矢量网络分析仪使用方法
- 格式:pdf
- 大小:12.91 MB
- 文档页数:97
矢量网络分析仪使用教程矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量和分析电磁器件和电路的工具。
它可以通过模拟和数字信号处理技术,对电压和电流的振幅、相位以及其它参数进行精确测量。
本教程将介绍如何正确使用矢量网络分析仪进行测试和分析。
1. 连接仪器:首先,将矢量网络分析仪的射频输出端口与待测设备连接。
确保连接的线缆和连接头无损坏,并保持良好接触。
接下来,将矢量网络分析仪的射频输入端口与信号源连接,用以提供测试信号。
同样,确保连接线缆无损坏,保持良好接触。
2. 设置测试参数:通过矢量网络分析仪的操作界面,设置测试参数。
通常包括频率范围、功率级别、带宽等。
根据测试的需求,选择适当的参数设置。
3. 校准:在进行任何测试之前,必须进行校准。
校准过程旨在消除测试系统中的误差,确保测量结果的准确性。
常见的校准方法包括开路校准、短路校准和负载校准。
根据厂家提供的说明书,按照指示进行校准操作。
4. 进行测量:校准完成后,可以开始进行测量。
根据需要选择所需的测量参数,如S参数、功率、相位等。
通过修改测试参数,可以获取更详细的信息。
5. 分析数据:测量完成后,可以对数据进行分析。
矢量网络分析仪通常提供丰富的数据分析和显示功能。
可以通过画图、计算和查看不同参数的数值等方式,深入了解被测设备的性能特征。
6. 导出结果:最后,将测量结果导出到计算机或其他设备中。
矢量网络分析仪通常提供多种数据导出格式,如CSV、TXT 等。
选择合适的格式,并保存数据。
以上是使用矢量网络分析仪的基本步骤。
根据具体的应用场景和要求,可能还需要进行更复杂的操作和分析。
因此,在实际使用中,建议参考矢量网络分析仪的用户手册和厂家提供的技术支持,以获得更详细的指导和帮助。
⽮量⽹络分析仪使⽤说明书⽮量⽹络分析仪使⽤说明书第⼀章前⾔1. E836B⽹络分析仪具有以下技术特点:①⾼性能测量接收机E8362A⽹络分析仪采⽤基于混频器的实现⽅式,使该仪表具有当今微波⽹络分析仪中最⾼的测量灵敏度度。
测量频率范围:10M~20GHz;接收机数量:4台接收机测量灵敏度:-120dBm接收机测量参数;幅度和相位。
迹线噪声:0.005dB(在中频带宽为10KHz时)②完整的测量能⼒该⽹络分析可以⼯作在以下测量状态:频域扫描状态:测量激励信号为功率固定,频率变化信号。
考察被测在不同频率激励状态下等离⼦参数的变化;功率扫描状态:测量激励信号为频率固定,功率扫描变化信号。
考察被测在不同功率激励状态下参数的变化;连续波状态:测量激励信号为频率固定,功率固定信号。
考察被测等离⼦在固定激励状态下,响应状态参数的波动变化,E8362A最⼤测量时间长度可达到3000秒;时间域测量状态:通过将被测的频率响应通过IFFT变化到时间域得到其时域冲击响应,考察被测等离⼦响应信号的空中分布特性。
E8362AIFFT运算点数为160001点,可保证时域测量的分辨率和测量时间宽度。
③强⼤的分析能⼒E8362A基于PC的window2000操作平台,可内置各种分析软件,不需要外置PC 进⾏数据处理,编程⽅式为COM/DCOM,保证测试的速度。
仪表内置嵌⼊、去嵌⼊及端⼝延伸等功能,可直接消除测量天线对测量结果的影响,或进⾏其它补偿运算处理。
④⾼测量速度E8262A⾼性能接收机可确保⾼测量精度的同时具有快测量速度,具体指标为:35us/测量点,14ms/刷新(400点)。
保证对被测等离⼦的瞬态响应进⾏捕捉分析。
⑤多测试状态同时完成E8262A可⽀持16个测试通道,各通道可⼯作在不同的测量状态。
利⽤该功能,可以综合不同分析⽅法从不同⾓度来对⼀个现象进⾏研究。
⑥良好的可扩展性E8263A采⽤开放的发射/接收组成框架,⽤户可以根据测量的具体要求改变仪表的测量连接状态,还可以把需要的外部信号处理过程组合到仪表内部,例如:当被测需要更⼤激励功率时,可将推动⽅法器连接到仪表相应端⼝,该放⼤器引起的测试误差可以通过仪表的校准过程消除。
矢量网络分析仪学习矢量网络分析仪(Vector Network Analyzer,VNA)是一种用来测量网络参数的仪器,主要用于研究和设计微波和射频电路。
它能够精确测量反射系数、传输系数、相位和群延时等参数,为电路设计和信号分析提供重要的工具。
本文将对矢量网络分析仪的原理、应用和使用方法进行详细介绍。
一、矢量网络分析仪的原理矢量网络分析仪的信号源产生高度稳定的射频信号,并通过测试通道将信号发送给被测设备。
测试通道通常由方向耦合器和同轴、微带线等传输线组成,用于控制和分配信号。
接收器接收来自被测设备的反射和透射信号,并将其转换为电压或功率信号。
计算机对接收到的信号进行处理和分析,通过数学算法计算出被测试设备的网络参数。
二、矢量网络分析仪的应用1.网络分析:矢量网络分析仪可以测量和分析被测试设备的频率响应、增益和相位等参数,帮助工程师设计和优化电路。
2.频率响应测试:矢量网络分析仪可以测量被测设备在特定频率范围内的频率响应,帮助工程师分析和解决信号衰减、失真和干扰等问题。
3.滤波器设计:矢量网络分析仪可以通过测量和分析滤波器的传输系数和反射系数,帮助工程师设计和调整滤波器的性能。
4.天线测试:矢量网络分析仪可以测量天线的增益、驻波比和波束宽度等参数,帮助工程师优化天线设计和性能。
5.信号分析:矢量网络分析仪可以测量和分析信号的相位、群延时和频率特性,帮助工程师了解信号的传播和失真情况。
三、矢量网络分析仪的使用方法1.设备连接:将测试端口与被测试设备连接,并确保连接可靠和稳定。
2.仪器校准:在进行测量之前,需要对矢量网络分析仪进行校准。
常见的校准方法包括开路校准、短路校准和负载校准等。
校准操作将确定参考平面和参考电阻等参数,确保测量的准确性。
3.参数设置:根据具体需求,设置待测设备的频率范围、功率级别和测量模式等参数。
4.数据采集:通过控制软件或前面板操作,启动测量并收集数据。
矢量网络分析仪将发送射频信号,并接收被测设备的反射和透射信号。
矢量网络分析仪的使用一、实验目的1.初步掌握矢量网络分析仪的操作使用方法;2.掌握使用矢量网络分析仪测量微带传输线在不同滤波器下的s参数,幅值,相角(arg),损耗,驻波比;二、实验仪器射频微波与天线的接收装置,两根SMA线三、实验内容及步骤1.连接带通滤波器的滤波输入和矢量分析仪的DET端口,滤波输出和矢量分析仪的DUT端口,可通过显示屏观察S11反射系数和S21传输系数的特性参数。
2.利用鼠标点击device选择cmo3,此时可以通过图形上方S11下拉箭头处进行参数切换。
3.再次点击device选择sweep parameters设置频率范围和频点,带通滤波器频率范围为1500MHZ-3000MHZ,低通滤波器为200MHZ-3000MHZ,频点设为500。
4.点击左下角加号可显示图中频率对应的数值,拖动滑块可改变频率。
四、实验结果及分析1、低通滤波器相对电平(mag(s11))-11.3dB相位(arg)-11.3°模值(|z|)82Ω实部(z_re(s11))79.6Ω虚部(z_im(s11))-19.8Ω驻波比(swr(s11))1.742、高通滤波器相对电平(mag(s11))-12.2dB相位(arg)-22.4°模值(|z|)78.6Ω8实部(z_re(s11))77.2Ω虚部(z_im(s11))-15.1Ω驻波比(swr(s11))1.663、带通滤波器相对电平(mag(s11))-7.1dB相位(arg)-39.2°模值(|z|)96.7Ω实部(z_re(s11))79.2Ω虚部(z_im(s11))-55.1Ω驻波比(swr(s11))2.604、带阻滤波器相对电平(mag(s11))-6.6dB相位(arg)-4.3°模值(|z|)137.7Ω实部(z_re(s11))136.9Ω虚部(z_im(s11))-11.7Ω驻波比(swr(s11))2.765、带通滤波器LTCC相位(arg)-15°模值(|z|)58Ω实部(z_re(s11))40Ω虚部(z_im(s11))42Ω驻波比(swr(s11))2.6。
矢量网络分析仪操作规程
1、测量前准备
打开电源,让仪器预热30分钟,将标准同轴线接于仪器上,同时准备好用于校准的标准件。
按下Preset键,进行网络分析仪初始化面板的预设。
2、测量前校准
在首次操作仪器之前或每隔一个月或根据仪器的使用情况,必须对网络分析仪进行校准。
为使测量结果更为精确,必须分别连接开路、短路、负载设备进行校准。
用户可以对校准后的数据进行保存,开机时可直接调用,而不需要设置和校准。
3、开始实验
确保操作本仪器的任何人员已接受过实验室一般安全操作规程和本仪器特别安全操作规程的培训与指导。
根据测量的设备,依次进行中频带宽的设定,测量轨迹的设定,扫频方式的设定,起始和终止频率的设定,Marker读值的设定。
测量完毕后对需要保存的数据和图形进行存储操作,以便下次直接调用。
4、关闭网络分析仪
测试完毕后关闭系统,点击System>Exit,进入Windows XP界面,之后关闭计算机。
矢量网络分析仪使用教程矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量和分析电磁网络参数的高精度仪器。
它主要用于测试和优化射频和微波器件的性能,如天线、滤波器、放大器、集成电路等。
本文将为您提供一份针对矢量网络分析仪的使用教程,帮助您快速上手使用该仪器。
一、仪器介绍矢量网络分析仪是一种精密仪器,主要由信号源、接收器和调制器等组成。
它能够通过在被测设备上施加相应的输入信号,并测量输出信号的幅度和相位,从而计算出设备的散射参数(S-parameters)。
矢量网络分析仪通常具有高精度、宽频率范围和高灵敏度等特点,能够提供准确的测量结果。
二、基本操作1. 连接被测设备:首先,将矢量网络分析仪的输出端口与被测设备的输入端口连接,确保连接牢固。
如果被测设备具有多个端口,需要逐个连接。
2. 仪器校准:在测量之前,需要对矢量网络分析仪进行校准,以确保测量结果的准确性。
通常有三种常见的校准方法:全开路校准、全短路校准和全负载校准。
具体的校准方法可以根据被测设备的性质和实际需求进行选择。
3. 设置测量参数:在测量之前,需要设置一些测量参数,如频率范围、功率级别、测量类型等。
这些参数可以根据被测设备的特性和实际需求进行调整。
4. 启动测量:配置好测量参数后,可以开始进行测量。
在测量过程中,矢量网络分析仪会自动控制信号源和接收器,并采集输入和输出信号的数据。
5. 数据分析:测量完成后,可以通过矢量网络分析仪的软件对测量数据进行分析和处理。
常见的数据处理操作包括绘制频率响应图、计算散射参数、优化器件设计等。
三、注意事项1. 确保连接正确:在使用矢量网络分析仪进行测量前,需要确保所有连接正确无误,以避免测量误差的发生。
同时,还需要确保连接的电缆和连接器的质量良好,以减小测量误差。
2. 避免干扰源:在进行测量时,需要避免与其他无关信号源相互干扰,如电源噪音、射频噪声等。
可以通过在实验室中采取屏蔽措施来减小干扰。
矢量网络分析仪简单操作手册矢量网络分析仪是现代测试仪器的重要组成部分,它能够对电路、天线系统、微波元器件等进行频率域分析,并且能够有效地对电路进行仿真与优化。
但是对于初学者来说,操作起来可能会有些困难。
本文将为大家介绍矢量网络分析仪的简单操作手册,方便大家更好地掌握这一设备的使用方法。
一、矢量网络分析仪基本原理矢量网络分析仪(Vector Network Analyzer,VNA)是用于测量高频电磁信号传输、反射、损耗等特性的测试仪器。
矢量网络分析仪将测试信号分为两路,一路称为正向信号,一路称为反向信号,通过正反两路信号的相位差和幅度差,可以准确地测量出样品在频率范围内的反射系数、传输系数、阻抗等参数。
矢量网络分析仪的工作频率通常在几千兆赫至数十吉赫之间,是一种高频仪器。
二、矢量网络分析仪的基本操作方法矢量网络分析仪的基本操作方法分为以下几步:1、打开电源:启动仪器时,需要首先打开电源开关,待仪器自检过程完成后,可以进入相关测试操作。
2、连接测试样品:将测试样品接入机器测试接口,最好选用高质量的测试线缆,并确保线缆的末端没有过长,以保证测试的精度。
3、设置测试参数:在进行测试前,需要设定相应的测试参数,例如频率范围、增益、测量模式、环境温度等,以便仪器能够对测试样品进行正确的测试。
4、执行测试:按下测试按钮开始测试,矢量网络分析仪会通过正反两路信号的相位差和幅度差计算出测试样品的反射系数、传输系数、阻抗等参数。
5、记录测试结果:测试完成后,需要记录测试结果,并根据测试结果进行分析及优化。
三、矢量网络分析仪的应用场景矢量网络分析仪广泛应用于电磁场测量、微波元器件测试、天线系统测试、电子设备测试、通信系统测试等领域。
在电路设计和测试中,矢量网络分析仪可以帮助工程师精确地分析、优化和改进电路性能,提高电路设计的可靠性和稳定性;在通信领域,矢量网络分析仪可以用于测试天线系统的性能,优化信号传输效果,提高通信的可靠性和稳定性。
NanoVNA-F V3便携式矢量网络分析仪用户手册Rev.1.0(适用于V0.5.0版本固件)杭州矢志信息科技有限公司Hangzhou SYSJOINT Information Technology Co.,Ltd.目录1.产品简介 (1)1.1.关于NanoVNA-F V3 (1)1.2.产品特点 (1)1.3.技术指标 (2)1.4.VNA基础知识 (3)2.产品外观 (4)3.用户界面 (5)3.1.主界面 (5)3.2.菜单 (8)3.3.键盘 (8)4.菜单功能 (9)4.1.显示 (9)4.2.标记 (12)4.3.频率设置 (14)4.4.校准 (16)4.5.回调/保存 (20)4.6.时域变换TDR (20)4.7.设置 (22)4.8.存储功能 (25)5.用户自定义信息 (25)6.夜间模式 (25)7.上位机 (26)8.串口命令 (28)8.1.连接串口 (28)8.2.命令详解 (30)9.固件升级 (39)1.产品简介1.1.关于NanoVNA-F V3NanoVNA-F V3是一款便携式矢量网络分析仪(Vector Network Analyzer,VNA),测量频率范围1MHz~6GHz,可测量S11和S21参数,其中,S11动态范围50dB,S21动态范围65dB。
NanoVNA-F V3可用于测试MF/HF/VHF/UHF/SHF频段的各类天线,如短波天线、ISM频段天线、WiFi天线、蓝牙天线、GPS天线等,也可用于测量滤波器、放大器、衰减器、电缆、功分器、耦合器、双工器等射频组件,并支持幅频曲线、相频曲线、驻波比、史密斯圆图、极坐标、群时延等多种显示格式。
此外,NanoVNA-F V3还具有TDR功能,可用于测量电缆长度。
NanoVNA-F V3采用全金属机壳设计,坚固耐用,并可有效屏蔽电磁干扰。
机身尺寸125mmx75mmx20mm,小巧便携。
机身采用SMA型射频接头,并配备了高品质SMA延长缆,方便连接各类被测件。