线性代数第一章行列式第二节全排列及其逆序数
- 格式:ppt
- 大小:782.50 KB
- 文档页数:9
第一章 行列式第一节二阶与三阶行列式 第二节全排列及其逆序数第三节n 阶行列式的定义第四节对换1.求下列各排列的逆序数:(1) 134785692 (2) 139782645 (3) 13…(2n-1)24…(2n) (4) 13…(2n-1)(2n)(2n-2)…2 (11;17;2)1(-n n ;)1(-n n ) 2. 已知排列9561274j i 为偶排列,则=),(j i (8,3) .3.计算下列各阶行列式:(1) 600300301395200199204100103 (2)0d 0c 0b 0a 0 (3)efcfbfde cd bd aeac ab --- [2000; 0; 4abcdef] 4. 设xx x x xD 111123111212-=,则D 的展开式中3x 的系数为 -1 .5 求二次多项式()x f ,使得()61=-f ,()21=f ,()32=f解 设()c bx ax x f ++=2,于是由()61=-f ,()21=f ,()32=f 得⎪⎩⎪⎨⎧=++=++=+-32426c b a c b a c b a 求c b a ,,如下: 06124111111≠-=-=D ,61231121161-=-=D ,121341211612==D ,183242116113-=-=D 所以 11==D D a ,22-==D Db ,33==DD c故()322+-=x x x f 为所求。
第五节 行列式的性质 第六节 行列式按行(列)展开 第七节克拉默法则1.n 阶行列式ij a D =,则展开式中项11342312n n n a a a a a - 的符号为( D ). (A )- (B )+ (C )n)1(- (D )1)1(--n2.如果1a a a a a a a a a D 333231232221131211==,求333231312322212113121111a a 3a 2a 4a a 3a 2a 4a a 3a 2a 4--- [-12] 3. 已知4521011130112101--=D ,计算44434241A A A A +++ [-1]4. 计算行列式3833262290432231---- [-50]5.计算下列各行列式(D k 为k 阶行列式)(1)a11a,其中对角线上元素都是a ,未写出的元素都是0; [2--n naa ](2) aaaa x a aax; [1)(--n a x a ](3)n1n 321a xxxxx a x x x x x a x x x x xa xx x x x a- [利用递推公式来求]递推公式为1121)()())((---+---=n n n n D x a x a x a x a x Dn D =)1)(())((2121xa xx a x x a x x a x a x a n n -++-+-+--- (4) n2222232222222221[)!2(-n ](5)β+ααββ+αβ+ααββ+ααββ+ααββ+α1000000100001000010000[n n n n βαββαα++++--11]6.问λ,μ取何值时,齐次方程组⎪⎩⎪⎨⎧=+μ+=+μ+=++λ0x x 2x 0x x x 0x x x 321321321有非零解? [0;1==μλ]求每类商品的销售利润率。