线性代数12_全排列及其逆序数
- 格式:ppt
- 大小:5.37 MB
- 文档页数:6
第一章行列式第一节 排列及其逆序数�引言�排列与逆序数一、引言我们在中学曾经学习过求解二元一次线性方程组⎩⎨⎧=+=+2221212111c x b x a c x b x a (1) 当两个方程的未知数系数不成比例,即 2121b b a a ≠时,我们有.b a b ac a c a x ,b a b ac b c b x 122112212122121121−−=−−=(2)为方便记忆,我们引入二阶行列式bc ad db ca −=(3)则(2)可以表示为.b a b ac a c a x ,b a b a b c b c x 221122112221122111==(4)即当(1)的系数行列式0b a b a 2211≠时, (1)的解可以用二阶行列式表示为(4)。
用高斯消元法,对三元一次线性方程组,333323213123232221211313212111⎪⎩⎪⎨⎧=++=++=++b x a x a x a b x a x a x a b x a x a x a (5)我们也可以得到类似的结果。
即如果引入三阶行列式,c c c c c c c c c c c c c c c c c c c c c c c c c c c 322311332112312213322113312312332211333231232221131211−−−++=(6)则当(5)的系数行列式0a a a a a a a a a D 333231232221131211≠=(7)时,方程组(5)的解可以用三阶行列式表示为.a a a a a a a a a b a a b a a b a a x ,a a a a a a a a a a b a a b a a b a x ,a a a a a a a a a a a b a a b a a b x 333231232221131211332312222111211333323123222113121133331232211311123332312322211312113332323222131211===(8)对于n 元一次方程组,是否也有类似于上述(4)、(8)的结果呢?这就是本章要回答的问题。
全排列及其逆序数
全排列是指对给定的一组不同的元素,按照一定的顺序进行排列,形成所有可能的排列方式。
例如,对于3个元素a、b、c
来说,它们的全排列为6种:abc、acb、bac、bca、cab、cba。
在全排列中,逆序数是指排列中相邻两个元素逆序出现的次数。
例如,对于排列abc,其中包含两个逆序对,即bc和ac。
逆
序数越多,说明排列越混乱或越逆序。
逆序数在数学上有广泛的应用,例如在计算逆序对问题、计算排列的偏序关系等方面都有用到。
在计算逆序数时,常采用归并排序的思想,即将排列拆分成子序列,分别计算子序列的逆序数,再合并子序列的结果。
线性代数知识点总结线性代数知识点总结第一章 行列式第一节:二阶与三阶行列式把表达式11221221aa a a -称为11122122a a a a 所确定的二阶行列式,并记作11122112aa aa ,即1112112212212122.a a D a a a a a a ==-结果为一个数。
(课本P1)同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数表111213212223313233a a a a a a a a a 所确定的三阶行列式,记作111213212223313233a a a aa a a a a 。
即111213212223313233a a a aa a a a a =112233122331132132112332122133132231,aa a a a a a a a a a a a a a a a a ++---二三阶行列式的计算:对角线法则(课本P2,P3)注意:对角线法则只适用于二阶及三阶行列式的计算。
利用行列式计算二元方程组和三元方程组:对二元方程组11112212112222ax a x b ax a x b +=⎧⎨+=⎩设11122122a a D a a =≠1121222b a D b a =1112212.a b D a b =则1122221111122122b a b a D xa a Da a ==,1112122211122122.a b a b D x a a Da a ==(课本P2)对三元方程组111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩,设1112132122233132330a a a D aa a a a a =≠,1121312222333233b a a D b a a b a a =,1111322122331333a b a Da b a a b a =,1112132122231323a ab Da ab a a b =,则11D x D=,22D xD=,33D xD=。
线性代数⼀、⾏列式1. ⼆阶与三阶⾏列式对⼆元线性⽅程组有⼆阶段⾏列式若记则对个数组成的⾏列的数表有三阶⾏列式2.全排列和对换排列全排列:把个不同的元素排成⼀列,叫做这个元素的全排列排列。
逆序:对于个不同的元素先规定⼀个元素之间的标准次序在这个元素的任⼀排列中当某⼀对元素的先后顺序与标准次序不同时就说它构成⼀个逆序。
逆序数:⼀个排列中所有逆序的总数。
奇排列:逆序数为技术的排列偶排列:逆序数为偶数的排列排列的逆序数:对换:将排列中的任意两个元素对调,其余的元素不动的过程。
相邻对换:将相邻两个元素进⾏的对换。
定理:⼀个排列中的任意两个元素对换,排列改变奇偶性。
推论奇排列对换成标准排列的对换次数为奇数,偶数列对换成标准数列的对换次数为偶数。
3.n阶⾏列式对个数组成的⾏列的数表有阶⾏列式,记作4.⾏列式的性质⾏列⾏列式称为的转置⾏列式性质:⾏列式与它的转置⾏列式相等性质:对换⾏列式的两⾏列,⾏列式变号推论:如果⾏列式有两⾏列完全相同,则此⾏列式等于零性质:⾏列式的某⼀⾏列中所有的元素都乘同⼀数,等于⽤数乘此⾏列式性质:⾏列式中如果有两⾏(列)元素成⽐例,则此⾏列式等于零性质:若⾏列式的某⼀⾏的元素都是两数之和,则⾏列式可拆分为两个⾏列式相加性质:把⾏列式的某⼀⾏的个元素乘同义数然后加到另⼀⾏列对应的元素上去,⾏列式不变。
5.⾏列式按⾏(列)展开在阶⾏列式中把元所在的第⾏和第列划去后在阶⾏列式中把元所在的第⾏和第列划去后留下来的阶⾏列式叫做元的余⼦式记作记叫做元的代数余⼦式引理⼀个阶⾏列式如果其中第⾏所有元素除元外都为零那么这⾏列式等于与它的代数余⼦式的乘积即定理按⾏列展开法则⾏列式等于它的任⼀⾏列的各元素与其对应的代数余⼦式乘积之和即或例如四阶⾏列式中元的余⼦式和代数余⼦式分别为⼆、矩阵2.1 线性⽅程组、矩阵、矩阵的运算当常数项不全为零时有元⾮齐次线性⽅程组含有个末知数个⽅程的元⾮齐次线性⽅程组:其中是第个⽅程的第个末知数的系数是第个⽅程的常数项当全为零时有元齐次线性⽅程组:元齐次线性⽅程组⼀定有零解不⼀定有⾮零解即⼀组不全为零的解2.1.1 矩阵1、矩阵介绍对由个数排成的⾏列的数表称为⾏列矩阵矩阵:数位于矩阵的第⾏第列称为矩阵的元2、矩阵的种类矩阵的种类:其中称为系数矩阵称为末知数矩阵称为常数项矩阵称为增⼴矩阵⾏矩阵⾏向量:列矩阵列向量:实矩阵元素是实数的矩阵复矩阵元素是复数的矩阵除特别说明外都指实矩阵阶矩阵阶⽅阵:⾏数与列数都等于的矩阵同型矩阵⾏数、列数都相等的两个矩阵相等矩阵如果与是同型矩阵并且它们的对应元素相等即那么就称矩阵与矩阵相等记作零矩阵元素都是零的矩阵注意不同型的零矩阵是不同的对⾓矩阵对⾓阵:从左上⾓到右下⾓的直线叫做对⾓线以外的元素都是的阶⽅阵:特别当有阶单位矩阵单位阵:单位阵的元为:当当2.1.2 矩阵的运算1、矩阵的加法矩阵的加法:设有两个矩阵和那么矩阵与的和记作规定为只有当两个矩阵是同型矩阵时才能进⾏加法运算矩阵加法满⾜下列运算规律设都是矩阵设矩阵记称为矩阵的负矩阵由此规定矩阵的减法为2、矩阵数乘数与矩阵的乘积记作或规定为:数乘矩阵满⾜下列运算规律设、为矩阵、为数3、矩阵相乘矩阵相乘:对矩阵矩阵有矩阵记为其中按此定义⼀个⾏矩阵与⼀个列矩阵的乘积是⼀个阶⽅阵也就是⼀个数由此表明乘积矩阵的元就是的第⾏与的第列的乘积如:4、转置矩阵矩阵称为的转置矩阵:例如转置矩阵的运算规律:对称矩阵对称阵:元素以对⾓线为对称轴对应相等的阶矩阵如果阶⽅阵满⾜:即则为对称矩阵⽅阵的⾏列式:⽅阵的⾏列式或:由阶⽅阵的元素所构成的⾏列式各元素的位置不变伴随矩阵:⾏列式的各个元素的代数余⼦式所构成的矩阵称为矩阵的伴随矩阵有:注:2.2 逆矩阵、克拉默法则、矩阵分块法2.2.1 逆矩阵1、逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:逆矩阵的定义、性质和求法:对于阶矩阵如果有⼀个阶矩阵使则矩阵是可逆的的逆矩阵逆阵在矩阵的乘法中的作⽤与数类似如果矩阵是可逆的那么的逆矩阵是惟⼀的这是因为若、都是的逆矩阵则有所以的逆矩阵是惟⼀的定理若矩阵可逆,则定理若则矩阵可逆且其中为矩阵的伴随矩阵推论:若或,则故逆矩阵满⾜下述运算规律若可逆则亦可逆且若可逆数则可逆且若、为同阶矩阵且均可逆则亦可逆且2、逆矩阵的初步应⽤:逆矩阵的初步应⽤:设求矩阵使其满⾜解:若存在则⽤左乘上式右乘上式有即若⽽故知、都可逆且于是2.2.2 克拉默法则克拉默法则:含有个末知数的个线性⽅程的⽅程组:①它的解可以⽤阶⾏列式表⽰即有克拉默法则:如果线性⽅程组①的系数矩阵的⾏列式不等于零即:那么⽅程组①有惟⼀解其中是把系数矩阵中第列的元素⽤⽅程组右端的常数项代替后所得到的阶矩阵即2.2.3 分块矩阵1、分块矩阵分块矩阵:以⼦块为元素的形式上的矩阵将矩阵⽤若⼲条纵线和横线分成许多个⼩矩阵每⼀个⼩矩阵称为的⼦块例如将矩阵分成⼦块的分法很多下⾯举出三种分块形式,,分法可记为其中即为的⼦块⽽形式上成为以这些⼦块为元的分块矩阵2、分块矩阵的运算分块矩阵的运算与普通矩阵的运算相类似:分块矩阵的运算与普通矩阵的运算相类似:设矩阵与的⾏数相同、列数相同采⽤相同的分块法有:其中与的⾏数相同、列数相同那么:设为数那么:设为矩阵为矩阵分块成:其中的列数分别等于的⾏数那么:其中设则设为阶⽅阵若的分块矩阵只有在对⾓线上有⾮零⼦块其余⼦块都为零矩阵且在对⾓线上的⼦块都是⽅阵即其中都是⽅阵那么称为分块对⾓矩阵分块对⾓矩阵的⾏列式满⾜:由此性质可知若则并有:补充:。