三年级奥数添运算符号
- 格式:doc
- 大小:44.00 KB
- 文档页数:4
三年级数学提升班学生姓名:第九讲:巧填运算符号知识是从刻苦劳动中得来的,任何成就都是刻苦劳动的结晶。
——宋庆龄知识纵横根据题目给定的条件和要求,填运算符号或括号,使等式成立,这是一种很有趣的游戏,这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。
填运算符号问题,通常采用尝试探索法,主要尝试方法有两种:1.如果题目的数字比较简单,可以从等式的结果入手,推想那些算式能得到这个结果,然后拼凑出所求的式子。
2.如果题目中的数字比较多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。
通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。
例题求解【例1】在下面4个4之间填上+、-、×、÷或括号,使等式成立4444=8【例2】在下面各题中添上+、-、×、÷、(),使等式成立。
12345=10【例3】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立,你能试一试吗?8888=08888=18888=28888=3【例4】在下面算式合适的地方添上+、-、×,使等式成立。
12345678=1【例5】在下面式子适当的地方添上+、-号,使等式成立。
987654321=21【例6】在下面12个5之间添上+、-、×、÷,使下面等式成立。
555555555555=1000学力训练1.你能在下面数中填上+、-、×、÷,使结果等于已知数吗?(1)5555=10(2)9999=182.在下面数中填上+、-、×、÷或(),使等式成立。
(1)33333=9(2)44444=83.在下面几个数中填上+、-、×、÷或(),使等式成立。
(1)2356=6(2)2356=64.你能在下面各数中添上运算符号,使等式成立吗?4125=105.巧填运算符号,使等式成立。
巧填算符巧填算符,就是指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
在填算符的问题中,所填的算符包括:+”“-”“×”“÷”“=”“>”“<”“()”“[ ]”“{}” 巧填算符常用的方法有:1.凑数法:先选出一个与结果比较接近的数,然后再对剩下的数进行适当的增加或减少,使算式成立。
我们把这种方法称为凑数法。
2.逆推法:是从算式中的最后一个数开始,由后往前,逐步求解,我们把这种方法称为逆推法。
逆推法思路比较固定,但是分析起来头绪繁多,因此适合于数比较少、结果比较小的添运算符号问题。
注:添运算符号问题的解都比较多,并不唯一。
如果没有特殊的要求,只要添出一种答案就可以了。
例1在5+3×9-4+8÷2=66这个算式中添上两个小括号,使算式成立。
例2在下面算式的适当地方,添上运算符号+,-,×,÷和( ),使等式成立。
9 8 7 6 5 4 3 2 1 =1000例3在八个8之间的适当地方,添上+,-,×,÷运算符号,使算式成立。
8 8 8 8 8 8 8 8 =1000例4(第二届迎春杯决赛)试在15个8之间适当的位置填上适当的运算符号:+、-、×、÷,使运算结果等于1986。
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 =1986例5在□中填上“+”、“-”、“×”、“÷”、“( )”使算式成立。
⑴5□5□5□5□5=1⑵5□5□5□5□5=2⑶5□5□5□5□5=3⑷5□5□5□5□5=4同学们一定都玩过扑克牌,但你会用扑克牌玩一种叫“24点”的游戏吗?其实就是-种添运算符号的游戏。
游戏规则是拿出四张牌,根据四张牌上的点数,运用加、减、乘、除四种运算中的任意几种进行计算,每张牌的点数都必须用:并且只能用一次,使最后的结果等于24。
三年级奥数教程第10讲填空格填空格就是在空格处填上合适的数或运算符号,使得所给的算式或要求成立.解这种问题,需要仔细分析(有时要分几种情况),由容易填写的地方入手,作为突破口.例1、在圆圈中填入运算符号“+”、“一”、“×”、“÷”,每个只能用一次,使下面两个等式成立.(1)9 ○ 13 ○ 7=100;(2)14 ○ 2 ○5=2.分析先看(1)式,等式右边是100,比左边的三个数都大得多.所以,(1)式中的运算符号必有乘号.如果第一个圆圈内填“×”,那么9×13=117,下一步无法得到100.所以第一圈不能填“×”.第二个圈内填“×”,第一个圈内填“+”,等式成立.再看(2)式,现在未用的运算符号只有“÷”和“一”.第一个圈内填“÷”,第二个圈内填“一”,(2)式成立.如果第二个圈内填“÷”,不可能等于2.所以,只有一种填法.解 (1) 9+13×7=100.(2) 14÷2—5=2.随堂练习1 添上运算符号(每个可用多次),使等式成立.1○2○3○4○5=10.例2、在下列5个9之间的空格中,添上适当的运算符号“+”、“一”、“×”、“÷”,还可以在需要的时候添加括号,使得等式成立.9口9口9口9口9=18.分析等号左边共有5个9,右边是1 8.如果在左边最后一个9前添“+”号,那么包含前面4个9的运算结果只要是9就可以了.同样,如果第4个9前仍添“+”号,那么只要包含前面3个9的运算结果是零就可以了.根据这样的分析,我们可以得到本题的三个解.解 (9—9)×9+9+9=18.9×(9—9)+9+9=18,(9—9)÷9+9+9=18.随堂练习2填上适当的运算符号与括号,使等式成立.9口9口9口9口9=17.例3、将0、1、2、3、4、5、6这七个数字填入方框内,每个数字恰好用一次,使算式成立(同一方框内可以填两个数字).口×口=口一口÷口分析与解由于每个数字恰好用一次,0、1都不能作算式中的被乘数与乘数.它们也不能作为除数,所以第四个方格中的被除数最大.第一、二个方格中的被乘数、乘数都只能是一位数.它们的乘积,即第三个方格中的数应当是二位数(这样5个数才能共用7个数字),仅小于第四个方格中的数,比其他三个方格中的数都大.先考虑口×□=口.因为数字不能重复,所以2×6=12,3×5=15,4×6=24都应排除.如果第三个方格中的个位是0,那么第四个方格中的个位也是0,这不可能.所以2×5=10,4×5=20,5×6=30都应排除.只剩下3×4=12(或4×3=12)显然12=60÷5.所以算式是3×4=12=60÷5.随堂练习3下面是由1~9这9个数字组成的算式,其中7已经出现.请将其余数字填入空格(每个空格只填1个数字),使等式成立.口口口÷口口=口一口=口一7.例4、从1、2、3、6、7、8中选5个填入方框中,使等式成立.(每个数字只用一次) 口口+口一口口=1.分析与解首先,两个两位数的十位数字不能相同,所以应当相差1,而且是后一个两位数的十位数字大1(否则前一个两位数减去后一个两位数至少是1,再加上一个一位数,结果大于1),即它们的十位数字只能是1与2、2与3、6与7、7与8这4种.其次,前两个数相加,所得的个位数字的和应当超过10(要进位),并且比后面的两位数的个位要大11.所以前面两个数的个位数字是6与7、6与8、7与8,相应地,后一个两位数的个位数字是2、3、4.最后一种情况显然不合要求(因为没有数字4可用).第一种情况用掉数字6、7、2,十位数字无法满足要求,于是,个位数字是6、8、3,十位数字是1与2,即16+8-23=1或18+6-23=1本题有两解.随堂练习4将3、4、5、6、8填入方框内(每个数字只用一次),使等式成立.口口一口口一口=11.例5、从1~8这8个数字中选出7个填入方框中,使等式成立.(口口口+口一口口)×口=2 005.(第三届“走进美妙的数学花园”三年级试题)分析与解 2 005=5×40l,所以最后一个方框应当填5,而前面括号算出的结果应当是401.于是口口口的百位应当是4,剩下数字l、2、3、6、7、8,要选5个填入口口+口一口口=1.问题化为例4,于是本题的结果是随堂练习5 将1、3、4、5、6、7、8填入方框(每个数字用一次),使等式成立.(口口口+口一口口)×口=623.例6、请将O~9这十个数字填入方框,每个方框只填一个数字,而且每个数字只能用一次.‘填的规则是“加2”,即左边的数加2等于右边的数.3→口;10→口口;1→口;口→口;口→1口;口→口.分析与解由于规则为“加2”,所以第1个式子中的方框应填5,第2个式子中的方框应分别填入1与2,第3个式子中的方框内填3.再看第5个式子,左边是一位数,右边是两位数,所以左边只能填8或9,如果填8的话,那么右边填0;如果填9的话,那么右边填1.由于l在第2个式子中已用过,所以第5个式子的左边只能填8,右边填0.最后,由于只剩下4、6、7、9四个数,所以剩下的两个式子的左边和右边应分别填入4、6和7、9.随堂练习6仿照例6找规则填数,规则为“减□”.5→4;口→6;9→口;口→3;口→口;l口→口;口→口.想一想…………………………………………日本算术奥林匹克日本算术奥林匹克始于1992年,至今已成功举办了15届.参加比赛的除目本选手外,还有中国、韩国、菲律宾、新加坡、俄罗斯等国家及中国香港、台湾地区的选手.竞赛由著名数学家、菲尔兹奖得主广中平裙主持.竞赛题中有不少原创性的问题,例如:有60张日币,其中有1日元、10日元、100日元、1 000日元各若干张.问这些日币能否恰好是10 000日元.请回答:能或不能,并请你把理由写出来.练习题1、在下列各式的圆圈内添上合适的运算符号“+”、“一”、“×”、“÷”,必要时可添加括号,使等式成立.(1)3 ○3 ○ 3 ○ 3 ○ 3=6;(2)3 ○ 3 ○ 3 ○ 3 ○ 3=7;(3)3 ○ 3 ○ 3 ○ 3 ○ 3=8;(4)3 ○ 3 ○ 3 ○ 3 ○ 3=9;(5)3 ○ 3 ○ 3 ○ 3 ○ 3=10.2、请把0、l、2、3、4、5、6、7、8、9这十个数字填入圆圈内,组成下面三个等式.要求每个数字只能用一次.○+○=○;○—○=○;○×○=○○.3、在圆圈中填入适当的符号“+”、“一”、“×”、“÷”,并可以在适当的地方添加括号,使下面式子成立.(1)5 ○ 5 ○ 5 ○ 5 ○ 5=1;(2)5 ○ 5 ○ 5 ○ 5 ○ 5=2;(3)5 ○ 5 ○ 5 ○ 5 ○ 5=3;(4)5 ○ 5 ○ 5 ○ 5 ○ 5=4.‘4、在合适的地方分别添一个乘号、七个加号,使等式成立.1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 ○ 9=100.5、将○~9十个数字按规则“加15”填入下面的十个方框中,不能多填、少填,也不能重复填.48→口口;72→口口;口→2口;口5→3口; 37→口口.6、总共有24个球,把它们分布在下图的方框内,每个框内必须有球,使每一条边上都有11个球.请你在方框内画出排法(用数字表示每个框内的球数).7、将0~9十个数字填入下面的方框,不要多填、少填、重复填.(1)按给定规则“×4+3”填数.9→口口;5→口3;口→2口;口→3口;口口→口3.(2)先填好规则“÷口+口”,再填数.口口→口0;26→1口;口口→31;12→口;口6→19.8、依逆时针方向,找出前面两个圈里的相同关系,在第三个圈的( )内填入适当的数.9、在11个8之间的适当的地方,添上运算符号和括号,使等式成立.8 8 8 8 8 8 8 8 8 8 8=1 998.10、将1、2、3、4、5、6、7、8、9这9个数字填入方框,使等式成立.每个方框一个数字,每个数字只用一次.口÷口=口÷口=口口口÷口口.11、将36分成4个数的和,分别填入下面的空格中,使等式成立.口+2=口一2=口×2=口÷2.12、从图A看出,不论哪两个相邻圈中的数的差都正好是下面圈中的数,六个圈中正好是从1到6的数,一个数在一个圈里.请按这个规则在图B的圈中填上从l到10的数(不能有重复的数出现),最下面圈中的数为3.如果仅仅是左右的数互换,那么就算作一种答案,如图A和图C.本题解答不只一种,解答栏中写出4组,但不一定都填出,有几种解答就填几种.(第一届日本算术奥林匹克决赛试题)。
巧填算符巧填算符的符号种类:+-×÷()〖〗{}解题方法:1.凑数法:根据所给的数,凑出一个与结果比较接近的数,然后再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
一般用于等号左边的数比较多,而等号右边的数比较大的题目.2.逆推法:从算式的最后一个数字开始,逐步向前推想,从而得到等式。
一般用于数字不太多(如果太多,推的步骤也会太多),且得数比较小的题目.3.综合法:凑数法和逆推法并用.补充知识:括号的作用是改变运算的顺序,颠覆“先乘除,后加减”,使括号中的部分先做,要改变这一顺序,往往把括号加在有加、减运算的部分.在下列算式的数字之间,添入加号和减号,使等式成立.1 23 4 5 6 78 9=1001.1.在两数之间添上合适的运算符号“+”、“-”、“×”、“÷”(),使等式成立。
3 3 3 3=03 3 3 3=13 3 3 3=23 3 3 3=33 3 3 3=9注:此题答案默认为0,正确答案见解析!2.2.在下列算式的数字之间,添入加号和减号,使等式成立。
12 3 4 5 6 789=100注:此题答案默认为0,正确答案见解析!3.3.下面有8个数,在每两个相邻的数字之间都加上“+”或“-”,使得算式成立。
1 2 3 4 56 7 8=24注:此题答案默认为0,正确答案见解析!将“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
(6○18○3)○(7○2)=121.1.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
(4○12○6)○(17○9)=48注:此题答案默认为0,正确答案见解析!2.2.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
(2○8○4)○(18○9)=36注:此题答案默认为0,正确答案见解析!3.3.把“+”、“-”、“×”、“÷”分别填在下面的○内,使等式成立。
Yi0303第三讲填运算符号在○中填上+、-,使等式成立。
⑴123○45○67○8○9=100⑵123○4○5○67○89=100例2在算式的适当位置添上四则运算符号,使等式成立。
⑴9 9 9 9 9 = 10⑵8 8 8 8 8 8 8 8 = 1000例3在下列算式的适当位置添上括号,使等式成立。
⑴1+2×3+4×5+6×7+8×9=303⑵5+7×8+12÷4-2=25例4在下列算式的适当位置添上四则运算符号和括号,使等式成立。
⑴ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1993⑵ 1 9 9 7 1 9 9 7 = 1⑶ 1 9 9 7 1 9 9 7 = 2例5分别用5个1、5个2、5个3…5个9组成结果为10的等式。
1 1 1 1 1 = 102 2 2 2 2 = 103 3 3 3 3 = 104 4 4 4 4 = 105 5 5 5 5 = 106 6 6 6 6 = 107 7 7 7 7 = 10 8 8 8 8 8 = 109 9 9 9 9 = 10例6用1,2,3,4,5这五个数组成结果为1~10的等式1 2 3 4 5 = 11 2 3 4 5 = 21 2 3 4 5 = 31 2 3 4 5 = 41 2 3 4 5 = 51 2 3 4 5 = 61 2 3 4 5 = 71 2 3 4 5 = 81 2 3 4 5 = 91 2 3 4 5 = 10在下列算式的适当位置填上四则运算符号,使等式成立⑴9 9 9 9 9 = 119 9 9 9 9 = 12⑵ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 = 19923 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 = 2023 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 = 125⑶ 1 2 3 4 5 6 7 8 9 = 19931 2 3 4 5 6 7 8 9 = 2081 2 3 4 5 6 7 8 9 = 1679 8 7 6 5 4 3 2 1 =19939 8 7 6 5 4 3 2 1 =2089 8 7 6 5 4 3 2 1 =777⑷ 1 2 3 4 5 6 7 8 = 11 2 3 4 5 6 7 8 = 3481 2 3 4 5 6 7 8 = 12301 2 3 4 5 6 7 8 9 = 901 2 3 4 5 6 7 8 9 = 1002.在下列算式的适当位置添上括号,使等式成立。
三年级奥数巧添符号第6讲巧添符号知识要点根据题目给定的条件和要求,添运算符号和括号,使等式成立,这是一种很有趣的游戏。
这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。
添运算符号问题,通常采用尝试探索法。
主要尝试方法有两种:1.如果题目中的数字比较简单,可以从等式的结果入手,推想哪些算式能得到这个结果,然后拼凑出所求的式子;2.如果题目中的数字多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。
通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。
【例题1】在下面各题中添上+、-、×、÷、(),使等式成立。
12345=1012345=1012345=1012345=10【思维导航】对于这种问题,我们也可以用倒推法来分析。
从结果10想起,最后一个数是5,可以从下面几种情况中想:□+5=10,□-5=10,□×5=10,□÷5=10。
(1)从□+5=10考量,□=5,前4个数必须共同组成得数就是5的算式存有:(1+2)÷3+4+5=10(1+2)×3-4+5=10(2)从□-5=10考量,□=15,前4个数必须共同组成得数就是15的算式存有:1+2+3×4-5=10(3)从□×5=10考量,□=2.前4个数必须共同组成得数就是2的算式存有:(1×2×3-4)×5=10(1+2+3-4)×5=10(4)从□÷5=10考量,□=50,前面4个数必须共同组成得数就是50的算式,而前面4个数无法共同组成得数就是50的算式。
【练习1】1.你能够在下面的各数中添上运算符号,并使算式设立吗?(1)4125=10(2)4125=102.在下面各数中迎上适度的运算符号,并使等式设立。
(1)34568=8(2)34568=83.巧添运算符号,使等式成立。
三年级奥数题及参考答案:填运算符号问题2
编者小语:奥数特点是以开发智力为基本目的、以处置效果为基本方式、以竞赛数学为主要内容。
最实质的是对先生停止“竞赛数学”的教育。
这种教育的性质是:较高层次的基础教育、开发智力的素质教育、生动生动的专业教育、现代数学的普及教育。
查字典数学网为大家预备了小学三年级奥数题,希望小编整理的三年级奥数题及参考答案:填运算符号效果2,可以协助到你们,助您快速通往高分之路!! 填算符号
在下面算式适宜的中央添上+、-、×号,使等式成立。
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3=1992
剖析:本题等号左边数字比拟多,左边得数比拟大,仍思索凑数法,由于数字比拟多,在凑数时,应多用去一些数,留意到333×3=999,所以
333×3+333×3=2019,它比1992大6,所以只需用剩下的八个3凑出6就可以了,理想了,
3+3+3-3+3-3+3-3=6,由于要减去6,则可以这样添:
333×3+333×3-3-3+3-3+3-3+3-3=1992。
解:本题的一个答案是:
333×3+333×3-3-3+3-3+3-3+3-3=1992。
学而思教员提示:它们的特点是等号左边的数比拟多,而等
号左边的数比拟大,这种效果普通用凑数法处置比拟容易。
三年级奥数第04讲巧添符号(教师版)教学目标使学生掌握添运算符号的各种方法。
培养学生活跃的思维能力,提高学习奥数的兴趣。
典例分析例1、在下面4个4中间,添上适当的运算符号+、-、×、÷和(),组成3个不同的算式,使得数都是2。
4 4 4 4 =24 4 4 4 =24 4 4 4 =2【解析】由题意,可以在4之间添加运算符号和括号,而题中没有一个运算符号,而只能采用逐一试验的方法,找到正确答案。
如果在第1个4后面添+号,后3个4不能得到2;如果第1个4后面是一号,4-2=2,很容易想到:(4+4)÷4=2。
所以4-(4+4)÷4=2。
如果第1个4后面是×号,4×4=16,由于16÷8=2。
容易想到:4×4÷(4+4)=2。
如果第1个4后面是÷号,4÷4=1,由于1+1=2,容易得到:4÷4+4÷4=2。
例2、在批改作业时,张老师发现小明抄题时丢了括号,但结果是正确的。
请你给小明的算式添上括号:4+28÷4-2×3-1=4【解析】根据题意,错误的算式是丢了括号。
只能按先乘除,再加减的运算顺序来计算。
因此括号添在乘除法的两侧是毫无意义的,所添的括号要能够改变运算顺序。
所以,括号应添在含有加减运算的两边。
从左往右看,在4+28两侧试添括号,计算得32,再除以4得8。
小明的算式就变为8-2×3-1=4。
如果把括号加在8-2的两侧,计算结果大于4,只能把括号加在3-1的两侧。
很容易得到:8-2×(3-1)=4。
正确的算式应为:(4+28)÷4-2×(3-1)=4例3、在下面的数字之间添上运算符号,使等式成立。
1 2 3 4 5 6 7 8 9 =6【解析】由题意,有8个地方要添运算符号,用逐一试验的方法很难找到答案。
由于60=2×30=3×20=4×15=5×12=6×10,因此可以把算式中的数分成两个部分,使两个部分的乘积等于60。
小学三年级奥数巧填算符【三篇】1 2 3 4 5 6 7 8 9=100分析在本题条件中,不但限制了所使用运算符号的种类,而且还限制了每种运算符号的个数。
因为题目中,一共能够添四个运算符号,所以,应把123456789分为五个数,又考虑最后的结果是100,所以应在这五个数中凑出一个较接近100的,这个数能够是123或89。
如果有一个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个一位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的一个答案是:123+45-67+8-9=100如果这个数是89,则它的前面一定是加号,等式变为1234567+89=100,为满足要求,1234567=11,在中间要添一个加号和两个减号,且把它变成四个数,观察发现,无论怎样都不能满足要求。
答案与解析:本题的一个答案是:123+45-67+8-9=100补充说明:一般在解题时,如果没有特别说明,只要得到一个准确的解答就能够了。
在例5这类限制比较多的题目的解决过程中,要时时注意按照题目的要求去做,因为题目的要求比较高,所以解决的方法比较少。
【第二篇】练习题:在下面算式适当的地方添上加号,使算是成立。
1 1 1 1 1 1 1 1=1000分析:这道题,1000是大数,先找一个离1000最近的数,就是1111,那么多了111怎么办呢?那么就要“-111”这时已经是1000了,还有一个1怎么办呢?会想到:(1111-111)÷1=1000【第三篇】练习题:在下面算式适当的地方添上加号,使算式成立。
8 8 8 8 8 8 8 8=1000分析要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它能够是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。
答案与解析:本题的答案是888+88+8+8+8=1000。
【小学三年级奥数讲义】添加运算符号
一、知识要点
根据题目给定的条件和要求,添运算符号和括号,使等式成立,这是一种很有趣的游戏。
这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握。
添运算符号问题,通常采用尝试探索法。
主要尝试方法有两种:1.如果题目中的数字比较简单,可以从等式的结果入手,推想哪些算式能得到这个结果,然后拼凑出所求的式子;2.如果题目中的数字多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立。
通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决。
二、精讲精练
【例题1】在下面各题中添上+、-、×、÷、(),使等式成立。
1 2 3 4 5 = 10 1 2 3 4 5 = 10
1 2 3 4 5 = 10 1 2 3 4 5 = 10
练习1:
1.你能在下面的各数中添上运算符号,使算式成立吗?
(1)4 1 2 5 = 10 (2)4 1 2 5 = 10
1。
三年级奥数巧填符号教案精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】三年级奥数第二课巧填符号教学要求:1、使学生掌握添运算符号的各种方法。
2、培养学生活跃的思维能力,提高学习奥数的兴趣。
教学过程:一、导入新课语:添运算符号,也是一种数学游戏,在几个或数个数字之间的适当地方填上“+、-、×、÷和()”,组成一个算式,使得运算后等于事先规定的结果。
添运算符号不仅有趣味,还能使人思维活跃,能力提高。
二、探索新课:【例题1】在下面各题中添上+、-、×、÷、(),使等式成立。
12345=1012345=1012345=1012345=10【思路导航】对于这种问题,我们也可以用倒推法来分析。
从结果10想起,最后一个数是5,可以从下面几种情况中想:□+5=10,□-5=10,□×5=10,□÷5=10。
(1)从□+5=10考虑,□=5,前4个数必须组成得数是5的算式有:(1+2)÷3+4+5=10(1+2)×3-4+5=10(2)从□-5=10考虑,□=15,前4个数必须组成得数是15的算式有:1+2+3×4-5=10(3)从□×5=10考虑,□=2,前4个数必须组成得数是2的算式有:(1×2×3-4)×5=10(1+2+3-4)×5=10(4)从□÷5=10考虑,□=50,前面4个数必须组成得数是50的算式,而前面4个数无法组成得数是50的算式。
小结;这样的题目我们可以运用倒退的方法思考。
【例题2】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立。
你能试一试吗?8888=08888=18888=28888=3【思路导航】这道题除了可以用倒推法来分析,还可以这样想:(1)等于0的思考方法:假设最后一步运算是减法,那么这四个数可以分成两组,这两组的和、差、积、商应该相等,有:8+8-(8+8)=08×8-8×8=08-8-(8-8)=08÷8-8÷8=0(2)等于1的思考方法:假设最后一步是除法,那么四个数分成两组,这两组的和、积、商分别相等,相同的数相除也可得到1,有:(8+8)÷(8+8)=18×8÷(8×8)=18÷8÷(8÷8)=18×8÷8÷8=18÷8×8÷8=18÷(8×8÷8)=1(3)等于2的思考方法:假设最后一步是加法,那么两组数各为1,有:8÷8+8÷8=2(4)等于3的思考方法:假设最后一步是除法,那么前三个数凑为3个8,有:(8+8+8)÷8=3二、学生操作体验,巩固提升。
巧填符号1.你能在下面算式中添上运算符号,使等式成立吗?(1)4 1 2 5=10 (2)4 1 2 5=102.在下面各算式中添上适当的运算符号和括号,使等式成立。
(1)3 4 5 6 8=8 (2)3 4 5 6 8=83.巧添运算符号及括号,使等式成立。
(1)3 3 3 3=1 (2)3 3 3 3=2 (3)3 3 3 3=34.在算式中添上+、-、×、÷或(),使等式成立。
(1)4 4 4 4=0 (2)4 4 4 4=1 (3)4 4 4 4=2(4)4 4 4 4=3 (5)4 4 4 4=4 (6)4 4 4 4=55.巧添运算符号和括号,使等式成立。
(1)5 5 5 5 5=0 (2)5 5 5 5 5=1(3)5 5 5 5 5=2 (4)5 5 5 5 5=36.用8个8组成5个数,再添上适当的运算符号,使它们的和等于1000.8 8 8 8 8 8 8 8=10007.用12个3组成8个数,使它们的结果等于2000。
3 3 3 3 3 3 3 3 3 3 3 3=20008.在下式中添上运算符号,使等式成立。
2 2 2 2 2 2 2 2 2=10009.用7个6组成4个数,使等式成立。
6 6 6 6 6 6 6=60010.在下面算式中适当的地方添上+、-,使等式成立。
9 8 7 6 5 4 3 2 1=231 2 3 4 5 6 7 8=1411.在下面算式中适当的地方添上+、-、×,使等式成立。
1 2 3 4 5 6 7 8=112.改变一个运算符号,使等式成立。
1+2+3+4+5+6+7+8+9+10=4513.王老师在批改作业时发现小林同学抄题时丢了括号,但结果仍是正确的。
请你给小林的算式添上括号。
4+28÷4-2×3-1=414.在下列算式中合适的地方添上括号,使等式成立。
1+2×3+4×5+6×7+8×9=303有余数除法1.右面算式中被除数最大可填几,最小可填几?□÷8=3……□2.你能写出右式中最大的被除数和最小的被除数吗?□÷4=7……□3.右式中要使除数最小,被除数应为几?□÷□=12 (4)4.下列算式中,除数和商各是几?(1)22÷()=()......4 (2)65÷()=() (2)(3)37÷()=()......7 (4)48÷()=() (6)5.149除以一个两位数,余数是5,请写出所有这样的两位数。
消失的符号(巧填算符)知识图谱消失的符号知识精讲一.巧填算符1.一个加减法算式中,如果把某个数前的加号变为减号,那么最后的计算结果不但少加了一次这个数,还额外减了一次这个数,那么结果会变小该数的两倍.2.对于特定的两个数,之间填上“+”和“⨯”一般可以使结果变大,而如果填上“-”和“÷”一般可以使结果变小,但注意存在数字1时比较特殊.3.两个数字越大,那么填上“⨯”所得的结果要比“+”的结果大得多.4.在填写除号的时候,注意一定要让组成的算式可以整除.5.括号用来改变运算顺序,在原有算式的基础上添上括号会使整个计算结果发生变化.6.注意题意,数字间不填符号可以得到多位数.二.算符与数字1.除了和符号相关的问题外,还有许多有关数字的问题.两个一位数相加,所能得到的和最大是9918+=,最小为000+=.除了0、1、17、18外,其他的和都可以有多组数相加得到,而且离9越近,分拆的方法就越多.2.部分数字(0、1、6、8、9)颠倒后仍是数字,而其他则不行.3.各种算式的组成与修改问题.在已知数之间添加运算符号与括号,得出给定结果或取得最大、最小值.通过枚举、试算、顺推、逆推等方法解决算式的变化问题.要求学生有较强的心算和估算能力.三点剖析本讲主要培养学生的观察推理能力,其次培养学生的运算能力.本讲内容是在整数计算的基础上,学习算符与数字.课堂引入例题1、 柯小南对数学可以说是情有独钟,而且对于一些数学难题他会很轻松的解答出来,所以知道他的人都称他为数学家.一天,他的朋友唐小虎遇到一个数学难题,怎么也算不出来.于是,唐小虎带着这个疑问去找柯小南.当唐小虎刚说完题目,聪明的柯小南只是说这不是什么难题,同时在纸上马上添加了运算符号,唐小虎看了后豁然开朗.例题2、 下面有6个数,在每两个相邻的数之间都填上一个加号或减号,使得结果为18:6 5 4 3 2 118=算符与数字中的等式成立例题1、 (1)下面有6个数,在每两个相邻的数之间都填上一个加号或减号,使得结果为19: 65432119=(2)在下面相邻两数之间,填上“”或“”,使等式成立.3____4____5____610=. (3)在下面算式中合适的地方填入小括号,使等式成立: (4)在下面算式中合适的地方填入+、-、×、÷或(),使等式成立:1234578=(5)请在下式中填入“+”和“⨯”,使等式成立(不要求每两个数之间都填入符号,但不能填“+”和“⨯”以外的符号):.例题2、 改变下面算式中一个数字前的运算符号,就能使等式成立. (1)(只能加变减,减变加):765432118++--+-=,(2)123456789100++++++++=,(3)1234567891011121314151617181920200+++++++++++++++++++=.⨯÷6812430⨯+÷=12345678910100=在3个9之间添加任意的运算符号,使其等于2.你知道柯小南是怎样添加运算符号的吗?说一说.我能不能先填一种运算符号呢?然后根据结果再调整?那是不是可以先看看原来的算式结果是多少呢?例题3、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立: (1)999999102=(2)8888888888882016=随练1、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立. (1),(2) 随练2、 在下面算式中合适的地方填入小括号,使等式成立:算符与数字中的最值问题例题1、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是________.例题2、 (1)把+、-、×、÷各一个填入下面的空格内,使得计算的结果最大,这个最大值是________.(2)在下面的一排数字之间添入一个加号和一个减号,组成的算式的最小值是________.(3)把+、-、×、÷各一个填入下面的横线上,再添一对括号,要使计算的结果最大,那么能得到的最大的结果是________.例题3、 将1至8填入算式“”中,使得算式结果达到最大或最小.444420=9999919=578124220+⨯+÷-=108320++⨯97531□□□□5432110_____8_____4_____2_____1()()+⨯-□□□□□□□□注意仔细读题哦~是在合适的地方添符号哦~结果最大,那就应该乘数最大吧?什么时候才会有最大值呢?结果最大,相乘的两数要尽可能大;结果最小,相乘的两数要……随练1、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是________. 随练2、 把从1到6这6个数字填入算式中,使得等式达到最大:.算符与数字的实际应用例题1、 有一类三位数,各数位上的数字之积是18,在所有这样的三位数中,最大的数与最小的数的差是______.例题2、 将一个多位数的相邻两个数字从左到右依次相加,得到的和分别为:2、0、4,那么这个多位数是________.例题3、 一张纸片上写着一个两位数,把纸片倒过来之后又变成了另一个两位数,且两个两位数的和为107,那么这两个两位数分别是________.例题4、 在下面的横线上填入2、3、8、9各一个,使得最后的结果等于24.随练1、 将一个多位数相邻两位数字依次相加,得到的和从左到右依次为:5、1、9、8、2、4、8、15,那么这个多位数是________.24点与36点例题1、 在下面各题中,请你用给出的四个数,适当进行加、减、乘、除运算,每个数恰好用一次,使得计算结果等于24:(1)1,4,5,6;(2)1,5,5,5;(3)3,3,7,7;(4)3,3,8,8. 例题2、 把+、-、×、÷这4个运算符号,分别填入下面四个圆圈内,使等式成立:例题3、 用下面每小题给定的5个数凑36,数可以打乱顺序,每个数仅用一次,可用+、-、×、÷或(). (1)2,4,6,8,10 (2)1,3,5,7,9随练1、 在下面的横线上填入1、3、6、8各一个,使得最后的结果等于24.102310++⨯⨯+⨯□□□□□□()________________________________24÷⨯-=()()28418936=○○○○()________________________________24÷+⨯=三位数,各数位上的数字之积是18,那就是说……最后一步是乘法,是不是去凑两个数相乘等于24就可以了呢?易错纠改例题1、看完题目,唐小虎思考了一会,和姐姐唐小果有了以下的讨论:你能帮唐小虎解决这个问题吗?请写出计算过程.拓展1、 用运算符号将1、4、7、7组成一个算式,使结果等于24.__________2、 在下面算式中合适的地方填入+、-、×、÷或(),使等式成立 (1)333310=,(2)55555500=3、 在下面的算式中填入一对括号,使得算式的结果最大,最大值是__________. 7523++⨯4、 在下面的算式中合适的地方填入小括号,使等式成立: (1)48123217-⨯÷+=;(2)3020105250+÷÷⨯=.5、 请将四个4用“+、-、×、÷、( )”组成3个算式如:44449++÷=.使它们的结果分别等于5、6、7. (1)________________________=5(2)________________________=6 (3)________________________=7.6、 ()()÷⨯+-⨯+-□□□□□□□□从1至9这9个数中选出8个数,分别填在上面的8个□内,使算式的结果尽可能大,那么这个最大的结果是多少?7、 把+、-、×、÷各一个填入下面的横线上,再添一对括号,要使计算的结果最大,那么能得到的最大的结果是多少?9_____7_____5_____3_____18、 将一个多位数相邻两位数字依次相加,得到的和分别为:6、2、4、9、5、8、11,那么这个多位数是多少? 9、 分析并口述题目的做题思路及方法.请用4、5、7、9以及算符和括号组成一个算式,使得结果为24,至少用三种方法.姐姐,这节课的内容既好玩还容易哦~那是你没遇到,来看看这题吧.把0~9这十个数字倒过来看,其中0,1,8三个数字不变,6与9两个数字互换,而其余数字倒过来都没有意义.在一张纸片上写出一个两位数,把纸片倒过来看,恰好与原数相同,这样的两位数有几个?如果写的是一个三位数,倒过来看与原数相同,这样的三位数有几个?首先两位数肯定只能是由0、1、8、6、9组成.那就在这5个数中挑出2来组成两位数就可以了呀!按照你的方法,那10满足要求吗?注意题目中的意思哦~不行哎,倒过来就变成01,和10不想等了,姐姐,你等我再想想奥……。
三年级奥数专题-添运算符号一、知识要点根据题目给定的条件和要求,添运算符号和括号,使等式成立,这是一种很有趣的游戏.这种游戏需要动脑筋找规律,讲究方法,一旦掌握方法,就有取得成功的把握.添运算符号问题,通常采用尝试探索法.主要尝试方法有两种:1.如果题目中的数字比较简单,可以从等式的结果入手,推想哪些算式能得到这个结果,然后拼凑出所求的式子;2.如果题目中的数字多,结果也较大,可以考虑先用几个数字凑出比较接近于等式结果的数,然后再进行调整,使等式成立.通常情况下,要根据题目的特点,选择方法,有时将以上两种方法组合起来使用,更有助于问题的解决.二、精讲精练【例题1】在下面各题中添上+、-、×、÷、(),使等式成立.1 2 3 4 5 = 10 1 2 3 4 5 = 101 2 3 4 5 = 10 1 2 3 4 5 = 10【思路导航】对于这种问题,我们也可以用倒推法来分析.从结果10想起,最后一个数是5,可以从下面几种情况中想:□+5=10,□-5=10,□×5=10,□÷5=10.(1)从□+5=10考虑,□=5,前4个数必须组成得数是5的算式有:(1+2)÷3+4+5=10 (1+2)×3-4+5=10 (2)从□-5=10考虑,□=15,前4个数必须组成得数是15的算式有:1+2+3×4-5=10(3)从□×5=10考虑,□=2,前4个数必须组成得数是2的算式有:(1×2×3-4)×5=10 (1+2+3-4)×5=10 (4)从□÷5=10考虑,□=50,前面4个数必须组成得数是50的算式,而前面4个数无法组成得数是50的算式.练习1:1.你能在下面的各数中添上运算符号,使算式成立吗?(1)4 1 2 5 = 10 (2)4 1 2 5 = 102.在下面各数中添上适当的运算符号,使等式成立.(1)3 4 5 6 8 = 8 (2)3 4 5 6 8 = 83.巧添运算符号,使等式成立.(1)3 3 3 3 =1 (2)3 3 3 3 =2 (3)3 3 3 3 =3 【例题2】拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立.你能试一试吗? 8 8 8 8 = 0 8 8 8 8 = 1 8 8 8 8 = 2 8 8 8 8 = 3【思路导航】这道题除了可以用倒推法来分析,还可以这样想:(1)等于0的思考方法:假设最后一步运算是减法,那么这四个数可以分成两组,这两组的和、差、积、商应该相等,有:8+8-(8+8)=0 8×8-8×8=0 8-8-(8-8)=0 8÷8-8÷8=0(2)等于1的思考方法:假设最后一步是除法,那么四个数分成两组,这两组的和、积、商分别相等,相同的数相除也可得到1,有:(8+8)÷(8+8)=1 8×8÷(8×8)=1 8÷8÷(8÷8)=18×8÷8÷8=1 8÷8×8÷8=1 8÷(8×8÷8)=1(3)等于2的思考方法:假设最后一步是加法,那么两组数各为1,有:8÷8+8÷8=2(4)等于3的思考方法:假设最后一步是除法,那么前三个数凑为3个8,有:(8+8+8)÷8=3练习2:1.在各数中添上+、-、×、÷或(),使算式相等.4 4 4 4 = 0 4 4 4 4 = 1 4 4 4 4 = 24 4 4 4 = 3 4 4 4 4 = 4 4 4 4 4 = 52.巧添各种运算符号和括号,使等式成立.5 5 5 5 5 = 0 5 5 5 5 5 = 15 5 5 5 5 = 2 5 5 5 5 5 = 33.用8个8组成5个数,再添上适当的运算符号,使它们的和是1000.8 8 8 8 8 8 8 8 = 1000【例题3】在4个4之间添上+、-、×、÷或括号,使组成的得数是8.4 4 4 4 = 8【思路导航】这类问题,我们可以用倒推方法来分析.这道题最后得数是8,而最后一个数是4,我们可以想□+4=8,□-4=8,□×4=8,□÷4=8,然后再进行解答.(1)从□+4=8考虑,□=4,前面3个4必须组成得数是4的算式有:4+4-4+4=8 4-4+4+4=8 4-(4-4)+4=8(2)从□-4=8考虑,□=12,前3个4必须组成得数是12的算式有:4+4+4-4=8 4×4-4-4=8(3)从□×4=8考虑,□=2,前面3个4必须组成得数是2的算式有:(4+4)÷4×4=8(4)从□÷4=8考虑,□=32,前3个4必须组成得数是32的算式有:(4+4)×4÷4=8 4×(4+4)÷4=8练习3:1.你能在下面数中填上+、-、×、÷,使结果等于已知数吗?答(1)9 9 9 9 = 18 (2)5 5 5 5 = 102.在下面数中填上+、-、×、÷或(),使算式成立.答(1)4 4 4 4 4 = 8 (2)3 3 3 3 3 = 93.在下面几个数中填上+、-、×、÷或(),使等式成立.答(1)2 3 5 6 = 6 (2)2 3 5 6 = 6【例题4】在下面12个5之间添上+、-、×、÷,使算式成立.5 5 5 5 5 5 5 5 5 5 5 5 = 1000【思路导航】这道题的结果比较大,那我们就要尽量想出一些大的数来,使它与1000比较接近,如:555+555=1110这个数比1000大了110,然后我们在剩下的6个5中凑出110减掉就可以了. 555+555-55-55+5-5=1000 练习4:1.用12个3组成8个数,它们的结果等于2000. 3 3 3 3 3 3 3 3 3 3 3 3 = 20002.在9个2之间添上运算符号,使结果等于1000.2 2 2 2 2 2 2 2 2 = 10003.用7个6组成4个数,使下面的算式成立. 6 6 6 6 6 6 6 = 600【例题5】在下面式子中适当的地方添上+、-号,使等式成立.9 8 7 6 5 4 3 2 1 = 21【思路导航】这题左边的数字比较多,等号右边的得数是21,可以考虑在等号左边最后两个数字2、1前添+,这时我们必须使前面几个数字的结果为0,然后再用倒推的方法可以得出:9-8+7-6+5-4-3=0 9-8+7-6+5-4-3+21=21练习5:1.在下面算式中适当的地方添上+、-号,使等式成立.9 8 7 6 5 4 3 2 1 = 232.在下面式子的适当地方添上+、-、×号,使等式成立.1 2 3 4 5 6 7 8 = 13.在下面算式中适当的地方添上+、-号,使等式成立.1 2 3 4 5 6 7 8 = 14。
小学三年级奥数巧填算符【三篇】1 2 3 4 5 6 7 8 9=100分析在本题条件中,不但限制了所使用运算符号的种类,而且还限制了每种运算符号的个数。
因为题目中,一共能够添四个运算符号,所以,应把123456789分为五个数,又考虑最后的结果是100,所以应在这五个数中凑出一个较接近100的,这个数能够是123或89。
如果有一个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个一位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的一个答案是:123+45-67+8-9=100如果这个数是89,则它的前面一定是加号,等式变为1234567+89=100,为满足要求,1234567=11,在中间要添一个加号和两个减号,且把它变成四个数,观察发现,无论怎样都不能满足要求。
答案与解析:本题的一个答案是:123+45-67+8-9=100补充说明:一般在解题时,如果没有特别说明,只要得到一个准确的解答就能够了。
在例5这类限制比较多的题目的解决过程中,要时时注意按照题目的要求去做,因为题目的要求比较高,所以解决的方法比较少。
【第二篇】练习题:在下面算式适当的地方添上加号,使算是成立。
1 1 1 1 1 1 1 1=1000分析:这道题,1000是大数,先找一个离1000最近的数,就是1111,那么多了111怎么办呢?那么就要“-111”这时已经是1000了,还有一个1怎么办呢?会想到:(1111-111)÷1=1000【第三篇】练习题:在下面算式适当的地方添上加号,使算式成立。
8 8 8 8 8 8 8 8=1000分析要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它能够是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。
答案与解析:本题的答案是888+88+8+8+8=1000。
添运算符号
1 .在下面各题中添上+、-、×、÷、(),使等式成立。
1 2 3 4 5 = 10 1 2 3 4 5 = 10
1 2 3 4 5 = 10 1 2 3 4 5 = 10
2 .你能在下面的各数中添上运算符号,使算式成立吗?
(1)4 1 2 5 = 10 (2)4 1 2 5 = 10
3 .在下面各数中添上适当的运算符号,使等式成立。
(1)3 4 5 6 8 = 8 (2)3 4 5 6 8 = 8
4 .巧添运算符号,使等式成立。
(1)3 3 3 3 =1 (2)3 3 3 3 =2 (3)3 3 3 3 =3
5 .拿出都是8的四张牌,添上+、-、×、÷或(),使等式成立。
你能试一试吗? 8 8 8 8 = 0 8 8 8 8 = 1 8 8 8 8 = 2 8 8 8 8 = 3
6 .在各数中添上+、-、×、÷或(),使算式相等。
4 4 4 4 = 0 4 4 4 4 = 1 4 4 4 4 = 2
4 4 4 4 = 3 4 4 4 4 = 4 4 4 4 4 = 5
7 .巧添各种运算符号和括号,使等式成立。
5 5 5 5 5 = 0 5 5 5 5 5 = 1
5 5 5 5 5 = 2 5 5 5 5 5 = 3
8 .用8个8组成5个数,再添上适当的运算符号,使它们的和是1000。
8 8 8 8 8 8 8 8 = 1000
9 .在4个4之间添上+、-、×、÷或括号,使组成的得数是8。
4 4 4 4 = 8
10 .你能在下面数中填上+、-、×、÷,使结果等于已知数吗?答
(1)9 9 9 9 = 18 (2)5 5 5 5 = 10
11 .在下面数中填上+、-、×、÷或(),使算式成立。
答
(1)4 4 4 4 4 = 8 (2)3 3 3 3 3 = 9
12 .在下面几个数中填上+、-、×、÷或(),使等式成立。
答
(1)2 3 5 6 = 6 (2)2 3 5 6 = 6
13 .在下面12个5之间添上+、-、×、÷,使算式成立。
5 5 5 5 5 5 5 5 5 5 5 5 = 1000
14 .用12个3组成8个数,它们的结果等于2000。
3 3 3 3 3 3 3 3 3 3 3 3 = 2000
15 .在9个2之间添上运算符号,使结果等于1000。
2 2 2 2 2 2 2 2 2 = 1000
16 .用7个6组成4个数,使下面的算式成立。
6 6 6 6 6 6 6 = 600
17 .在下面式子中适当的地方添上+、-号,使等式成立。
9 8 7 6 5 4 3 2 1 = 21
18 .在下面算式中适当的地方添上+、-号,使等式成立。
9 8 7 6 5 4 3 2 1 = 23
19 .在下面式子的适当地方添上+、-、×号,使等式成立。
1 2 3 4 5 6 7 8 = 1
20 .在下面算式中适当的地方添上+、-号,使等式成立。
1 2 3 4 5 6 7 8 = 14。