合铁配合物组成及其稳定常数测定实验七铁(III)离子与磺基水杨酸配合物的组成和稳定常数的测定一、实验目的1.了解采用分光光度法测定配合物组成和稳定常数的原理和方法。
2.学习用图解法处理实验数据的方法。
3.进一步学习分光光度计使用方法,了解其工作原理。
4. 进一步练习吸量管、容量瓶的使用二、实验原理磺基水杨酸(简式为H3R)可以与Fe3+ 形成稳定的配合物。
配合物的组成随溶液pH值的不同而改变。
在pH=2~3、4~9、9~11时,磺基水杨酸与Fe3+能分别形成三种不同颜色、不同组成的配离子。
本实验是测定pH=2~3时所形成的红褐色磺基水杨酸合铁(Ⅲ)配离子的组成及其稳定常数。
实验中通过加入一定量的HClO4溶液来控制溶液的pH值。
由于所测溶液中磺基水杨酸是无色的,Fe3+溶液的浓度很小,也可认为是无色的,只有磺基水杨酸合铁(Ⅲ)配离子(MRn)是有色的。
根据朗伯—比耳定律A=εbc可知,当波长λ、溶液的温度T及比色皿的厚度b均一定时,溶液的吸光度A只与有色配离子的浓度c成正比。
通过对溶液吸光度的测定,可以求出配离子的组成。
用光度法测定配离子组成,通常有摩尔比法、等摩尔连续变化法、斜率法和平衡移动法等,每种方法都有一定的适用范围,本实验采用等摩尔连续变化法,通过分光光度计测定配位化合物的组成。
具体操作时,取用摩尔浓度相等的金属离子溶液和配位体溶液,按照不同的体积比(即摩尔数之比)配成一系列溶液,测定其吸光度值。
以吸光度值A 为纵坐标,体积分数(,即摩尔分数。
式中:V M为金属离子溶液的体积,V L为配位体溶液的体积)为横坐标作图得如图1所示的曲线,将曲线两边的直线部分延长相交于B点,B点对应的吸光度值A B 最大。
由B点对应的摩尔分数值,可计算配离子中金属离子与配位体的摩尔数之比,即可求得配离子MLn 中配位体的数目n 。
图 1 配位体摩尔分数-吸光度图在图1中,在B点最大吸收处对应的摩尔分数值为0.5,则:即:金属离子与配位体摩尔数之比为1︰1。
磺基水杨酸铁配合物稳定常数的测定一.实验目的1.了解比色法测定溶液中配合物的组成和稳定常数的原理。
2.学习分光光度计的使用方法。
二.基本原理磺基水杨酸(SO 3HHOCOOH简化为H 3R ),与Fe 3+可以形成稳定的配合物,配合物的组成随溶液的pH 值的不同而改变。
在pH=2~3时,pH=4~9时,pH=9~11.5时,磺基水杨酸与Fe 3+能分别形成不同颜色且具有不同组成的配离子。
本试验是测定pH=2~3时形成的紫红色的磺基水杨酸铁配离子的组成及其稳定常数。
实验中通过加入一定量的HClO 4溶液来控制溶液的pH 值。
测定配离子的组成时,分光光度法是一种有效的方法。
实验中,常用的方法有两种:一是摩尔比法,一是等摩尔数连续变化法(也叫浓比递变法)。
本实验采用后者,用上述方法时要求溶液中的配离子是有色的,并且在一定条件下只生成这一种配合物,本实验中所用的磺基水杨酸是无色的,Fe 3+溶液很稀,也可以认为是无色的,只有磺基水杨酸铁配离子显紫红色,并且能一定程度的吸收波长为500nm 的单色光。
光密度又称吸光度,是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的对数,可用分光光度计测定。
光密度与浓度的关系可用比尔定律表示:CL A ε=其中:A 代表光密度;ε代表某一有色物质的特征常数,称之为消光系数;L 为液层厚度;C 为溶液浓度,当液层厚度一定时,则溶液光密度就只与溶液的浓度成正比。
本实验过程中,保持溶液中金属离子的浓度(C M )与配位体的浓度(C R )之和不变(即总摩尔数不变)的前提下,改变C M 与C R 的相对量,配制一系列溶液,测其光密度,然后再以光密度A 为纵坐标,以溶液的组成(配位体的物质的量分数)为横坐标作图,得一曲线,如图1所示,显然,在这一系列溶液中,有一些是金属离子过量,而另一些溶液则是配位体过量,在这两部分溶液中,溶液离子的浓度都不可能到最大值,因此溶液的光密度也不可能达到最大值,只有当溶液中金属离子与配位体的摩尔比与配离子的组成一致时,配离子的浓度才最大,因而光密度才最大,所以光密度最大值所对应的溶液的组成,实际上就是配合物的组成。
工程化学实验备课笔记磺基水杨酸合铁Ⅲ配合物的组成及稳定常数的测定实验目的1.掌握用比色法测定配合物的组成和配离子的稳定常数的原理和方法..2.进一步学习分光光度计的使用及有关实验数据的处理方法..实验原理磺基水杨酸;简式为H3R的一级电离常数K1θ=3×10-3与Fe3+可以形成稳定的配合物;因溶液的pH不同;形在配合物的组成也不同..磺基水杨酸溶液是无色的;Fe3+的浓度很稀时也可以认为是无色的;它们在pH值为2~3时;生成紫红色的螯合物有一个配位体;反应可表示如下:pH值为4~9时;生成红色螯合物有2个配位体;pH值为9~11.5时;生成黄色螯合物有3个配位体;pH>12时;有色螯合物;被破坏而生成FeOH3沉淀..测定配合物的组成常用光度计;其前提条件是溶液中的中心离子和配位体都为无色;只有它们所形成的配合物有色..本实验是在pH值为2~3的条件下;用光度法测定上述配合物的组成和稳定常数的;如前所述;测定的前提条件是基本满足的;实验中用高氯酸HClO4来控制溶液的pH值和作空白溶液其优点主要是ClO4-不易与金属离子配合..由朗伯—比尔定律可知;所测溶液的吸光度在液层厚度一定时;只与配离子的浓度成正比..通过对溶液吸光度的测定;可以求出该配离子的组成..下面介绍一种常用的测定方法:等摩尔系列法:即用一定波长的单色光;测定一系列变化组分的溶液的吸光度中心离子M和配体R的总摩尔数保持不变;而M和R 的摩尔分数连续变化..显然;在这一系列的溶液中;有一些溶液中金属离子是过量的;而另一些溶液中配体是过量的;在这两部分溶液中;配离子的浓度都不可能达到最大值;只有当溶液离子与配体的摩尔数之比与配离子的组成一致时;配离子的浓度才能最大..由于中心离子和配体基本无色;只有配离子有色;所以配离子的浓度越大;溶液颜色越深;其吸光度也就越大;若以吸光度对配体的摩尔分数作图;则从图上最大吸收峰处可以求得配合物的组成n值;如图所示;根据最大吸收处:等摩尔系列法由此可知该配合物的组成MR..最大吸光度A 点可被认为M 和R 全部形成配合物时的吸光度;其值D 1..由于配离子有一部分离解;其浓度再稍小些;所以实验测得的最大吸光度在B 点;其值为D 2;因此配离子的离解度α可表示为:α=D 1-D 2/D 1再根据1∶1组成配合物的关系式即可导出稳定常数 K 稳θ 或β..式中是c 相应于A 点的金属离子浓度这里的是 K 稳θ没有考虑溶液中的Fe3+离子的水解平衡和磺基水杨酸电离平衡的表现稳定常数.. 试剂和仪器1.仪器:UV2600型紫外可见分光光度计;烧杯100mL;3只;容量瓶100mL;9只;移液管 10mL;2只;洗耳球;玻璃棒;擦镜纸2.试剂以下试剂由教师准备酸:1、HClO 40.01mol·L -1:将4.4mL70%HClO 4溶液加入50mL水中;稀释到5000mL..2、磺基水杨酸0.0100mol·L -1:根据磺基水杨酸的结晶水情况计算其用量分子式C 6H 3OHCOOHSO 3H;无结晶水的磺基水杨酸分子量为218.2;将准确称量的分析纯磺基水杨酸溶于0.01mol·L -1HClO 4溶液中配制成1000mL..盐: NH 4FeSO 42 0.0100mol·L -1;1000mL :将4.8220g 分析纯NH 4FeSO 42·12H 2O 分子量为482.2晶体溶于0.01mol·L -1HClO 4溶液中配制成1000mL.. 实验步骤 1. 溶液的配制1 配制0.0010mol·L -1 Fe 3+溶液用移液管吸取10.00mLNH4FeSO420.0100mol·L -1溶液;注入100mL 容量瓶中;用HClO 40.01 mol·L -1溶液稀释至该度;摇匀;备用..2配制0.0010 mol·L -1磺基水杨酸H3R 溶液 用移液管量取10.00mLH3R0.0100mol·L -1溶液;注入100mL容量瓶中;用HClO40.01mol·L-1溶液稀释至刻度;摇匀;备用..2. 系列配离子或配合物溶液吸光度的测定1 用移液管按表的体积数量取各溶液;分别注入已编号的/mL定容到100mL..100mL容量瓶中;用0.01mol·L-1 HClO42 用波长扫描方式对其中的5号溶液进行扫描;得到吸收曲线;确定最大吸收波长..3 选取上面步骤所确定的扫描波长;在该波长下;分别测定各待测溶液的吸光度;并记录已稳定的读数..表数据记录和处理90.99..00 1.00101100数据记录及处理1实验数据记录摩尔比:Fe/Fe+acid00.10.20.30.40.50.60.70.80.91 A吸光度2用等摩尔变化法确定配合物组成:根据表中的数据;作吸光度A 对摩尔比Fe/acid 的关系图..将两侧的直线部分延长;交于一点;由交点确定配位数n..按3计算配合物的稳定常数..3磺基水杨酸合铁Ⅲ配合物的组成及其稳定常数的求得从图中找出D1和D2;计算α和稳定常数..其中C为配合物初始浓度:本实验条件下;配合物配合比为1:1;即摩尔比为0.5..此时配合物初始浓度为:C=0.001×5/100母液浓度为0.001;5 mL 混合后;变为100mL; 思考题1 本实验测定配合物的组成及稳定常数的原理如何2 用等摩尔系列法测定配合物组成时;为什么说溶液中金属离子的摩尔数与配位体的摩尔数之比正好与配离子组成相同时;配离子的浓度为最大3 在测定吸光度时;如果温度变化较大;对测得的稳定常数有何影响4本实验为什么用HClO4溶液作空白溶液为什么选用500nm波长的光源来测定溶液的吸光度5使用分光光度计要注意哪些操作。
磺基水杨酸与三价铁离子配合物的颜色
磺基水杨酸可以在pH=1.5~2.5的条件下与三价铁离子结合生成紫红色配合物。
这是由于磺基水杨酸分子中的SO3-团与Fe3+形成了络合键,而此络合物的颜色正是由络合物的电子结构所决定的。
磺基水杨酸是一种有机化合物,通常用于尿检中检测尿蛋白质的含量。
此外,它还被广泛应用于阳极处理的染色以及测量铁离子(Fe3+)的含量。
根据来源[1],当磺基水杨酸在pH=1.5~2.5的条件下与三价铁离子形成络合物时,会生成紫红色的配合物。
这是由于磺基水杨酸分子中的SO3-团与Fe3+形成了络合键,而此络合物的颜色是由该配合物的电子结构所决定的。
上述现象反映了配位化合物的基本特征,配位化合物,又称为络合物、络盐、复合物,通常包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子。
需要注意的是,磺基水杨酸与铁离子形成络合物的现象并非特异性反应,并且可能存在干扰因素影响其精确性和准确性。
因此,在实际应用中,需要根据具体的情况和需求选择合适的检测方法和条件。
磺基水杨酸合铁(ⅲ)配合物的稳定常数下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!磺基水杨酸合铁(Ⅲ)配合物的稳定常数摘要本文研究了磺基水杨酸合铁(Ⅲ)配合物的稳定常数。
实验七铁(III)离子与磺基水杨酸配合物的组成和稳定常数的测定一、实验目的1.了解采用分光光度法测定配合物组成和稳定常数的原理和方法。
2.学习用图解法处理实验数据的方法。
3.进一步学习分光光度计使用方法,了解其工作原理。
4. 进一步练习吸量管、容量瓶的使用二、实验原理R)可以与Fe3+ 形成稳定的配合磺基水杨酸(简式为H3物。
配合物的组成随溶液pH值的不同而改变。
在pH=2~3、4~9、9~11时,磺基水杨酸与Fe3+能分别形成三种不同颜色、不同组成的配离子。
本实验是测定pH=2~3时所形成的红褐色磺基水杨酸合铁(Ⅲ)配离子的组溶液来控制溶液的pH值。
成及其稳定常数。
实验中通过加入一定量的HClO4由于所测溶液中磺基水杨酸是无色的,Fe3+溶液的浓度很小,也可认为是无色的,只有磺基水杨酸合铁(Ⅲ)配离子(MRn)是有色的。
根据朗伯—比耳定律A=εbc可知,当波长λ、溶液的温度T及比色皿的厚度b均一定时,溶液的吸光度A只与有色配离子的浓度c成正比。
通过对溶液吸光度的测定,可以求出配离子的组成。
用光度法测定配离子组成,通常有摩尔比法、等摩尔连续变化法、斜率法和平衡移动法等,每种方法都有一定的适用范围,本实验采用等摩尔连续变化法,通过分光光度计测定配位化合物的组成。
具体操作时,取用摩尔浓度相等的金属离子溶液和配位体溶液,按照不同的体积比(即摩尔数之比)配成一系列溶液,测定其吸光度值。
以吸光度值 A 为纵坐标,体积分数(,即摩尔分数。
式中:V M为金属离子溶液的体积,V L为配位体溶液的体积)为横坐标作图得如图1所示的曲线,将曲线两边的直线部分延长相交于B点,B点对应的吸光度值A B 最大。
由B点对应的摩尔分数值,可计算配离子中金属离子与配位体的摩尔数之比,即可求得配离子MLn 中配位体的数目n 。
图 1 配位体摩尔分数-吸光度图在图1中,在B点最大吸收处对应的摩尔分数值为0.5,则:即:金属离子与配位体摩尔数之比为1︰1。
实验16铁(Ⅲ)与磺基水杨酸配合物的组成及稳定常数测定一、实验目的1、了解光度法测定配合物的组成及稳定常数的原理和方法。
2、练习分光光度计的使用。
3、学习有关实验数据的处理方法。
二、实验原理根据郎伯-比尔定律,A=Kcl,如液层的厚度l不变,吸光度(或光密度,有色物质对光的吸收程度)A只与有色物质的浓度c成正比。
K为特征常数。
设中心离子(M)和配位体(L)在某种条件下反应,只生成一种配合物:M+n L=MLn (略去电荷)如果M和L都是无色的,而MLn有色,则此溶液的吸光度与配合物浓度成正比。
测得此溶液的吸光度,即可求出该配合物组成和稳定常数。
本实验使用等摩尔系列法(又称Job法)进行测定。
所谓等摩尔系列法,就是保持溶液中中心离子浓度与配位体浓度之和不变,改变中心离子与配位体的相对量,配置成一系列溶液,其中有一些溶液的中心离子是过量的,而有一些溶液的配位体是过量的。
在这两种情况下配离子浓度都不能达到最大值,只有当溶液中心离子与配位体的物质的量之比与配离子的组成一致时,配离子的浓度才能最大,吸光度也最大。
若以吸光度与配位体的摩尔分数作图,则从图上吸收处的摩尔分数,可以求得组成n值。
图6-1 磺基水杨酸铁的光密度-组成图配合物稳定常数的求法如图6-1所示。
在A处的吸光度A1被认为是M和L全部形成了配合物ML时的吸光度,在B处的吸光度A2是由于ML发生部分解离而剩下的那部分配合物的吸光度。
因此配合物ML的解离度α:α=( A1- A2)/ A1配合物ML 的稳定常数可由下列平衡关系导出: ML = M + L 开始浓度c 0 0平衡浓度 c-c α c α c α K(稳)=[ML]/[M][L]=(1-α)/ c α2其中c 是相应于A 点的中心离子浓度。
注意:这里求出的K(稳)是表观稳定常数,欲求得热力学稳定常数,必须根据实验条件(离子强度、pH 等)进行校正。
本实验测定磺基水杨酸与Fe3+形成螯合物的组成及稳定常数。
磺基水杨酸合铁(Ⅲ)配合物的组成及稳定常数的测定【摘要】磺基水杨酸(SO3HHOCOOH简化为H3R),与Fe3+可以形成稳定的配合物,配合物的组成随溶液的pH值的不同而改变。
在pH=2~3时,pH=4~9时,pH=9~11.5时,磺基水杨酸与Fe3+能分别形成不同颜色且具有不同组成的配离子。
等摩尔连续变化法是配制一系列溶液,保持溶液中度、离子强度、温度和金属离子与配体的总物质的量不变改变金属离子cM和配体的摩尔分数使之连续化,在最大吸收波长处测定各溶液的吸光度,以吸光度A配体的摩尔分数xR作图,根据两边线性部分的延线相交之点所对应的配体摩尔分数值,即可求出配合的组成比可以认为相交之点Amax为配合物以n完全配位而不离解的吸光度,而实验测得值为A,两者之差就是由配合物离解所造成的.由此可求K稳,相应计算同摩尔比法.【关键字】分光广度法等摩尔连续变化法伯朗-比尔定律配合物配位数【实验目的】1、了解光度法测配合物配位数和稳定常数的一种原理和方法;2、测定pH<2.5时,磺基水杨酸合铁(Ⅲ)配合物的组成及稳定常数;3、学习分光光度计的应用;4、巩固溶液配制及作图法处理数据的方法。
【实验原理】1、伯朗-比尔定律当具有一定波长的单色光通过有色溶液时,一部分光被溶液吸收,另一部分光透过溶液。
I o一定时,I a越大,I t就越小。
一般将透过光强度I t与入射光强度I0之比叫透光度,以T表示:T越大,溶液透光程度越大,对光的吸收程度越小。
一般用A表示有色溶液对光的吸收程度,A越大,T越大,对于同一溶液而言,其吸光度与浓度c和液层厚度d成正比,即伯朗-比尔定律,若入射光波长、比色皿(溶液)的厚度d一定时,吸光度只与溶液的浓度c成正比。
通常测定某一物的一系列已知浓度的吸光度,以A为纵标,c为横标,绘出A-c标准曲线,则其斜率为k = εd,如果测定该物未知浓度c i溶液的吸光度为A i,则由A i/k或从标准曲线就可以求出c i来。
磺基水杨酸合铁(Ⅲ)配合物的组成及稳定常数的测定磺基水杨酸合铁(III)配合物的组成及稳定常数的测定,听起来就像是一道化学题目,让人感到有些头疼。
我们可以用一种轻松幽默的方式来解决这个问题。
我们需要了解什么是磺基水杨酸合铁(III)配合物。
简单来说,它就是一种由铁离子和磺基水杨酸组成的化合物。
这个名字听起来有点复杂,但是只要我们用一些日常俚语和成语俗语来解释一下,就会变得容易理解了。
磺基水杨酸合铁(III)配合物,就像是一个“团队合作”。
在这个团队里,铁离子是一个“领袖”,它负责带领其他成员一起工作。
而磺基水杨酸则是一个“辅助者”,它可以帮助领袖更好地完成任务。
这个团队的目标是“共同进步”,也就是说,只有当每个人都尽自己的最大努力时,整个团队才能取得成功。
现在我们已经了解了磺基水杨酸合铁(III)配合物的基本概念,接下来就是要测定它的组成和稳定常数了。
这就像是要找到这个团队的“优势和劣势”,以便更好地发挥它们的作用。
我们需要进行实验,测量出磺基水杨酸合铁(III)配合物中铁离子和磺基水杨酸的质量分数。
这个过程需要非常精确,因为任何一个小小的误差都可能导致结果不准确。
接着,我们需要计算出磺基水杨酸合铁(III)配合物的摩尔质量。
这就像是要知道每个成员的“体重”,这样才能知道整个团队的总质量。
我们需要根据实验数据计算出磺基水杨酸合铁(III)配合物的稳定常数。
这个常数反映了这个团队的“凝聚力”,也就是说,只有当团队成员之间的协作紧密时,整个团队才能保持稳定。
通过以上步骤,我们就可以得出磺基水杨酸合铁(III)配合物的组成及稳定常数了。
虽然这个过程看起来有些枯燥无味,但是只要我们用心去做,就能得到令人满意的结果。
磺基水杨酸合铁(III)配合物的组成及稳定常数的测定并不是一件难事。
只要我们用一些日常俚语和成语俗语来解释一下,就会变得容易理解了。
不要被题目吓倒哦!。
实验23 磺基水杨酸铁(Ⅲ)配合物的组成及K稳的测定[实验目的]1、了解分光光度计测定配合物组成及K稳的原理和方法。
2、测定PH<2.5时磺基水杨酸铁(Ⅲ)的组成及K稳。
3、练习使用分光光度计。
[实验原理]磺基水杨酸(HO SO3H,简式H3R)与Fe3+可形成稳定的配合物,因溶液PH值不同,其组成也不相同。
本实验测PH<2.5时所形成红褐色磺基水杨酸铁(Ⅲ)配离子的组成及K稳。
实验中用HClO4溶液来控制PH值。
1、分光光度法测定配合物组成的基本原理:①用透光率T表示:即透光的强度I t与入射光强度I0之比。
T=I t/I0②用吸光度D表示(又称消光度、光密度),它是透光率的负对数:D=-lgT=lgI0/I tD值大表示光被有色溶液吸收的程度大:反之亦然。
2、朗伯—比尔定律D=ε c L即:一束单色光通过有色溶液时,有色溶液的吸光度与溶液的浓度c和液层厚度L乘积成正比(ε为消光系数,λ0一定时,ε为特征常数)。
3、可行性论证所测溶液中,H3R为无色,Fe3+溶液的浓度很稀,也可认为无色,只有MR x是有色的(磺基水杨酸铁(Ⅲ)配离子为有色)。
因此,溶液的吸光度D只与配离子浓度成正比。
通过对溶液吸光度的测定,可以求出该配离子的组成。
4、配离子组成的求得(分光光度法求时,常用的两种方法):①等摩尔系列法(连续变化法,本实验采用此法):保持(n M+n R)不变的前提下,使M和R的摩尔分数连续变化而配制一系列溶液,显然,这些溶液中必有一种物质过量,配离子浓度不可能达最大。
只有当溶液中M与R的物质的量之比与配离子组成一致时,C MRx才最大。
MR x的浓度增大,溶液颜色加深,D增大。
若x值,如图1:=n R/n总=0.5=n M/n总=0.5x值=x R/x M=1(图1)中心离子摩尔分数由图1可以看出x=1,该配合物组成为MR,最大吸光度A点可以认为是M和R全部形成配合物时的吸光度,其值为D1,由于部分离解,其浓度要稍小一些,所以实测吸光度为B点,其值为D2,因此配离子的离解度〆可表示为:〆=(D1-D2)/D1再由1:1组成关系,即可求出表观稳定常数Kˊ,M + R == MR平衡时c〆c〆c-c〆Kˊ=[MR]/([M][R])=(1-〆)/c〆2(式中C为相应于A点的金属离子M的浓度)考虑弱酸的电离平衡,对Kˊ加以校正,校正后得K稳:lgK稳=lg Kˊ+lgθ(θ为酸效应系数)(对于H3R,PH=2时,lgθ=10.2)应该指出:该法应用于研究络合比高或离解度较大的络合物,得不到准确的结果。
fe3+磺基水杨酸显色分光光度法测定水中氟含量磺基水杨酸和氟共存可形成一种配合物,该配合物可吸收440nm波长的紫外光,其吸光度由氟的浓度决定。
通过测量该配合物的吸光度就可以测定水体中氟的含量。
1.准备试剂:磺基水杨酸0.025mol/L、NaOH(0.1mol/L)、TBA(10mmol/L)。
2.样品准备:将取出的水样稀释到50ml,添加0.1ml尿素。
3.标准液制备:准备含氟20μg、25μg或30μg的水样,After dilution to a volume of 50ml with distilled water, prepare a standard solution according to the tested concentrations。
4.测定:将样液、标准液各稀释100倍,分别与磺基水杨酸1ml和NaOH(0.1mol/L)混合,用高分子液盖子封闭5min后,再加入TBA(10mmol/L)作为显色剂。
测量470nm波长处吸光度,按照笔者测定结果绘制线性图,根据该图确定样品中氟的含量。
1.波长校正:用质控水样含量一定的水溶液,来调节光谱仪中设定波长,以确保光谱仪读出的数据准确。
2.灵敏度校正:根据校正曲线,利用2种或2种以上的质控液,进行灵敏度校正,以确定测量数据.3.现场空白校正:在采样前取空白水样,将空白水样与正常气样一起测定,用空白值校正测定值,以确保分析数据准确。
1.温度:反应温度过低或过高都会影响反应的配合物的形成,从而影响结果的准确性。
3.时间:若反应时间太短,可能会造成反应完全未发生,从而影响结果的准确性。
1.灵敏度高,量程大。
2.操作简便,反应快速,反应完全,节约时间和劳动力。
3.定量准确,结果可靠,容易被采用。
4.适合测定水体中的氟,广泛应用于水污染检测。