矢量网络分析仪使用步骤
- 格式:pdf
- 大小:8.07 MB
- 文档页数:97
矢量网络分析仪使用教程矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量和分析电磁器件和电路的工具。
它可以通过模拟和数字信号处理技术,对电压和电流的振幅、相位以及其它参数进行精确测量。
本教程将介绍如何正确使用矢量网络分析仪进行测试和分析。
1. 连接仪器:首先,将矢量网络分析仪的射频输出端口与待测设备连接。
确保连接的线缆和连接头无损坏,并保持良好接触。
接下来,将矢量网络分析仪的射频输入端口与信号源连接,用以提供测试信号。
同样,确保连接线缆无损坏,保持良好接触。
2. 设置测试参数:通过矢量网络分析仪的操作界面,设置测试参数。
通常包括频率范围、功率级别、带宽等。
根据测试的需求,选择适当的参数设置。
3. 校准:在进行任何测试之前,必须进行校准。
校准过程旨在消除测试系统中的误差,确保测量结果的准确性。
常见的校准方法包括开路校准、短路校准和负载校准。
根据厂家提供的说明书,按照指示进行校准操作。
4. 进行测量:校准完成后,可以开始进行测量。
根据需要选择所需的测量参数,如S参数、功率、相位等。
通过修改测试参数,可以获取更详细的信息。
5. 分析数据:测量完成后,可以对数据进行分析。
矢量网络分析仪通常提供丰富的数据分析和显示功能。
可以通过画图、计算和查看不同参数的数值等方式,深入了解被测设备的性能特征。
6. 导出结果:最后,将测量结果导出到计算机或其他设备中。
矢量网络分析仪通常提供多种数据导出格式,如CSV、TXT 等。
选择合适的格式,并保存数据。
以上是使用矢量网络分析仪的基本步骤。
根据具体的应用场景和要求,可能还需要进行更复杂的操作和分析。
因此,在实际使用中,建议参考矢量网络分析仪的用户手册和厂家提供的技术支持,以获得更详细的指导和帮助。
矢量网络分析仪的使用一、实验目的1.初步掌握矢量网络分析仪的操作使用方法;2.掌握使用矢量网络分析仪测量微带传输线在不同滤波器下的s参数,幅值,相角(arg),损耗,驻波比;二、实验仪器射频微波与天线的接收装置,两根SMA线三、实验内容及步骤1.连接带通滤波器的滤波输入和矢量分析仪的DET端口,滤波输出和矢量分析仪的DUT端口,可通过显示屏观察S11反射系数和S21传输系数的特性参数。
2.利用鼠标点击device选择cmo3,此时可以通过图形上方S11下拉箭头处进行参数切换。
3.再次点击device选择sweep parameters设置频率范围和频点,带通滤波器频率范围为1500MHZ-3000MHZ,低通滤波器为200MHZ-3000MHZ,频点设为500。
4.点击左下角加号可显示图中频率对应的数值,拖动滑块可改变频率。
四、实验结果及分析1、低通滤波器相对电平(mag(s11))-11.3dB相位(arg)-11.3°模值(|z|)82Ω实部(z_re(s11))79.6Ω虚部(z_im(s11))-19.8Ω驻波比(swr(s11))1.742、高通滤波器相对电平(mag(s11))-12.2dB相位(arg)-22.4°模值(|z|)78.6Ω8实部(z_re(s11))77.2Ω虚部(z_im(s11))-15.1Ω驻波比(swr(s11))1.663、带通滤波器相对电平(mag(s11))-7.1dB相位(arg)-39.2°模值(|z|)96.7Ω实部(z_re(s11))79.2Ω虚部(z_im(s11))-55.1Ω驻波比(swr(s11))2.604、带阻滤波器相对电平(mag(s11))-6.6dB相位(arg)-4.3°模值(|z|)137.7Ω实部(z_re(s11))136.9Ω虚部(z_im(s11))-11.7Ω驻波比(swr(s11))2.765、带通滤波器LTCC相位(arg)-15°模值(|z|)58Ω实部(z_re(s11))40Ω虚部(z_im(s11))42Ω驻波比(swr(s11))2.6。
矢量网络分析仪操作规程
1、测量前准备
打开电源,让仪器预热30分钟,将标准同轴线接于仪器上,同时准备好用于校准的标准件。
按下Preset键,进行网络分析仪初始化面板的预设。
2、测量前校准
在首次操作仪器之前或每隔一个月或根据仪器的使用情况,必须对网络分析仪进行校准。
为使测量结果更为精确,必须分别连接开路、短路、负载设备进行校准。
用户可以对校准后的数据进行保存,开机时可直接调用,而不需要设置和校准。
3、开始实验
确保操作本仪器的任何人员已接受过实验室一般安全操作规程和本仪器特别安全操作规程的培训与指导。
根据测量的设备,依次进行中频带宽的设定,测量轨迹的设定,扫频方式的设定,起始和终止频率的设定,Marker读值的设定。
测量完毕后对需要保存的数据和图形进行存储操作,以便下次直接调用。
4、关闭网络分析仪
测试完毕后关闭系统,点击System>Exit,进入Windows XP界面,之后关闭计算机。
矢量网络分析仪使用教程矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量和分析电磁网络参数的高精度仪器。
它主要用于测试和优化射频和微波器件的性能,如天线、滤波器、放大器、集成电路等。
本文将为您提供一份针对矢量网络分析仪的使用教程,帮助您快速上手使用该仪器。
一、仪器介绍矢量网络分析仪是一种精密仪器,主要由信号源、接收器和调制器等组成。
它能够通过在被测设备上施加相应的输入信号,并测量输出信号的幅度和相位,从而计算出设备的散射参数(S-parameters)。
矢量网络分析仪通常具有高精度、宽频率范围和高灵敏度等特点,能够提供准确的测量结果。
二、基本操作1. 连接被测设备:首先,将矢量网络分析仪的输出端口与被测设备的输入端口连接,确保连接牢固。
如果被测设备具有多个端口,需要逐个连接。
2. 仪器校准:在测量之前,需要对矢量网络分析仪进行校准,以确保测量结果的准确性。
通常有三种常见的校准方法:全开路校准、全短路校准和全负载校准。
具体的校准方法可以根据被测设备的性质和实际需求进行选择。
3. 设置测量参数:在测量之前,需要设置一些测量参数,如频率范围、功率级别、测量类型等。
这些参数可以根据被测设备的特性和实际需求进行调整。
4. 启动测量:配置好测量参数后,可以开始进行测量。
在测量过程中,矢量网络分析仪会自动控制信号源和接收器,并采集输入和输出信号的数据。
5. 数据分析:测量完成后,可以通过矢量网络分析仪的软件对测量数据进行分析和处理。
常见的数据处理操作包括绘制频率响应图、计算散射参数、优化器件设计等。
三、注意事项1. 确保连接正确:在使用矢量网络分析仪进行测量前,需要确保所有连接正确无误,以避免测量误差的发生。
同时,还需要确保连接的电缆和连接器的质量良好,以减小测量误差。
2. 避免干扰源:在进行测量时,需要避免与其他无关信号源相互干扰,如电源噪音、射频噪声等。
可以通过在实验室中采取屏蔽措施来减小干扰。
NanoVNA-F V3便携式矢量网络分析仪用户手册Rev.1.0(适用于V0.5.0版本固件)杭州矢志信息科技有限公司Hangzhou SYSJOINT Information Technology Co.,Ltd.目录1.产品简介 (1)1.1.关于NanoVNA-F V3 (1)1.2.产品特点 (1)1.3.技术指标 (2)1.4.VNA基础知识 (3)2.产品外观 (4)3.用户界面 (5)3.1.主界面 (5)3.2.菜单 (8)3.3.键盘 (8)4.菜单功能 (9)4.1.显示 (9)4.2.标记 (12)4.3.频率设置 (14)4.4.校准 (16)4.5.回调/保存 (20)4.6.时域变换TDR (20)4.7.设置 (22)4.8.存储功能 (25)5.用户自定义信息 (25)6.夜间模式 (25)7.上位机 (26)8.串口命令 (28)8.1.连接串口 (28)8.2.命令详解 (30)9.固件升级 (39)1.产品简介1.1.关于NanoVNA-F V3NanoVNA-F V3是一款便携式矢量网络分析仪(Vector Network Analyzer,VNA),测量频率范围1MHz~6GHz,可测量S11和S21参数,其中,S11动态范围50dB,S21动态范围65dB。
NanoVNA-F V3可用于测试MF/HF/VHF/UHF/SHF频段的各类天线,如短波天线、ISM频段天线、WiFi天线、蓝牙天线、GPS天线等,也可用于测量滤波器、放大器、衰减器、电缆、功分器、耦合器、双工器等射频组件,并支持幅频曲线、相频曲线、驻波比、史密斯圆图、极坐标、群时延等多种显示格式。
此外,NanoVNA-F V3还具有TDR功能,可用于测量电缆长度。
NanoVNA-F V3采用全金属机壳设计,坚固耐用,并可有效屏蔽电磁干扰。
机身尺寸125mmx75mmx20mm,小巧便携。
机身采用SMA型射频接头,并配备了高品质SMA延长缆,方便连接各类被测件。
矢量网络分析仪使用说明书第一章前言1. E836B网络分析仪具有以下技术特点:①高性能测量接收机E8362A网络分析仪采用基于混频器的实现方式,使该仪表具有当今微波网络分析仪中最高的测量灵敏度度。
测量频率范围:10M~20GHz;接收机数量:4台接收机测量灵敏度:-120dBm接收机测量参数;幅度和相位。
迹线噪声:0.005dB(在中频带宽为10KHz时)②完整的测量能力该网络分析可以工作在以下测量状态:频域扫描状态:测量激励信号为功率固定,频率变化信号。
考察被测在不同频率激励状态下等离子参数的变化;功率扫描状态:测量激励信号为频率固定,功率扫描变化信号。
考察被测在不同功率激励状态下参数的变化;连续波状态:测量激励信号为频率固定,功率固定信号。
考察被测等离子在固定激励状态下,响应状态参数的波动变化,E8362A最大测量时间长度可达到3000秒;时间域测量状态:通过将被测的频率响应通过IFFT变化到时间域得到其时域冲击响应,考察被测等离子响应信号的空中分布特性。
E8362AIFFT运算点数为160001点,可保证时域测量的分辨率和测量时间宽度。
③强大的分析能力E8362A基于PC的window2000操作平台,可内置各种分析软件,不需要外置PC 进行数据处理,编程方式为COM/DCOM,保证测试的速度。
仪表内置嵌入、去嵌入及端口延伸等功能,可直接消除测量天线对测量结果的影响,或进行其它补偿运算处理。
④高测量速度E8262A高性能接收机可确保高测量精度的同时具有快测量速度,具体指标为:35us/测量点,14ms/刷新(400点)。
保证对被测等离子的瞬态响应进行捕捉分析。
⑤多测试状态同时完成E8262A可支持16个测试通道,各通道可工作在不同的测量状态。
利用该功能,可以综合不同分析方法从不同角度来对一个现象进行研究。
⑥良好的可扩展性E8263A采用开放的发射/接收组成框架,用户可以根据测量的具体要求改变仪表的测量连接状态,还可以把需要的外部信号处理过程组合到仪表内部,例如:当被测需要更大激励功率时,可将推动方法器连接到仪表相应端口,该放大器引起的测试误差可以通过仪表的校准过程消除。
矢量网络分析仪使用步骤
2014-12-5
Vanchip Confidential
Confidential
示例矢量网络分析仪型号
示例用的仪器型号是Agilent E5071C ,该 仪器是双端口网分(9K~6.5GHz)。
(下文简称矢量网路分析仪为网分) 使用仪器示范: ¾ 第一步:校准仪器(包括固定线缆部分) ¾ 第二步:校准延长线 ¾ 第三步:待测对象测量 ¾ 第四步:阻抗匹配 附件:用网分仿真端口阻抗匹配
Vanchip Confidential
Confidential
双端口矢量网络分析仪的面板
Vanchip Confidential
Confidential
矢网的保护
矢网的保护:注意最大承受功率 (谨防高功率损坏端口!!!)
Vanchip Confidential
Confidential
第一步:校准仪器(包括固定线缆)
Vanchip Confidential
Confidential
矢网的手动配件(校准件型号)
校准件型号
Open Short Load Thru
Vanchip Confidential
Confidential
矢网的配件(线缆)
线缆为HUBBER+SUHNNER品牌
这段固定线缆的用途是方便连接到各种待测件
Vanchip Confidential
Confidential
保护网分端口----大功率端口须加10dB衰减器
2端口衰减器接法:2端口常用于天线口测量,有大功率的可能 (须在校准前接好,校准会对其损耗补偿,不影响测量结果)
Vanchip Confidential
Confidential
矢网的复位
复位键,校准前使用
Vanchip Confidential
Confidential
设Start/Stop频率和Mark频点
频率设定键
Vanchip Confidential
Confidential
Display 中设Traces 为3
Confidential
设显示Trace 1为S11(Smith)
选择Trace键,如1,2,3
Meas选要测量的参数如
S11,S21,S22等
Mode选参数显示格式如
Smith,Log Mag等
1端口
Confidential
设显示Trace 2为S21(Log Mag)
Confidential
设显示Trace 3为S22(Smith)
2端口
Confidential
校准(按Cal键进入校准界面)
Confidential
1:选择校准件的型号
Confidential
2:选择Calibration Confidential
3:选择两端口校准
Confidential
Confidential
先按提示在1端口拧上
Open校准件
再在面板上按对应1端
口Open键执行校准动作
同样方法校准1口的
Short/Load状态
Confidential
1端口Load校准 1端口Short校准
Vanchip Confidential
Confidential
2端口Open校准
先按提示在2端口拧上 Open校准件 再在面板上按对应2端 口Open键执行校准动作 同样方法校准2口的 Short/Load状态
Vanchip Confidential
Confidential
2端口Short校准 2端口Load校准
Vanchip Confidential
Confidential
依次做好以上六步校 准后Return
Vanchip Confidential
Confidential
5:接着做 Transmission校准
Vanchip Confidential
Confidential
1-2端口直通校准
先把1和2端口通过 双阴SMA头连接上。
再在面板上按对应 Port1-2 Thru键执行校 准动作
1
2
Vanchip Confidential
Confidential
Transmission校准完成
Vanchip Confidential
Confidential
6:校准完成
Vanchip Confidential
Confidential
校准(检查校准是否OK?)
校准后,先把所有端口的校准件都 取下来(恢复成开路态)。
再观察 网分测量的各频点阻抗是否都回到 开路点附近(如图中开路点)。
Vanchip Confidential
Confidential
校准状态储存SAVE和Recall
按Save键,存储校准好的 状态。
便于以后调用。
按Recall键,调用之前存 储好的校准状态。
Vanchip Confidential
Confidential
存储为自建文件名
Confidential
储存为State1~8---易被别人的存储覆盖
存储为State 1~8
Confidential
第二步:校准延长线
Confidential
连接延长线缆(各种半硬或者软线)
----是为了便于与PCB连接或者焊接。
1端口
2端口
Confidential
1端口延长线缆(同轴半硬线)
硬线刚性较强,容易拉坏PCB 上的小焊盘,使用时
特别小心。
第2加固焊点,PCB 板上加强焊接
,避免1焊点在用力时拉掉焊盘。
第1焊点,就近焊接在待测位
置,就近接地(特别重要)!Confidential
软线能随意弯曲,不易
拉坏PCB上的小焊盘。
注意就近接地!!!
Confidential
延长线缆的补偿(电长度和损耗)
1
2
1~2步,进入补偿界面
Confidential
第3步(选自动补偿AutoPort Extension)
3
Confidential
4-选择包含补偿线损耗,5-选择用开路校准
4
5
Confidential
补偿前状态,6-选择All执行补偿
6
损耗。
各频点的阻抗发散了,不
在开路位置。
Confidential
补偿后状态---各频点回到OPEN位置
(如何确认补偿是否OK?)
补偿后,各频点的阻抗和损耗得
到补偿,都回到开路位置。
Confidential
补偿的意义(上图的开路点现在哪里???)实际中的开路1端点--对应图
中聚集在开路点的黄色线
实际中的开路2端点--对应图
中聚集在开路点的红色线
Confidential
检查自动补偿的电长度和损耗值(1口为例)
Confidential
自动补偿的电长度值(跟延长线长度相关)
Confidential
自动补偿的损耗值(延长线的实际损耗)
Confidential
Confidential
第三步:待测对象测量
Confidential
待测对象的准备(示例为PA的输出通路测量)必须先从PCB上去掉待测PA!!!
2端口:通常连接在PCB
上天线端RF测试口
1端口:焊接在待测PCB
上的PA输出端口
Confidential
Confidential
Confidential。