数学教案-子集、全集、补集
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
1.子集、全集、补集-苏教版必修1教案教学目标1.理解子集和全集的概念2.能够画出Venn图并表示出子集、全集和补集3.能够正确地使用数学符号表示子集和补集4.掌握子集、全集和补集的性质教学重点1.子集和全集的概念2.Venn图的绘制和解析3.使用符号表示子集和补集教学难点1.补集的概念和使用方法2.子集和补集之间的关系教学方法1.课堂演示2.课堂讲解3.练习题教学内容子集和全集的概念首先,教师要向学生们介绍子集的概念。
一个集合的子集是指一个或多个元素被选取出来组成的集合。
例如,集合A={1,2,3,4,5},如果我们从中选择出{1,2}或{1,4,5},那么这些都是A的子集。
然后,我们介绍全集的概念。
全集是指特定范畴中所有可能元素的集合,通常表示为U。
例如,在一个班级中,U表示这个班级能够存在的所有学生,而A表示班级中的男生,那么A是U的一个子集。
Venn图的绘制和解析在介绍完子集和全集的概念后,教师可以向学生展示一些Venn图的例子。
这些图表现了两个或三个不同集合之间的关系。
例如,在一个Venn图中,圆内部表示一个集合,而圆外部表示不属于该集合的元素。
教师可以向学生展示如下的Venn图来解析子集和全集:在这个图中,U是所有可能元素的全集,而A是其中的一个子集,B也是另一个子集。
图中的部分表示同时属于A和B的元素,通常称为交集,记作A∩B。
接下来,我们可以继续向学生展示关于Venn图的例子,并要求他们找到交集、并集等。
使用符号表示子集和补集在学生能够正确解析Venn图之后,教师可以向他们介绍如何使用符号表示子集和补集。
通常,我们使用≤或者⊆符号表示子集。
其中A≤B表示A是B的子集,而A⊆B则表示A是B的一个真子集,即A可以等于B或者全包含于B。
然后,我们向学生介绍如何使用补集。
补集是指一个集合中不属于另一个给定集合的所有元素组成的集合。
通常,我们使用A的补集表示不属于集合A的所有元素的集合,记作A’。
子集和补集教案教学目标:1. 理解子集的概念,能够判断一个集合是否为另一个集合的子集。
2. 掌握补集的定义,能够求出一个集合的补集。
3. 能够运用子集和补集的概念解决实际问题。
教学内容:一、子集的概念1. 定义:如果一个集合的所有元素都是另一个集合的元素,这个集合就是另一个集合的子集。
2. 表示方法:用符号A ⊆B 表示集合A 是集合B 的子集。
二、子集的性质1. 空集是任何集合的子集。
2. 任何集合都是其本身的子集。
3. 如果A 是B 的子集,A 的任何真子集也是B 的子集。
4. 如果A 是B 的子集,B 的任何真子集都不是A 的子集。
三、补集的概念1. 定义:如果一个元素不属于某个集合,这个元素就是该集合的补集。
2. 表示方法:用符号A' 表示集合A 的补集。
四、补集的性质1. 任何集合的补集都是其本身的补集。
2. 空集的补集是任何非空集合。
3. 如果A 是B 的子集,B 的补集的补集就是A。
五、子集和补集的应用1. 判断一个集合是否为另一个集合的子集。
2. 求出一个集合的补集。
3. 运用子集和补集的概念解决实际问题,如统计问题、集合的包含关系等。
教学方法:1. 采用讲解法,讲解子集和补集的概念及性质。
2. 采用例题法,通过举例讲解如何判断子集和求补集。
3. 采用练习法,让学生通过练习题目的方式巩固所学知识。
教学评价:1. 课堂讲解:观察学生对子集和补集概念的理解程度。
2. 练习题目:检查学生运用子集和补集解决问题的能力。
3. 课后作业:布置有关子集和补集的习题,检验学生掌握程度。
六、子集和补集的运算1. 定义:如果A 和B 是两个集合,它们的交集的补集称为A 和B 的相对补集,记作A ΔB。
2. 性质:A ΔB = (A ∩B)',即A 和B 的相对补集是它们的交集的补集。
七、子集和补集的应用举例1. 统计问题:假设有一个班级有30 名学生,其中有18 名女生,求男生的人数。
全集与补集的教案教案标题:全集与补集的教案教学目标:1. 了解并能够正确定义全集和补集的概念。
2. 能够运用集合运算中的全集和补集进行问题解决。
3. 培养学生的逻辑思维和分析问题的能力。
教学内容:1. 全集的定义和性质。
2. 补集的定义和性质。
3. 全集和补集的运算规则。
教学步骤:引入活动:1. 创设情境,引发学生对全集和补集的思考。
例如,假设有一个班级里的学生,问学生们如何定义这个班级的全集和补集。
探究活动:2. 介绍全集的概念和定义。
通过示意图或实际例子,让学生理解全集是指讨论的范围内的所有元素的集合。
3. 引导学生思考补集的概念和定义。
解释补集是指在全集中不属于某个子集的元素的集合。
4. 给出具体的例子,让学生通过思考找出全集和补集。
例如,全集可以是一个班级的所有学生,补集可以是男生或女生的集合。
拓展活动:5. 引导学生思考全集和补集的运算规则。
例如,全集的补集就是空集,补集的补集是原来的集合。
6. 给出一些练习题,让学生运用全集和补集的运算规则解决问题。
例如,给出一个集合A和全集U,让学生求A的补集。
总结活动:7. 总结全集和补集的概念、定义和运算规则。
强调全集和补集在数学中的重要性和应用。
评估活动:8. 给学生一些评估题目,测试他们对全集和补集的理解和应用能力。
例如,给出一些集合运算的问题,让学生判断正确的答案。
拓展活动:9. 鼓励学生运用全集和补集的概念解决实际问题。
例如,让学生分析一个班级的学生喜欢的体育项目,通过求补集找出不喜欢的体育项目。
教学资源:1. 教材或课本中关于全集和补集的相关内容。
2. 示意图或实际例子的图片或幻灯片。
3. 练习题和评估题目。
教学延伸:1. 鼓励学生自主学习更多集合运算的内容,如交集、并集等。
2. 引导学生运用集合运算解决更复杂的问题,如概率问题等。
注:以上教案仅供参考,具体教学内容和步骤可根据教学实际情况进行调整和修改。
子集、全集、补集教案教学目标1.在进一步理解子集,真子集概念的基础上,理解补集的概念.2.结合补集的概念,了解全集的意义。
3.熟记、掌握补集的求法,并能用文图表示.教学重点补集的概念教学难点补集的求法教学过程一.新课引入1.复习子集的概念.说出A B和A=B的意义.2.用适当的符号填空:(1)Ф_{0}(2)0_N(3)Ф__{Ф}(4){1,2}__{(x,y|y=x+1}3.说出集合{1,2,3}的子集和真子集.4.看一个例子,设集合S是全班同学的集合,集合A是班上所有参加校运动会的同学的集合,而集合B是班上所有没有参加校运动会的同学的集合,那么这三个集合之间有什么关系呢?集合B就是集合S中除去集合A之后留下来的集合.SC sAA二.新课1. 补集(余集)一般地,设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作CsA,即CsA={x|x∈S,但x A}.可在上图中用文图表示.实例S={1,2,3,4,5,6},A={1,3,5}, C sA={2,4,6}.2.全集如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作是一个全集,全集通常用U表示.在研究数集时,一般定义全集为R,在研究图形集合时,以所有图形构成的集合为全集.如果我们把实数集R看作全集U,那么,有理数Q的补集CUQ是全体无理数的集合.到底以什么为全集,是可以根据情况任意确定的,但要含有我们所要研究的所有元素.3.性质(1 CU( CUA =A,(2 CUU =Φ,(3 CUΦ=U.4.补充例题例1.设U={梯形},A={等腰梯形},求CUA.解:CUA={不等腰梯形}.例2.已知U=R,A={x|x2+3x+2<0}, 求CUA.解:CUA={x|x≤-2,或x≥-1}.例3.集合U={(x,y)|x∈{1,2},y∈{1,2}} , A={(x,y)|x∈N*,y∈N*,x+y=3},求CUA.解:C UA={(1,1),(2,2)}.例4. (选择题)设全集U(UΦ),已知集合M,N,P,且M=C UN,N=C UP,则M与P的关系是()(A)M=C UP,(B)M=P,(C)M P,(D)M P.解:选B.例5.设全集U={2,3,},A={b,2},={b,2},求实数a和b的值.(a=2、-4,b=3例6.某班举行数理化竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中参加数学、物理两科的有10人,参加物理、化学两科的有7人,参加数学、化学两科的有11人,而参加数、理、化三科的有4人,画出集合关系图,并求出全班人数.(55人三.课内练习课本P10 练习(1四.小结1.正确理解全集、补集的定义,C UA={x|x∈U,但x A}.2.注意:C UA中,A U,否则C UA就没有意义;没有U谈C A便失去意义,但在U明确的情况下,C UA可以写成C A..3.利用文图掌握补集的性质.五.作业课本P10习题1.2 (4,5。
1.2 子集、全集、补集互动课堂疏导引导1.对于两个集合A、B,如果集合A的任意一个元素都是集合B的元素,则称集合A是集合B的子集.记为A ⊆B或B ⊇A.疑难疏引对于两个集合A、B,如果A ⊆B且A≠B,则称集合A是集合B的真子集.记为A⊆B或B ⊇A;如果集合A的任意一个元素都是集合B的元素,同时集合B的任意一个元素都是集合A的元素,则称集合A和集合B相等,记作A=B.2.(1)A=B ⇔A⊆ B且B ⊆A.(2)A⊆B,B ⊆C ⇔A ⊆C, A B,B ⊆C ⇒A C, A ⊆B,B C ⇒A C.(3)若集合A有n个元素,则A的子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.●案例1【探究】设集合A={0,1},B={x|x⊆A},则集合A、B之间的关系如何?要确定A、B的关系,就必须弄清集合B的元素是什么,集合B的元素x⊆A,所以集合B={∅,{0},{1},{0,1}}.虽然“∈”表示元素与集合的关系,但是集合A作为B的一个元素出现,故A 与B之间用的是符号“∈”.【溯源】要认真分析所研究的对象是元素与集合之间的关系还是集合之间的关系.如果是元素和集合,那么只能用“∈”和“∉”,如果是两集合之间的关系,那么应该在“⊆”、“⊇”和“=”中选择合适的符号表示.●案例2写出集合{a,b,c}的所有子集.【探究】本题考查子集的概念,注意不要遗漏,可按元素个数的多少这一顺序书写,养成好的习惯.{a,b,c},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.【溯源】空集是任何集合的子集,是任何非空集合的真子集;任何集合都是本身的子集,但不是本身的真子集.●案例3写出满足{1,3}⊆M ⊆{1,3,5,7}的所有集合M.【探究】根据题目条件可以知道集合M中至少含有元素1和3,最多只能有4个元素1、3、5、,7,所以相当在求集合{5,7}的所有子集,然后在这些子集中都加上元素1和3即可.所以所求集合M为{1,3}、{1,3,5},{1,3,7},{1,3,5,7}.【溯源】 1.若条件改为{1,3}M ⊆{1,3,5,7},则符合条件的M应将上述四个集合中的{1,3}去掉.2.若仅需求M的个数则只需用公式24-2=4即可.3.解题时应注意空集的独特性.可采用分类讨论、数形结合、等价转化思想解决集合与二次方程的综合应用题.●案例4已知集合A={1,2},B={1,2,3,4,5},且A M ⊆B,写出满足上述条件的集合M.【探究】集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.疑难疏引利用分类讨论的思想,考虑到集合B的所有可能的情况.这是处理集合与其子集之间关系的常用方法.另外,此题也可以利用韦达定理结合根的判别式求解.此题容易发生的错误是:没有注意题中的已知条件,又多加上B=∅的情形,从而造成画蛇添足!●案例5已知集合A={x|x2-2x-3=0},集合B={x|ax-1=0}.若B是A的真子集,则a【探究】 本题可先从化简集合A 入手.因为 B A ,所以可写出B 的所有结果,再分别代入求值.∵A ={-1,3}, B A,∴B =∅,{1},{3}.若B =∅,则a =0;若B ={-1},则a =-1;若B ={3},则a =31. 综上,a 的值为-1,0,31. ●案例6已知A ={-3,4},B ={x |x 2-2px +q =0},B ≠∅,且B ⊆A ,求实数p 、,q 的值.【探究】 本题可以先求出集合B 的三种情况,再由方程的根来求出字母的值.由B ⊆A 知,B ={-3}或{4}或{-3,4}.当B ={-3}时,方程x 2-2px +q =0有两个相等的根-3∴⎩⎨⎧=-=∆=++.044,0692q p q p 解得⎩⎨⎧=-=;9,3q p ; 当B ={4}时,方程x 2-2px +q =0有两个相等的根4∴⎩⎨⎧=-=∆=+-.044,08162q p q p 解得⎩⎨⎧==;16,4q p p =4,q =16; 当B ={-3,4}时,方程x 2-2px +q =0的根是-3,4,∴⎩⎨⎧=+-=++.0816,069q p qp 解得⎪⎩⎪⎨⎧-==.12,21qp【溯源】 本题应从集合B 的三种情况考虑,而不应该盲目地把-3,4带入方程. 活学巧用 1.(1){1,2,3}______{3,2,1}(2)∅________{0};(3){3}_________{x |2<x <4};(4){x |x =2n +1,n ∈Z }_________{x |x =4n +1,n ∈Z}.【思路解析】 本题考查几个符号的正确应用情况.【答案】=2.设集合M ={x |x ≤0}( )A.0 ⊆MB .{0}∈MC .{0}⊆MD .∅∈M【思路解析】 本题考查几个符号的正确应用.【答案】 C3.集合A ={x |x =2n +1,n ∈Z },B ={y |y =4k ±1,k ∈Z },则A 与B 的关系为( )A.A BB.A BC.A =BD.A ≠B【思路解析】 易知集合A 就是奇数集,集合B 通过给k 赋值,也可以取到所有的奇数.【答案】 C4.已知A ={x |x <5},B ={x |x <a },若A ⊆B ,求实数a 的取值范围.【思路解析】 A ⊆B 说明A 的范围比B 的范围小.【解】 a ≥5.5.写出集合{1,2,3}的所有子集并求所有子集中元素之和.【思路解析】 按子集元素个数的多少分别写出它的子集,才能避免不重不漏,同时还应注.(1)由本题知,由3个元素组成的集合子集有8个.那么由2个元素组成的集合子集有几个?由4个元素呢?由5个元素呢?推而广之n 个元素组成的集合子集有多少个?(2n(2)A 中每个元素出现在子集中4次,是在写出所有子集后,再观察得出的结果,能否不写出A 的子集也得出同样结论?完全可行.注意到A 中的元素1,出现在A 的子集({1},{1,2},{1,3},{1,2,3}),如果从这些集合中去掉元素12},{3},{2,3},即为集合{2,3}的全部子集.一般而言,A 中n 个元素,而每一元素出现于集合中的次数为2n -1.故所有子集元素之和S =(a 1+a 2+…+a n )2n -1.【解】∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.注意到A 中每个元素均出现了4次.故所有子集元素的和为(1+2+3)×4=24.6.己知{1,2}⊆A ⊆{1,2,3,4},求满足条件的集合A .【思路解析】 首先弄清应有怎样的元素组成集合A .【解】 ∵{1,2}⊆A ,∴A 中要有元素1和2.然后将A(1)A 中仅有元素1和2时,A ={1,2}.(2)A 在1、2的基础上增加1个,于是有A ={1,2,3}或A ={1,2,4}.(3)A 在1、2的基础上增加2个,于是有A ={1,2,3,4}.这样符合条件的集合A 共有4{1,2},{1,2,3},{1,2,4},{1,2,3,4}.7.设集合A ={2,3,a 2+2a -3},B ={2,5,b },并且A =B ,求实数a 、b 的值.【思路解析】 本题考查集合相等的含义,易知{2,5,b }={2,3,a 2+2a -3},解方程组即可.【解】 由已知,{2,5,b }={2,3,a 2+2a -3},∴⎩⎨⎧=-+=.532,32a a b b =3,a 2+2a -3=5. 解得⎩⎨⎧-==4,3a b 或⎩⎨⎧==.2,3a b【思路解析】构成集合的元素可以是世界万物,当然可以是集合,集合B中的元素就是集合.【解】B={∅},{0},{1},{0,1},C={1},所以A∈B,C∈B,C⊆A.。
高中高一数学教案子集、全集、补集在数学中,一个全集是一组所有可能出现的元素的集合。
而子集则是这个全集的一个部分,它只包含来自原集合的一部分元素。
补集是指全集中不属于该集合的元素的集合。
在教学中,教师往往需要设计一些教案,以便对学生进行更有效的教学。
在高中一年级的数学中,教师们需要用到许多基本概念,其中包括子集、全集和补集。
什么是子集?在数学中,子集是指集合的一个部分,指的是此集合中的一些元素。
如果一个集合A的每一个元素都是B的元素,那么A是B的子集。
例如,当A为{1, 3}时,{1, 2, 3}是A的父集,{1, 3}是A的子集。
在高中数学中,教师可以利用现实中的例子来解释子集的概念。
例如,在一个班级里,学生的集合可以表示为全集,而一个小组则可以是班级的子集。
在教学中,教师可以使用练习题供学生进行练习。
例如,给出一个集合 S,要求学生列出它的所有子集。
这样可以帮助学生更好地理解子集的概念。
什么是全集?在数学中,全集是指一个集合包含了所有元素的集合。
通常,全集被指定为一个U。
例如,对于一个集合A,它的全集就是包含了所有A元素的集合。
在高中数学中,教师可以使用全集来表达一些重要的概念。
例如,在逻辑论证中,全集用于表示一个真值集合或一个所有命题的集合。
当教师在教学中想要将学生的注意力集中在全集的重要性上时,可以通过给出生活中的例子来解释全集。
例如,在一个学校里,学生的总人数可以表示为全集。
这样,学生便可以更加清晰地认识到全集的重要性。
什么是补集?在数学中,补集是指全集中不属于该集合的元素的集合。
通常,补集可以用一个小于号作为符号表示。
例如,对于一个集合A,它的补集表示为A’,包含了所有不属于A的元素。
在高中数学中,教师可以用类似于全集的例子来解释补集。
例如,在一个班级里,不属于小组的所有学生可以视为小组的补集。
在教学中,教师可以将补集的概念与其他数学概念,如交集和并集联系起来。
例如,当教师要求学生计算一个集合与其补集的交集时,学生必须确定集合中的元素与补集中的元素是否存在重叠的部分。
子集全集补集课题引入
方案1.为了便于管理,常常把一个数学班又分成若干个小组.如果把全班作为集合A,班上的某个小组作为集合B,那么集合A与B之间是一种什么关系呢?
方案2.集合A={绝对值小于5的整数},B={x|x2+3x=0},
(1) 分别用列举法表示出集合A、B.
(2) 观察集合A、B之间存在一种什么关系?
说明:方案1采用学生所熟悉的生活中的例子,引出集合间的一种特殊关系——包含关系,从而进一步定义子集.
方案2的数学味更浓些,它既复习了前面所学过的集合的有关知识,又引出了子集的概念.
值得注意的是,这两种引入方案还不能把子集的概念确切地定义下来,还必须补充两个集合相等时,它们互为子集的例子,否则学生容易产生子集是由某集合中部分元素组成的错误印象.。
子集、全集、补集[知识要点]1.子集的概念:如果集合A中的任意一个元素都是集合B),那么称集合A为集合B的子集(subset),记作或,.还可以用Venn图表示.我们规定:.即空集是任何集合的子集.根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即.⑵子集具有传递性,即若且,则.2.真子集:如果且,这时集合A称为集合B的真子集(proper subset).记作:A B⑵定:空集是任何非空集合的真子集.⑵如果A B, B,那么3.两个集合相等:如果与同时成立,那么中的元素是一样的,即.4.全集:如果集合S包含有我们所要研究的各个集合,这时S可以看作一个全集(Universal set),全集通常记作U.5.补集:设,由S中不属于A的所有元素组成的集合称为S的子集A的补集(complementary set), 记作:(读作A在S中的补集),即补集的Venn图表示:[简单练习]1.判断以下关系是否正确:⑴;⑵;⑶;⑷;⑸;⑹;2.下列关系中正确的个数为()①0∈{0},②Φ{0},③{0,1}{(0,1)},④{(a,b)}={(b,a)}A)1 (B)2 (C)3 (D)43.集合的真子集的个数是()(A)16 (B)15 (C)14 (D) 13a B∈BA⊆AB⊇BA⊆A∅⊆A A⊆BA⊆B C⊆A C⊆BA⊆A B≠C A CBA⊆B A⊆,A B A B=A S⊆Að{,}.SA x x S x A=∈∉且ð{}{}a a⊆{}{}1,2,33,2,1={}0∅⊆{}00∈{}0∅∈{}0∅=⊆{}8,6,4,24.集合,,,,则下面包含关系中不正确的是( )(A ) (B) (C) (D)5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}. (Ⅰ)若M N ,求实数a 的取值范围; (Ⅱ)若M N ,求实数a 的取值范围.6.设,写出的所有子集.[巩固提高]1.四个关系式:①;②0;③;④.其中表述正确的是( ) A .①,②B .①,③C . ①,④D . ②,④2.若U={x ∣x 是三角形},P={ x ∣x 是直角三角形},则( )A .{x ∣x 是直角三角形}B .{x ∣x 是锐角三角形}C .{x ∣x 是钝角三角形}D .{x ∣x 是锐角三角形或钝角三角形}3.下列四个命题:①;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中正确的有( )A.0个 B.1个 C.2个 D.3个4.满足关系 的集合A的个数是( ) A.5 B.6 C.7 D.8{}正方形=A {}矩形=B {}平行四边形=C {}梯形=D B A ⊆C B ⊆D C ⊆C A ⊆⊆⊇{}13,A x x x Z =-<<∈A ∅}0{⊂}0{∈}0{∈∅}0{=∅=P CU{}0∅={}1,2A ⊆{}1,2,3,4,55.设A=,B={x ∣1< x <6,x ,则 .6.U={x ∣,则U 的所有子集是 .7.已知集合,≥,且满足,求实数的取值范围.8.设全集,,,求实数的值.9.已知,. (1)若,求的取值范围; (2),求的取值范围;(3) ,求的取值范围.10.已知M={x ∣x },N={x ∣x } (1)若M ,求得取值范围; (2)若M ,求得取值范围; (3)若,求得取值范围.{}5,x x x N ≤∈}N ∈=B CA},01582R x x x ∈=+-}5|{<<=x a x A x x B |{=}2B A ⊆a {}22,3,23U a a =+-{}21,2A a =-{}5U C A =a {}3A x x =<{}B x x a =<B A ⊆a A B ⊆a RC A R C B a ,0>R x ∈,a >R x ∈N ⊆a N ⊇a M CRN CRa。
好的,以下是子集、全集、补集知识点的教案:子集知识点子集的定义子集的符号表示空集和全集子集的性质例题和解答给出两个集合=1,2,3和=1,2,3,4,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=,,和=,,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=1,2,3和=4,5,6,判断是否是的子集解答:由于中的元素都不属于,因此不是的子集全集和空集知识点全集的定义空集的定义全集和空集的符号表示全集和空集的性质例题和解答给出一个集合=1,2,3,求的全集解答:在这个问题中,全集是指包含所有元素的集合。
因此,的全集可以是所有正整数的集合,即$U={1,2,3,4,5,...}$给出一个集合=,,,求的空集解答:在这个问题中,空集是指不包含任何元素的集合。
因此,的空集为${}$给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$C'={x|x\notin C}$因为是由1,2,3组成的集合,所以的补集为$C'={x|x\notin{1,2,3}}={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$补集知识点补集的定义补集的符号表示补集的性质例题和解答给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$A'={x|x\notin A}$因为是由1,2,3组成的集合,所以的补集为$A'={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$给出一个集合=,,,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$B'={x|x\notin B}$因为是由,,组成的集合,所以的补集为$B'={x|x\notin{a,b,c}}$给出一个集合=1,2,3,求的补集的补集解答:在这个问题中,补集的补集是指原集合。
江苏省淮安中学高一数学《子集、全集、补集》教案教学目的:⒈了解集合间包含关系的意义;⒉理解子集、真子集的概念和意义;⒊了解全集的意义理解补集的概念和意义。
教学重点:了解子集、全集、补集的概念;会判断一个集合是否为另一个集合的子集;会求一个简单集合的补集。
教学过程:一、问题情境:针对2020年雅典奥运会分析下列集合间的关系:1、A={中国体育代表团成员} B={参加奥运会的中国运动员} C={获得金牌的中国运动员}2、D={奥运会的比赛项目} E={中国运动员参加的比赛项目} F={中国运动员获得奖牌的比赛项目}3、G={奥运会奖牌}H={奥运会金牌} I={奥运会银牌} M={奥运会铜牌}二、学生活动:用韦恩图把上面集合之间的关系反映出来 三、建构数学:如果集合A 中的任何一个元素都是集合B 的元素(若x∈A 则x∈B),则称集合A 为集合B 的子集。
记为: A B ,或 B A ,读作:“集合A 包含于集合B ”或“集合B 包含集合A”由子集的定义可知,任何集合是它本身的子集,即 A A 规定:空集是任何集合的子集,即Φ A中国体育代表参加奥运会的中获得金牌的中ABC中国运动员获得奖牌的比赛项目奥运会的中国运动员参加的比赛项目DE F奥运会奥运会金牌奥运会银牌奥运会铜牌MHIG如果 A B 且 B A ,那么我们就说集合A 与B 相等,记作A =B 如果 A B 且A≠B,这时集合A 称为集合B 的真子集,记为:A B 或 BA ,读作“集合A 真包含于集合B ”或“集合B 真包含集合A”设 A S ,由S 中不属于A 的元素组成的集合称为S 的子集A 的补集。
记为:S A (读作“A 在S 中的补集”),即 S A ={x | x∈S 且x A}容易由补集的定义得到:U U =Φ,U Φ=U ,U (U A )=A 四、教学运用:1、说出上面集合之间的包含关系; C B , C A ,B A F E , F D , E D H G ,I G ,M G2、A ={我校高一年级学生} , M ={我校高一年级的男生},W ={我校高一年级的女生},A 1={我班的学生},M 1={我班的男生},W 1={我班的女生}用韦恩图把上面五个集合的关系表示出来并用A M = N = N3、写出集合{1,2}的所有子集。
课 题:1.2子集 全集 补集(1)教学目的:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集(,)的概念;(3)使学生理解补集的概念;(4)使学生了解全集的意义教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集合而言,类似的关系就是“包含”与“相等”关系本节讲子集,先介绍集合与集合之间的“包含”与“相等”关系,并引出子集的概念,然后,对比集合的“包含”与“相等”关系,得出真子集的概念以及子集与真子集的有关性质 本节课讲重点是子集的概念,难点是弄清元素与子集、属于与包含之间的区别教学过程:一、复习引入:(1)回答概念:集合、元素、有限集、无限集、空集、列举法、描述法、文氏图(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}(3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n nx x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合”}3|2||{=-∈x Z x {-1,5}问题:观察下列两组集合,说出集合A 与集合B 的关系(共性)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、讲解新课:(一) 子集1 定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一 个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或BA, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向 不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集A A ⊆(6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合如 Φ⊆{0}不能写成Φ={0},Φ∈{0}三、讲解范例:例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示(2) 判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A 解(1):N ⊂Z ⊂Q ⊂R(2)①正确;②错误,因为A 可能是空集③正确;④错误例2 (1)填空:N___Z, N___Q, R___Z, R___Q ,Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗?(3)是否对任意一个集合A ,都有A ⊆A ,为什么?(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 .解:(1)N ⊂Z, N ⊂Q, R ⊃Z, R ⊃Q , Φ{0}(2)∵A={x ∈R|x 2-3x-4=0}={-1,4},B={x ∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A ⊆B 正确(3)对任意一个集合A ,都有A ⊆A ,(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}(5)A 、B 的关系为B A ⊆.例3 解不等式x+3<2,并把结果用集合表示出来.解:{x ∈R|x+3<2}={x ∈R|x<-1}.四、练习:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}五、子集的个数:由例与练习题,可知(1)集合{a,b}的所有子集的个数是4个,即Ø,{a},{b},{a,b}(2) 集合{a,b,c}的所有子集的个数是8个,即Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(1624=)(2)集合{}n a a a ,,21Λ的所有子集的个数是多少?(n 2)结论:含n 个元素的集合{}n a a a ,,21Λ的所有子集的个数是n 2,所有真 子集的个数是n 2-1,非空真子集数为22-n六、小结:本节课学习了以下内容:1.概念:子集、集合相等、真子集2.性质:(1)空集是任何集合的子集Φ⊆A(2)空集是任何非空集合的真子集Φ A (A ≠Φ)(3)任何一个集合是它本身的子集A A ⊆(4)含n 个元素的集合的子集数为n 2;非空子集数为12-n;真子集数为12-n ;非空真子集数为22-n七、作业:1.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围. (13)m -≤≤2.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆.({}φ或2) 八、板书设计(略)九、课后记:。
集合的运算(全集、补集)-沪教版必修1教案篇一:高中数学《子集、全集、补集》教案(1)子集、全集、补集教学目标:理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系.教学重点:子集的概念,真子集的概念.教学难点:元素与子集,属于与包含间的区别;描述法给定集合的运算.课型:新授课教学手段:讲、议结合法教学过程:一、创设情境在研究数的时候,通常都要考虑数与数之间的相等与不相等(大于或小于)关系,而对于集二、活动尝试12.用列举法表示下列集合:①{x|x3?2x2?x?2?0} {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}11111{1,,,,{x|x?,n?N*且n?5}n3.用描述法表示集合:23454.用列举法表示:“与2相差3的所有整数所组成的集合”{x?Z||x?2|?3}={-1,5}5.问题:观察下列两组集合,说出集合A与集合B的关系(共性)(1)A={-1,1},B={-1,0,1,2}(2)A=N,B=R(3)A={xx为北京人},B= {xx为中国人}(4)A=?,B={0}(集合A中的任何一个元素都是集合B的元素)三、师生探究通过观察上述集合间具有如下特殊性(1)集合A的元素-1,1同时是集合B的元素.(2)集合A中所有元素,都是集合B的元素.(3)集合A中所有元素都是集合B的元素.(4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素. 由上述特殊性可得其一般性,即集合A都是集合B的一部分.从而有下述结论.四、数学理论1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A.记作A?B(或B?A),这时我们也说集合A是集合B的子集.请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.2.真子集:对于两个集合A与B,如果A?B,并且A?B,我们就说集合A是集合B的真子集,记作:A或B读作A真包含于B或B真包含这应理解为:若A?B,且存在b∈B,但b?A,称A是B的真子集. 3.当集合A不包含于集合B,或集合B 不包含集合A时,则记作AB(或BA).如:A={2,4},B={3,5,7},则AB.4.说明(1?A(2若A≠Φ,则Φ(3A?A(4)易混符号①“?”与“?”:元素与集合之间是属于关系;1?N,?1?N,N?R,Φ?R,{1}?{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ如Φ?Φ={0},Φ∈{0}五、巩固运用例1(1)写出N,Z,Q,R(2)判断下列写法是否正确①Φ?A ②Φ③A?A ④A 解(1):N?Z?Q?R(2)①正确;②错误,因为A可能是空集;③正确;④错误;思考1:A?B与B?A能否同时成立?结论:如果A?B,同时B?A,那么A=B.如:{a,b,c,d}与{b,c,d,a}相等;{2,3,4}与{3,4,2}相等;{2,3}与{3,2}相等. 问:A={x|x=2m+1,m∈Z},B={x|x=2n-1,n∈Z}.(A=B)稍微复杂的式子特别是用描述法给出的要认真分辨.思考2:若AB,BC,则AC?真子集关系也具有传递性若AB,BC,则AC.例2写出{a、b}的所有子集,并指出其中哪些是它的真子集.分析:寻求子集、真子集主要依据是定义.解:依定义:{a,b}的所有子集是?、{a}、{b}、{a,b},其中真子集有?、{a}、{b}. 变式:写出集合{1,2,3}的所有子集解:Φ、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少?(2?16)(2)集合4?a1,a2?,an?的所有子集的个数是多少?(2n)注:如果一个集合的元素有n个,那么这个集合的子集有2n个,真子集有2n -1个.六、回顾反思1.概念:子集、集合相等、真子集2.性质:(1?A(2(A≠Φ)(3A?A(4)含n个元素的集合的子集数为2;非空子集数为2?1;真子集数为2?1;非空真子集数为2?nnnn七、课外练习1.下列各题中,指出关系式A?B、A?B、AB、AB、A=B中哪些成立:(1)A={1,3,5,7},B={3,5,7}.解:因B中每一个元素都是A的元素,而A中每一个元素不一定都是B的元素,故A?B及AB成立.(2)A={1,2,4,8},B={x|x是8的约数}.解:因x是8的约数,则x:1,2,4,8那么集合A的元素都是集合B的元素,集合B的元素也都是集合A的元素,故A=B. 式子A?B、A?B、A=B成立.2.判断下列式子是否正确,并说明理由.(1)2?{x|x≤10}解:不正确.因数2不是集合,也就不会是{x|x≤10}的子集.(2)2∈{x|x≤10}解:正确.因数2是集合{x|x≤10}中数.故可用“∈”.(3){2}{x|x≤10}解:正确.因{2}是{x|x≤10}的真子集.(4) ?∈{x|x≤10}解:不正确.因为?是集合,不是集合{x|x≤10}的元素.(5) ?{x|x≤10}解:不正确.因为?是任何非空集合的真子集.(6) ?{x|x≤10}解:正确.因为?是任何非空集合的真子集.(7){4,5,6,7}{2,3,5,7,11}解:正确.因为{4,5,6,7}中4,6不是{2,3,5,7,11}的元素.(8){4,5,6,7}{2,3,5,7,11}解:正确.因为{4,5,6,7}中不含{2,3,5,7,11}中的2,3,11.3.设集合A={四边形},B={平行四边形},C={矩形} D={正方形},试用Venn 图表示它们之间的关系。
子集、全集、补集教案•教学目标(一)教学知识点1.了解全集的意义.2.理解补集的概念.(二)能力训练要求1.通过概念教学,提高学生逻辑思维能力.2.通过教学,提高学生分析、解决问题能力.(三)德育渗透目标渗透相对的观点.•教学重点补集的概念.•教学难点补集的有关运算.•教学方法发现式教学法通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.•教具准备第一张:(记作§ 1. 2. 2 A)看下面例子A={班上所有参加足球队同学}B={班上没有参加足球队同学}S= {全班同学}那么& A, 3三集合关系如何?第二张:(记作§ 1. 2. 2 B)1.补集一般地,设£是一个集合,,是£的一个子集(即A^S),由£中所有不属于U/的元素组成的集合,叫做S中集合/的补集(或余集).记^ ^>sA={x | S且x^A}第三张:(记作§ 1.2. 2 C)举例,请填充(1)若£= {2, 3, 4), A= {4,:匚,则sA=.⑵若£= {三角形}, B= {锐角三角刃贝U S B=.⑶若£= {1, 2, 4, 8), ^=0,p则招= ___________________________________ .⑷若U= {1, 3, a= + 2a+l ), A= { 1, [ }, L-A= {5},则a=.(5)已知A= {0, £ 4 ), t-A= {[-I, 1}, uB= { — 1, 0, 2 ),求B=•c(6)设全集〃={2, 3, 〃“ + 2〃一3},,= { I 〃+l I , 2}, W= {5},求in.(7)设全集〃=(1, 2, 3, 4), A= {x | Y —5x+/»=0, 求M、m.•教学过程I .复习回顾1.集合的子集、真子集如何寻求?其个数分别是多少?2.两个集合相等应满足的条件是什么?II.讲授新课[师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.请同学们由下面的例子回答问题:投影片:(§1. 2. 2 A)看下面例子A= {班上所有参加足球队同学}B= {班上没有参加足球队同学}S= {全班同学}那么S、A、3三集合关系如何?[生]集合刀就是集合S中除去集合,之后余下来的集合.即为如图阴影部分由此借助上图总结规律如下:投影片:(§1. 2. 2 B)OF1一般地,设S是一个集合,,是£的一个子集(即由£中所有不属于刀的元素组成的集合,叫做S申集合刀的补集(或余集).记昨L,,即Cs,= {x |S且x^A}上图中阴影部分即表示/在s中补集c/2.全集如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,记作U.[师]解决某些数学问题时,就可以把实数集看作全集U,那么有理数集Q 的补集C *就是全体无理数的集合.举例如下:请同学们思考其结果.投影片:(§1. 2. 2 C)举例,请填充⑴若£= {2, 3, 4), A= {4,则S A=.⑵若£= {三角形}, B= {锐角三角那},贝U sB=.⑶若£= {1, 2, 4, 8), 4=叱,贝U 逆=.(4)若U= { 1, 3, + 2a+1}, A= { 1. 3 温={ 5 },则a=(5)已知A= {0, 2, 4), { —1, 1}, uB= p— 1, 0, 2},求B=(6)设全集〃={2, 3, iff + 2/»—3), A= { I ffl+1 I , 2), (A= {5},求in.(7)设全集〃=(1, 2, 3, 4), A= {x | x' —5x+〃=0, 求匚』、m.师生共同完成上述题目,解题的依据是定义’例(1)解:{2}评述:主要是比较/及S的区别.例(2)解:C^= {直角三角形或钝角三角形}评述:注意三角形分类.例⑶解:。
1.2子集、全集、补集学案(含答案)1.2子集.全集.补集学习目标1.理解子集.真子集.全集.补集的概念.2.能用符号和Venn图.数轴表达集合间的关系.3.掌握列举有限集的所有子集的方法,给定全集,会求补集知识点一子集定义如果集合A的任意一个元素都是集合B的元素若aA,则aB,那么集合A称为集合B的子集记法AB或BA读法集合A包含于集合B或集合B包含集合A图示性质1任何一个集合是它本身的子集,即AA;2对于集合A,B,C,若AB且BC,则AC;3若AB且BA,则AB;4规定A知识点二真子集定义如果AB,并且AB,那么集合A称为集合B的真子集记法AB 或BA读法集合A真包含于集合B或集合B真包含集合A图示性质1对于集合A,B,C,若AB且BC,则AC;2对于集合A,B,若AB 且AB,则AB;3若A,则A知识点三全集.补集1全集如果集合S 包含我们所要研究的各个集合,那么这时S可以看做一个全集,全集通常记作U.2补集定义文字语言设AS,由S中不属于A的所有元素组成的集合称为S的子集A的补集符号语言SAx|xS,且xA 图形语言性质1AS,SAS;2SSAA;3SS,SS题型一有限集合子集真子集的确定例11写出集合a,b,c,d的所有子集解,a,b,c,d,a,b,a,c,a,d,b,c,b,d,c,d,a,b,c,a,b,d,a,c,d,b,c,d,a,b,c,d反思感悟当元素个数为n时,有如下结论含有n个元素的集合有2n个子集;含有n个元素的集合有2n1个真子集;含有n个元素的集合有2n1个非空子集;含有n 个元素的集合有2n2个非空真子集跟踪训练11集合Ax|0x3,xN 的真子集的个数是A16B8C7D4答案C解析易知集合A0,1,2,含有3个元素,所以A的真子集的个数为2317.例12满足条件1,2,3M1,2,3,4,5,6的集合M的个数是A8B7C6D5答案C解析集合M中一定含有元素1,2,3,但同时M1,2,3且是1,2,3,4,5,6的真子集,所以集合M为1,2,3,4,1,2,3,5,1,2,3,6,1,2,3,4,5,1,2,3,4,6,1,2,3,5,6,共6个,故选C.反思感悟对于有限集A,B,C,设集合A中含有n个元素,集合B中含有m个元素n,mN*,且mn若BCA,则C的个数为2nm;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm1;若BCA,则C的个数为2nm2.跟踪训练12适合条件1A1,2,3,4,5的集合A的个数是________答案15解析这样的集合A有1,1,2,1,3,1,4,1,5,1,2,3,1,2,4,1,2,5,1,3,4,1,3,5,1,4,5,1,2,3,4,1,2,3,5,1,2,4,5,1,3,4,5共15个题型二集合间关系的判断例2判断下列各组中集合之间的关系1Ax|x是12的约数,Bx|x是36的约数2Ax|x是平行四边形,Bx|x是菱形,Cx|x是四边形;Dx|x 是正方形3M,N.4Ax|1x4,Bx|x5解1因为若x是12的约数,则必定是36的约数,反之不成立,所以AB.2由图形的特点可画出Venn图如图所示,从而DBAC.3对于集合M,其组成元素是,分子部分表示所有的整数;而对于集合N,其组成元素是n,分子部分表示所有的奇数由真子集的概念知,NM.4由数轴易知A中元素都属于B,B中至少有一个元素如2A,故有AB.反思感悟判断集合A,B之间是否有包含关系的步骤先明确集合A,B中的元素,再分析集合A,B中的元素间的关系当集合A 中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B且B中至少有一个元素不属于集合A时,AB;当集合A中的元素都属于集合B,并且集合B中的元素都属于集合A时,有AB.跟踪训练2设集合A0,1,集合Bx|x2或x3,则A与B的关系为________答案AB或AB解析02,0B.又12,1B,又AB,AB或AB题型三补集的求法例31设Ux|x是小于9的正整数,A1,2,3,B3,4,5,6,求UA,UB.解根据题意可知,U1,2,3,4,5,6,7,8,所以UA4,5,6,7,8,UB1,2,7,82若全集UxR|2x2,AxR|2x0,则UA________.答案x|0x2解析UxR|2x2,AxR|2x0,UAx|0x2反思感悟求集合的补集,需关注两处一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图有限集.数轴数集.坐标系点集来求解跟踪训练31设集合U1,2,3,4,5,集合A1,2,则UA________.答案3,4,52已知集合UR,Ax|x2x20,则UA________.答案x|x2x203已知全集Ux,y|xR,yR,集合Ax,y|xy0,则UA________.答案x,y|xy0题型四由集合间关系求参数值或范围例4已知集合Ax|2x5,Bx|m1x2m1,若BA,求实数m的取值范围解1当B时,如图所示或解这两个不等式组,得2m3.2当B时,由m12m1,得m2.综上可得,m的取值范围是m3.引申探究1若本例条件“Ax|2x5”改为“Ax|2x5”,其他条件不变,求m的取值范围解1当B时,由m12m1,得m2.2当B时,如图所示解得即2m3,综上可得,m的取值范围是m3.2若本例条件“BA”改为“AB”,其他条件不变,求m的取值范围解当AB时,如图所示,此时B.即m不存在即不存在实数m使AB.反思感悟1利用集合的关系求参数问题利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合含参数,另一个为静集合具体的,解答时常借助数轴来建立变量间的关系,需特别注意端点问题空集是任何集合的子集,因此在解ABB的含参数的问题时,要注意讨论A和A两种情况,前者常被忽视,造成思考问题不全面2数学素养的建立通过本例尝试建立数形结合的思想意识,以及在动态变化中学会用分类讨论的思想解决问题跟踪训练4已知集合Ax|x4或x5,Bx|a1xa3,aR,若BA,则a的取值范围为________答案a|a8或a3解析利用数轴法表示BA,如图所示,则a35或a14,解得a8或a3.1对子集.真子集有关概念的理解1集合A中的任何一个元素都是集合B中的元素,即由xA,能推出xB,这是判断AB的常用方法2不能简单地把“AB”理解成“A是B中部分元素组成的集合”,因为若A时,则A中不含任何元素;若AB,则A中含有B 中的所有元素3在真子集的定义中,AB首先要满足AB,其次至少有一个xB,但xA.2集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集集合的子集.真子集个数的规律为含n个元素的集合有2n个子集,有2n1个真子集,有2n2个非空真子集写集合的子集时,空集和集合本身易漏掉3补集是相对于全集而言的,有限集求补集一般借助Venn图,连续的数集求补集常用数轴,求时注意端点取舍4在由集合间关系求参数值或范围时1由于空集是任何集合的子集,又是任何非空集合的真子集,所以在遇到“AB”或“AB且B”时,一定要注意讨论A 和A两种情况,A的情况易被忽略,应引起足够重视2在求集合中参数的取值范围时,要特别注意该参数在取值范围的边界能否取等号,否则会导致解题结果错误正确的做法是把端点值代入原式,看是否符合题目要求.1若A1,下列关系错误的是ABAACADA 考点空集的定义.性质及运算题点空集的性质答案D2已知集合A1,0,1,则含有元素0的A的子集的个数为A2B4C6D8答案B解析根据题意,含有元素0的A的子集为0,0,1,0,1,1,0,1,共4个3设集合U1,2,3,4,5,6,M1,2,4,则UM________.答案3,5,64若Ax|xa,Bx|x6,且AB,则实数a的取值范围是________答案a|a65已知集合Ax|1x2,Bx|2a3xa2,且AB,求实数a的取值范围考点子集及其运算题点根据子集关系求参数的取值范围解1当2a3a2,即a1时,BA,符合题意2当a1时,要使AB,需满足这样的实数a不存在综上,实数a的取值范围是a|a1.。
高一数学《子集、全集、补集》教案模板一、教学目标1.了解集合、子集、全集、真子集、空集、补集等概念,并能够应用到实际问题中;2.掌握求解集合的并、交、差、对称差等操作及其运算规律;3.能够用Venn图表示集合关系,读懂文本或图示中的集合关系,并能够进行简单的逻辑推理。
二、教学重点1.子集、全集、真子集、空集等集合概念的区分与应用;2.集合并、交、差、对称差的概念及运算规律。
三、教学难点1.子集、真子集的抽象概念的理解与应用;2.布尔代数与集合运算的关系的理解。
四、教学程序1.集合概念引入(5分钟)–通过生活中的例子引入集合的概念,并解释集合的形式化定义;–引入子集、全集、真子集和空集等概念。
2.集合的运算及其规律(20分钟)–引导学生理解集合的运算,如集合的并、交、差、对称差,并详细解释每种运算;–利用生活实例和平面图形进行集合运算练习;–讨论每种集合运算的交换律、结合律、分配律等运算规律。
3.集合概念实例演示与分组活动(25分钟)–引导学生参与实例分析,通过文本或图示分析集合关系,并进行简单的逻辑推理;–利用分组活动引导学生自主运用所学知识,进行集合的分类识别,并进行交、并、补集等运算。
4.Venn图表示集合关系(20分钟)–引导学生了解Venn图的原理及其应用;–利用Venn图分析实际问题,探究Venn图的意义,并讨论如何利用Venn图进行简单逻辑推理;–利用Venn图的组合表示运用集合关系的复合逻辑推理。
5.练习巩固(20分钟)–针对所学知识设计综合练习题目;–让学生独立完成作业,并评估学生的掌握情况。
五、教学反思1.本课以集合、子集、全集、补集等概念为主线,通过讲解运算法则、举例分析、Venn图实践等方式让学生从多个角度理解和应用知识,有利于培养学生的逻辑思考能力和综合运用能力。
2.本课采用分组活动和Venn图演示等形式,将抽象的数学概念和实际问题进行关联,提高了学生的学习兴趣和参与度。
子集、全集、补集教案
教学目标:
1.使学生进一步理解集合的含义,了解集合之间的包含关系,理解掌握子集的概念;
2.理解子集、真子集的概念和意义;
3.了解两个集合之间的相等关系,能准确地判定两个集合之间的包含关系.
教学重点:
子集含义及表示方法;
教学难点:
子集关系的判定.
教学过程:
一、问题情境
1.情境.
将下列用描述法表示的集合改为用列举法表示:
A={x|x2≤0},B={ x|x=(-1)n+(-1)n+1,nZ};
C={ x|x2-x-2=0},D={ x|-1≤x≤2,xZ}
2.问题.
集合A与B有什么关系?
集合C与D有什么关系?
二、学生活动
1.列举出与C与D之间具有相类似关系的两个集合;
2.总结出子集的定义;
3.分析、概括两集合相等和真包含的关系的判定.
三、数学建构
1.子集的含义:一般地,如果集合A的任一个元素都是集合B的元素,(即
若a∈A则a∈B),则称集合A为集合B的子集,记为A B或B A.读作集合A包含于集合B或集合B包含集合A.
用数学符号表示为:若a∈A都有a∈B,则有AB或BA.
(1)注意子集的符号与元素与集合之间的关系符号的区别:
元素与集合的关系及符号表示:属于∈,不属于;
集合与集合的`关系及符号表示:包含于.
(2)注意关于子集的一个规定:规定空集是任何集合的子集.理解规定
的合理性.
(3)思考:A B和B A能否同时成立?
(4)集合A与A之间是否有子集关系?
2.真子集的定义:
(1)AB包含两层含义:即A=B或A是B的真子集.
(2)真子集的5。
数学教案-子集、全集、补集
教学目标:
(1)理解子集、真子集、补集、两个集合相等概念;
(2)了解全集、空集的意义,
(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;
(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;
(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;
(6)培养学生用集合的观点分析问题、解决问题的能力.
教学重点:子集、补集的概念
教学难点:弄清元素与子集、属于与包含之间的区别
教学用具:幻灯机
教学过程()设计
(一)导入新课
上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.
【提出问题】(投影打出)
已知,问:
1.哪些集合表示方法是列举法.
2.哪些集合表示方法是描述法.
3.将集M、集从集P用图示法表示.
4.分别说出各集合中的元素.
5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.
6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(笔练结合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5.,,,,,,,(笔练结合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面见到的.集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.
(二)新授知识
1.子集
(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。
记作:读作:A包含于B或B包含A
当集合A不包含于集合B,或集合B不包含集合A时,则记作:AB或BA.性质:①(任何一个集合是它本身的子集)
②(空集是任何集合的子集)
【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?
【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.
(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
例:,可见,集合,是指A、B的所有元素完全相同.
(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B 的真子集,记作:(或),读作A真包含于B或B真包含A。
【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.
【提问】
(1)写出数集N,Z,Q,R的包含关系,并用文氏图表示。
(2)判断下列写法是否正确
①A②A③④AA
性质:
(1)空集是任何非空集合的真子集。
若A,且A≠,则A;
(2)如果,,则.
例1写出集合的所有子集,并指出其中哪些是它的真子集.
解:集合的所有的子集是其中是的真子集.
【注意】(1)子集与真子集符号的方向。
(2)易混符号
①“”与“”:元素与集合之间是属于关系;集合与集合之间是包含关系。
如R,{1}{1,2,3}
②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。
如:{0}。
不能写成={0},∈{0}
例2见教材P8(解略)
例3判断下列说法是否正确,如果不正确,请加以改正.
(4)A,B,C均表示所有奇数组成的集合,∴A=B=C.
【练习】教材P9
解:(1);(2);(3);(4);(5)=;(6);(7);(8).
提问:见教材P9例子
(二)全集与补集
1.补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即.
A在S中的补集可用右图中阴影部分表示.
性质:S(SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},则SA={2,4,6};
(2)若A={0},则NA=N*;
(3)RQ是无理数集。
2.全集:
如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.
(三)小结:本节课学习了以下内容:
1.五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)
2.五条性质
(1)空集是任何集合的子集。
ΦA
(2)空集是任何非空集合的真子集。
ΦA(A≠Φ)
(3)任何一个集合是它本身的子集。
(4)如果,,则.
(5)S(SA)=A
3.两组易混符号:(1)“”与“”:(2){0}与
(四)课后作业:见教材P10习题1.2
(五)板书设计:
课题
一、知识点
(一)
(二)
例题:。