高中数学 《子集、全集、补集》教案(1)
- 格式:doc
- 大小:219.00 KB
- 文档页数:4
子集、全集、补集(一)三维目标一、知识与技能1.了解集合间包含关系的意义.2.理解子集、真子集的概念和意义.3.会判断简单集合的相等关系.二、过程与方法1.观察、分析、归纳.2.数学化表示日常问题.3.提高学生的逻辑思维能力,培养学生等价和化归的思想方法.三、情感态度与价值观1.培养数学来源于生活,又为生活服务的思维方式.2.个体与集体之间,小集体构成大社会的依存关系.3.发展学生抽象、归纳事物的能力,培养学生辩证的观点.教学重点子集、真子集的概念.教学难点元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解.教具准备中国地图、多媒体、胶片.教学过程一、创设情景,引入新课师:今天我们先来看一看中国地图,先看江苏省区域在什么地方?再看一看中国的区域.请问:江苏省的区域与中国的区域有何关系?生:江苏省的区域在中国区域的内部.师:如果我们把江苏省的区域用集合A来表示,中国的区域用集合B来表示,则会发现集合A在集合B内,即集合A中的每一个元素都在集合B内.再看一看下面两个集合之间的关系(投影胶片,胶片上可以用一组人群表示)A={x|x为江苏人},B={x|x为中国人},生:江苏人是中国人.师:我说的是从集合的角度看是什么关系?生:集合A中的元素都是集合B中的元素.师:说得对,再来看一看下面给出的集合A中的元素与集合B中的元素有什么关系?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为启东中学高一(2)班女生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.生:均有集合A中的元素都是集合B中的元素.由此引出子集的概念.二、讲解新课1.子集对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B(或B ⊇A).读作“A含于B”(或“B包含A”).其数学语言的表示形式为:若对任意的x∈A,有x∈B,则A⊆B.——为判别A是B的子集的方法之一.很明显:N⊆Z,N⊆Q,R⊇Z,R⊇Q.若A不是B的子集,则记作A B(或B A).读作“A不包含于B”(或“B不包含A”).例如,A={2,4},B={3,5,7},则A B.2.图示法表示集合(1)Venn图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图(必要时还可以用小写字母分别定出集合中的某些元素).由此,A⊆B的图形语言如下图.AB(2)数轴在数学中,表示实数取值范围的集合,我们往往借助于数轴直观地表示.例如{x |x >3}可表示为 0 1 2 3 4 5x 又如{x |x ≤2}可表示为 0 -11 2 3 x 还比如{x |-1≤x <3=可表示为 0 -2-11 2 3 x 3.集合相等对于C ={x |x 是两条边相等的三角形},D ={x |x 是等腰三角形},由于“两条边相等的三角形”是等腰三角形,因此,集合C 、D 都是由所有等腰三角形组成的集合,即集合C 中任何一个元素都是集合D 中的元素.同时,集合D 中任何一个元素也都是集合C 中的元素.这样,集合D 的元素与集合C 的元素是一样的.我们可以用子集概念对两个集合的相等作进一步的数学描述.如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A =B .事实上,A ⊆B ,B ⊆A ⇔A =B .上述结论与实数中的结论“若a ≥b ,且b ≥a ,则a =b ”相类比,同学们有什么体会? 4.真子集如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,我们称集合A 是集合B 的真子集,记作A B (或B A ).例如,A ={1,2},B ={1,2,3},则有AB.子集与真子集的区别就在于“A B ”允许A =B 或A B ,而“AB ”是不允许“A =B ”的,所以若“A ⊆B ”,则“AB ”不一定成立.5.空集我们把不含有任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集,即∅⊆A . 例如{x |x 2+1=0,x ∈R },{边长为3,5,9的三角形}等都是空集.可以让同学们列举多个生活中空集的例子.空集是任何非空集合的真子集,即若A ≠∅,则∅A .6.子集的有关性质 (1)A ⊆A ;(2)A ⊆B ,B ⊆C ⇒A ⊆C ;A B ,BC ⇒A C.7.例题讲解【例1】 写出集合{a ,b }的子集. 解:∅,{a },{b },{a ,b }.方法引导:写子集时先写零个元素构成的集合,即∅,然后写出一个元素构成的集合,再写两个元素构成的集合,依此类推.师:请写出{a ,b ,c }的所有子集.生:∅,{a },{b },{c },{a ,b },{a ,c }{b ,c },{a ,b ,c }. 师:写出{a }的子集. 生:∅,{a }. 师:∅的子集是什么? 生:∅.师:我们可以列一个表格(板演),先猜一猜4个元素集合的子集个数是多少?集 合集合元素个数集合子集个数∅0 1 {a } 1 2 {a ,b } 2 4 {a ,b ,c } 3 8 {a ,b ,c ,d }4 …… ……n 个元素生:16个.师:从上面写出的集合子集我们可以看出集合的子集个数与集合的元素个数之间有什么关系?换句话:你能否猜想n个元素集合的子集共有多少个子集?生:2n个.师:猜得很好.因为我们所学知识还不能证明这个结论,要等到高二学过排列、组合知识后就可以证明了,有兴趣的同学可以自己先学.【例2】写出不等式x-3>2的解集并进行化简(即化成直接表明未知数本身的取值范围的解集).解:不等式x-3>2的解集是{x|x-3>2}={x|x>5}.【例3】在以下六个写法中,错误写法的个数是①{0}∈{0,1}②∅{0}③{0,-1,1}⊆{-1,0,1}④0∈∅⑤Z={全体整数}⑥{(0,0)}={0}A.3B.4C.5D.6思路分析:①中是两个集合的关系,不能用“∈”;④表示空集,空集中无任何元素,所以应是0∉∅;⑤集合符号“{}”本身就表示全体元素之意,故此“全体”不应写;⑥等式左边集合的元素是平面上的原点,而右边集合的元素是数零,故不相等.只有②和③正确.故选B.【例4】已知A={x|x=8m+14n,m、n∈Z},B={x|x=2k,k∈Z},问:(1)数2与集合A的关系如何?(2)集合A与集合B的关系如何?师:元素与集合之间、集合与集合之间分别用什么符号连接?生:元素与集合之间用“∈”或“∉”连接,集合与集合之间用“⊆”“”“=”或“”等连接.师:本问题的第(1)问给了我们什么启示?生:要判别2是否属于A,只需考虑2能否表示成8m+14n的形式,若能写成8m+14n的形式,则说明2∈A,否则2∉A.师:很好.现在的问题是2能否写成8m+14n的形式?生:能,并且可以有多种写法,比如:2=8×2+14×(-1),且2∈Z,-1∈Z,2=8×(-5)+14×3,且-5∈Z,3∈Z等.所以2∈A.师:我们从第(2)问中读到了什么?生:判定两个集合A、B的关系,应优先考察它们的包含关系.对于本题,我们的思考是A⊆B成立吗?B⊆A成立吗?如果两个方面都成立,则A=B;如果只有一个方面成立,则应考虑是否是真子集;如果两个方面都不成立,则两集合不具备包含关系.师:回答得很好,问题是如何判别A⊆B?生:用定义法.任取x∈A,只要能够证明x∈B,则A⊆B就成立了.师:好,现在我们一起解决问题(2).生:任取x0∈B,则x0=2k,k∈Z.∵2k=8×(-5k)+14×3k,且-5k∈Z,3k∈Z,∴2k∈A,即B ⊆A.任取y0∈A,则y0=8m+14n,m、n∈Z,∴y0=8m+14n=2(4m+7n),且4m+7n∈Z.∴8m+14n∈B,即A⊆B.由B ⊆A且A⊆B,∴A=B.师:对于本题我们能够得到A=B,现在的问题是在集合有关问题中如何证明两个集合相等?生1:欲证A=B,根据定义,只需证A⊆B,且B ⊆A即可.生2:如果A、B是元素较少的有限集合,也可用穷举法判别它们相等.师:很好,两位同学的方法加以组合,判别两个集合相等的方法就完美了.由此,平时的学习中,只要敢于探究,善于探究,我们一定能挖掘出自身的潜能,使自己的学习永远立于不败之地,这对我们今后的学习和工作将十分有益.三、课堂练习教科书P8练习题2答案:(1)∈(2)∈(3)=(4)(5)(6)=四、课堂小结1.本节学习的数学知识:子集、集合相等、真子集、子集的性质.2.本节学习的数学方法:归纳的思想、定义法、穷举法.五、布置作业1.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是A.3B.6C.7D.82.已知集合A ={x ,xy ,1-xy },B ={0,|x |,y },A =B ,求实数x 、y 的值.3.已知M ⊆{1,2,3,4,5},且a ∈M 时,也有6-a ∈M ,试求集合M 所有可能的结果.4.若a 、x ∈R ,A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},求: (1)使A ={2,3,4}的x 的值; (2)使2∈B ,B A 的a 、x 的值; (3)使B =C 的a 、x 的值. 板书设计1.1.2 集合间的基本关系子集 Venn 图 集合相等 真子集 空集 子集的性质 例1 例2 例3 例4 课堂练习 课堂小结。
高一数学《子集、全集、补集》教案模板教学目标:1. 理解子集、全集和补集的概念;2. 掌握如何求解子集、全集和补集;3. 能够运用子集、全集和补集的概念解决实际问题。
教学重点:1. 子集、全集和补集的概念与求解方法;2. 运用子集、全集和补集解决实际问题的能力。
教学难点:运用子集、全集和补集解决复杂问题的能力。
教学准备:教师:PPT、教学实例、练习题;学生:课本、笔记工具。
教学过程:Step 1: 引入知识(5分钟)教师通过给出一个集合和两个子集的实例引出子集、全集和补集的概念,并与学生一起讨论。
Step 2: 学习概念(10分钟)教师通过PPT呈现子集、全集和补集的定义,并通过实例解释求解方法。
然后教师与学生一起进行讨论,梳理求解子集、全集和补集的步骤。
Step 3: 巩固练习(15分钟)教师出示几道练习题,由学生分组完成,并互相讨论答案。
教师点名几组学生上台解答,并给予评价和指导。
Step 4: 拓展运用(15分钟)教师提供一些实际问题,让学生应用所学的子集、全集和补集的概念解决问题。
学生在小组内讨论,然后进行答题和讨论。
Step 5: 总结归纳(5分钟)教师总结子集、全集和补集的概念和求解方法,并强调运用子集、全集和补集解决实际问题的重要性。
Step 6: 练习巩固(10分钟)教师提供一些小题目,供学生课后复习和巩固所学的知识。
教学资源:PPT、教学实例、练习题。
教学评价:通过学生的参与讨论、解答问题的过程,教师进行及时的评价和指导,及时纠正学生的错误,并给予鼓励和肯定;通过课后的小测验和作业的评价,检测学生对知识的掌握情况,并对学生的学习情况进行评估。
1.子集、全集、补集-苏教版必修1教案教学目标1.理解子集和全集的概念2.能够画出Venn图并表示出子集、全集和补集3.能够正确地使用数学符号表示子集和补集4.掌握子集、全集和补集的性质教学重点1.子集和全集的概念2.Venn图的绘制和解析3.使用符号表示子集和补集教学难点1.补集的概念和使用方法2.子集和补集之间的关系教学方法1.课堂演示2.课堂讲解3.练习题教学内容子集和全集的概念首先,教师要向学生们介绍子集的概念。
一个集合的子集是指一个或多个元素被选取出来组成的集合。
例如,集合A={1,2,3,4,5},如果我们从中选择出{1,2}或{1,4,5},那么这些都是A的子集。
然后,我们介绍全集的概念。
全集是指特定范畴中所有可能元素的集合,通常表示为U。
例如,在一个班级中,U表示这个班级能够存在的所有学生,而A表示班级中的男生,那么A是U的一个子集。
Venn图的绘制和解析在介绍完子集和全集的概念后,教师可以向学生展示一些Venn图的例子。
这些图表现了两个或三个不同集合之间的关系。
例如,在一个Venn图中,圆内部表示一个集合,而圆外部表示不属于该集合的元素。
教师可以向学生展示如下的Venn图来解析子集和全集:在这个图中,U是所有可能元素的全集,而A是其中的一个子集,B也是另一个子集。
图中的部分表示同时属于A和B的元素,通常称为交集,记作A∩B。
接下来,我们可以继续向学生展示关于Venn图的例子,并要求他们找到交集、并集等。
使用符号表示子集和补集在学生能够正确解析Venn图之后,教师可以向他们介绍如何使用符号表示子集和补集。
通常,我们使用≤或者⊆符号表示子集。
其中A≤B表示A是B的子集,而A⊆B则表示A是B的一个真子集,即A可以等于B或者全包含于B。
然后,我们向学生介绍如何使用补集。
补集是指一个集合中不属于另一个给定集合的所有元素组成的集合。
通常,我们使用A的补集表示不属于集合A的所有元素的集合,记作A’。
子集和补集教案教学目标:1. 理解子集的概念,能够判断一个集合是否为另一个集合的子集。
2. 掌握补集的定义,能够求出一个集合的补集。
3. 能够运用子集和补集的概念解决实际问题。
教学内容:一、子集的概念1. 定义:如果一个集合的所有元素都是另一个集合的元素,这个集合就是另一个集合的子集。
2. 表示方法:用符号A ⊆B 表示集合A 是集合B 的子集。
二、子集的性质1. 空集是任何集合的子集。
2. 任何集合都是其本身的子集。
3. 如果A 是B 的子集,A 的任何真子集也是B 的子集。
4. 如果A 是B 的子集,B 的任何真子集都不是A 的子集。
三、补集的概念1. 定义:如果一个元素不属于某个集合,这个元素就是该集合的补集。
2. 表示方法:用符号A' 表示集合A 的补集。
四、补集的性质1. 任何集合的补集都是其本身的补集。
2. 空集的补集是任何非空集合。
3. 如果A 是B 的子集,B 的补集的补集就是A。
五、子集和补集的应用1. 判断一个集合是否为另一个集合的子集。
2. 求出一个集合的补集。
3. 运用子集和补集的概念解决实际问题,如统计问题、集合的包含关系等。
教学方法:1. 采用讲解法,讲解子集和补集的概念及性质。
2. 采用例题法,通过举例讲解如何判断子集和求补集。
3. 采用练习法,让学生通过练习题目的方式巩固所学知识。
教学评价:1. 课堂讲解:观察学生对子集和补集概念的理解程度。
2. 练习题目:检查学生运用子集和补集解决问题的能力。
3. 课后作业:布置有关子集和补集的习题,检验学生掌握程度。
六、子集和补集的运算1. 定义:如果A 和B 是两个集合,它们的交集的补集称为A 和B 的相对补集,记作A ΔB。
2. 性质:A ΔB = (A ∩B)',即A 和B 的相对补集是它们的交集的补集。
七、子集和补集的应用举例1. 统计问题:假设有一个班级有30 名学生,其中有18 名女生,求男生的人数。
1.2 子集、全集、补集(一)学习目标1、了解集合间包含关系的含义.2、理解子集、真子集的概念和意义.4、学习用“关系”反映事物之间普遍联系.学习重点子集与真子集的概念学习难点弄清元素与子集,属于与包含之间的区别学习过程1、元素与集合的关系如何表示?集合有几种表示方法?2、观察下列几组集合,它们之间的共同特点是什么?如何用符号描述这种关系?(1)A={-1,1},B={-1,0,1};(2)A=N,B=R;(3)A={x│x是江苏人},B={x│x是中国人}.3、子集的概念是什么?如何用符号表示?问:①A⊆A正确吗?②A⊆B和B⊆A能否同时成立?③A⊆B和B⊆A意味着什么?④A⊆B,B⊆C,你能得出什么结论?4、真子集的概念是什么?如何用符号表示?问:(1)能说空集是任何集合的真子集吗?(2)如何判别A⊃≠B?5、写出集合{a,b}的所有子集.思考:(1)如何书写有限集的所有子集?(2)一个n元集合的子集个数有多少个?真子集的个数?非空真子集的个数?6、下列各组的三个集合中,哪两个集合之间具有包含关系?(1)S={-2,-1,1,2},A={-1,1},B={-2,2};(2)S=R,A={x│x≤0,x∈R},B={x│x>0,x∈R};(3)S={x│x为地球人},A={x│x为中国人},B={x│x为外国人}.7、已知集合{}260P x x x =+-=,{}10Q x ax =+=,且Q ⊂≠P ,求实数a 的所有取值.8、已知{}23A x x x =<->或,{}40B x x m =+<,若A B ⊇,求实数m 的取值范围.练习:1、用适当的符号填空:(1)a _{a }; (2)a _{a ,b ,c };(3)d _{a ,b ,c };(4){a }_{a ,b ,c };(5){a ,b }_{b ,a };(6){3,5}_{1,3,5,7};(7){2,4,6,8}_{2,8};(8) ∅_{1,2,3}2、书P 9 练习1、3学习反思:。
子集补集全集教案教案章节:一、子集与补集的概念教学目标:1. 理解子集的概念,能够判断一个集合是否为另一个集合的子集。
2. 理解补集的概念,能够求出一个集合的补集。
教学内容:1. 子集的定义:如果一个集合的所有元素都是另一个集合的元素,这个集合就是另一个集合的子集。
2. 补集的定义:如果一个元素不属于某个集合,它属于这个集合的补集。
教学步骤:1. 引入子集的概念,通过举例让学生理解子集的定义。
3. 引入补集的概念,通过举例让学生理解补集的定义。
教学评价:1. 通过练习题,检查学生对子集概念的理解程度。
2. 通过练习题,检查学生对补集概念的理解程度。
教案章节:二、子集与补集的性质教学目标:1. 掌握子集与补集的性质,能够运用性质解决问题。
2. 能够判断一个集合是否为另一个集合的真子集。
教学内容:1. 子集的性质:a. 任何集合都是它自己的子集。
b. 空集是任何集合的子集。
c. 如果A是B的子集,A的任意子集也是B的子集。
2. 补集的性质:a. 一个集合的补集与它本身是互斥的。
b. 任何集合的补集都是它超集的子集。
教学步骤:1. 通过举例和引导学生思考,让学生理解子集与补集的性质。
教学评价:1. 通过练习题,检查学生对子集与补集性质的理解程度。
2. 通过练习题,检查学生对判断真子集的方法的理解程度。
教案章节:三、子集与补集的应用教学目标:1. 能够运用子集与补集的概念和性质解决实际问题。
教学内容:1. 子集与补集在实际问题中的应用,如集合的包含关系、集合的交集和并集等。
教学步骤:1. 通过举例和引导学生思考,让学生理解子集与补集在实际问题中的应用。
2. 引导学生运用子集与补集的概念和性质解决实际问题。
教学评价:1. 通过练习题,检查学生对子集与补集在实际问题中的应用的理解程度。
教案章节:四、子集与补集的综合应用教学目标:1. 能够综合运用子集与补集的概念和性质解决复杂问题。
教学内容:1. 子集与补集的综合应用,如解决集合的包含关系、集合的交集和并集等问题。
子集、全集、补集(1)教案苏教版必修1本资料为woRD文档,请点击下载地址下载全文下载地址1.2 子集、全集、补集(1)教学目标:.使学生进一步理解集合的含义,了解集合之间的包含关系,理解掌握子集的概念;2.理解子集、真子集的概念和意义;3.了解两个集合之间的相等关系,能准确地判定两个集合之间的包含关系.教学重点:子集含义及表示方法;教学难点:子集关系的判定.教学过程:一、问题情境.情境.将下列用描述法表示的集合改为用列举法表示:A={x|x2≤0},B={x|x=n+n+1,nÎZ};c={x|x2-x-2=0},D={x|-1≤x≤2,xÎZ} 2.问题.集合A与B有什么关系?集合c与D有什么关系?二、学生活动.列举出与c与D之间具有相类似关系的两个集合;2.总结出子集的定义;3.分析、概括两集合相等和真包含的关系的判定.三、数学建构.子集的含义:一般地,如果集合A的任一个元素都是集合B的元素,(即若a∈A则a∈B),则称集合A为集合B的子集,记为AB或BA.读作集合A包含于集合B或集合B包含集合A.用数学符号表示为:若a∈A都有a∈B,则有AB 或BA.(1)注意子集的符号与元素与集合之间的关系符号的区别:元素与集合的关系及符号表示:属于∈,不属于;集合与集合的关系及符号表示:包含于.(2)注意关于子集的一个规定:规定空集是任何集合的子集.理解规定的合理性.(3)思考:AB和BA能否同时成立?(4)集合A与A之间是否有子集关系?2.真子集的定义:(1)AB包含两层含义:即A=B或A是B的真子集.(2)真子集的wenn图表示(3)A=B的判定(4)A是B的真子集的判定四、数学运用例1 (1)写出集合{a,b}的所有子集;(2)写出集合{1,2,3}的所有子集;{1,3}{1,2,3},{3}{1,2,3},小结:对于一个有限集而言,写出它的子集时,每一个元素都有且只有两种可能:取到或没取到.故当集合的元素为n个时,子集的个数为2n.例2 写出N,Z,Q,R的包含关系,并用Venn图表示.例3 设集合A={-1,1},集合B={x|x2-2ax+b =0},若B≠,BA,求a,b的值.小结:集合中的分类讨论.练习:1.用适当的符号填空.(1)a_{a};(2)d_{a,b,c};(3){a}_{a,b,c};(4){a,b}_{b,a};(5){3,5}_{1,3,5,7};(6){2,4,6,8}_{2,8};(7)Æ_{1,2,3},(8){x|-1<x<4}__{x|x-5<0}2.写出满足条件{a}m{a,b,c,d}的集合m.3.已知集合P={x|x2+x-6=0},集合Q={x|ax+1=0},满足QP,求a所取的一切值.4.已知集合A={x|x=k+,kZ},集合B={x|x=+1,kZ},集合c={x|x=,kZ},试判断集合A、B、c的关系.五、回顾小结.子集、真子集及对概念的理解;2.会用Venn图示及数轴来解决集合问题.六、作业教材P10习题1,2,5.。
《子集、全集、补集》教学设计1.理解集合之间的包含与相等的含义;2.能识别给定集合的子集,了解空集含义;3.能进行自然语言、图形语言(Venn图)、符号语言间的转换,提升数学抽象素养.教学重点:子集、真子集的概念,补集性质的理解.教学难点:元素与子集、属于与包含之间的区别以及空集的概念.PPT课件.问题导入问题1:上一节我们学习了集合,对于这个新的研究对象,接下来该如何研究呢?比如要研究些什么问题?用什么方法研究?师生活动:学生独立思考、讨论交流.【想一想】类比已有的学习经验是一个好方法,比如“实数”;然后指引学生回顾实数研究了哪些内容,如实数间的关系、实数的运算等;最后确定集合的研究问题:集合间的关系,集合的运算.设计意图:引入一个新的数学对象后,关键在于引导学生思考“如何研究一个数学对象”,这种思考有助学生学会研究数学对象,学会发现问题和提出问题.这里采用的“类比”就是一种重要的数学思维方法,通过类比实数关系、特别是因数这样的关系,联想集合关系,提出要研究的问题.引语:要解决这个问题,就需要进一步学习子集、全集、补集.(板书:子集、全集、补集)【新知探究】1.分析实例,逐步分析出集合与集合之间有哪些关系?问题2:阅读教科书第9页“观察”,类比实数之间的相等关系、大小关系,集合与集合之间有哪些关系?师生活动:学生独立观察,充分思考,交流讨论. 追问:(1)你从哪个角度来分析每组两个集合间的关系?(2)请用集合的语言归纳概括上述三个具体例子的共同特点.(3)上述三组集合中,前两组的两个集合间的关系与第三组的两个集合间的关系有什么不同之处?预设的答案:(1)从元素与集合之间的关系来分析每组两个集合间的关系.(2)在每组的两个集合中,第一个集合中的任何一个元素都是第二个集合中的元素.(3)不同之处是前两组集合中,集合B 中有的元素属于集合A ,有的元素不属于集合A ;第三组集合中,集合A 中的任何一个元素都属于集合B ,反过来,集合B 中的任何一个元素也都属于集合A .设计意图:让学生充分经历从观察、分析到抽象、概括的过程,其中包括独立思考和交流讨论.这是一个提升学生数学抽象素养的时机.2.在大量实例感知的基础上,总结出子集和真子集的概念、区别与联系.问题3:(1)举几个具有包含关系、相等关系的集合,并用符号语言和Venn 图表示.(2)子集和真子集的区别与联系是什么?师生活动:教师引导学生梳理观察、讨论、分析的结果,抽象概括成数学定义,介绍子集、包含关系和相等关系.追问:与实数中的结论“若a b ≥,且b a ≥,则a b =”相类比,你对集合间的基本关系有什么体会?根据实数关系的其他结论,你还能猜想出哪些集合间关系的结论?预设的答案:若,A B B C ⊆⊆,则A C ⊆;若,A B B A ⊆⊆,则A B =.设计意图:通过举例子,抽象概念具体化,深入理解概念.问题4:自主阅读教材第10页,回答补集的定义.师生活动:学生独立阅读,充分思考,交流讨论.预设的答案:文字表示设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为S A ,读作A 在S 中的补集. 符号表示S A ={x |x ∈S ,且x ∉A }. 图形表示设计意图:通过阅读,熟悉自然语言、符号语言和图形语言,并建立它们之间的对应关系【巩固练习】例1.(1)写出集合{a,b,c,d}的所有子集;(2)若一个集合有n(n∈N)个元素,则它有多少个子集?多少个真子集?师生活动:学生分析解题思路,给出答案.预设的答案:(1)∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}.(2)若一个集合有n(n∈N)个元素,则它有2n个子集,2n-1个真子集.如∅,有20即一个子集,20-1即0个真子集.设计意图:巩固子集和真子集的概念,体会分类的原则和方法,为保证不重不漏,要按照一定顺序写出子集,比如可以根据子集中元素的个数分类.例2.满足{1,2}⫋M⊆{1,2,3,4,5}的集合M有________个.师生活动:学生分析解题思路,给出答案.预设的答案:由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足题意的集合M共有7个.设计意图:巩固子集和真子集的概念和性质.A.例3.在下列各组集合中,U为全集,A为U的子集,求U(1)已知全集U={x|x是至少有一组对边平行的四边形},A={x|x是平行四边形};(2)U=R,A={x|-1≤x<2}师生活动:学生分析解题思路,给出答案.预设的答案:(1)∵至少有一组对边平行的四边形包括两组对边分别平行的四边形和有A={x|x是梯形}.一组对边平行、另一组对边不平行的四边形,即平行四边形和梯形.∴U(2)把集合A在数轴上表示出来(如图),A={x|x<-1或x≥2}.∵U=R,∴U设计意图:培养学生分析解决问题的能力.【课堂小结】1.板书设计:1.2子集、全集、补集1.子集和真子集的概念例12.子集和真子集的性质例23.补集的概念和性质例3练习与作业:2.总结概括:问题:(1)两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)包含关系与属于关系有什么区别?比如{a}⊆A与a∈A?师生活动:学生尝试总结,老师适当补充.预设的答案:(1)子集、真子集、补集;列举法、文恩图法;(2)属于关系是研究元素与集合的关系;包含关系是研究集合与集合的关系.设计意图:通过梳理本节课的内容,能让学生更加明确集合的关系知识.布置作业:【目标检测】1.已知集合A={x|1≤x<6},B={x|x+3≥4},则A与B的关系是().A.A⫋B B.A=B C.B⫋A D.B⊆A设计意图:检验学生对于子集的理解.2.已知全集U=R,集合M={x|x<-2或x≥2},则M=________.U设计意图:检验学生对于补集的理解.3.若{1,2,3}⫋A⊆{1,2,3,4,5},则满足条件的集合A的个数为().A.2 B.3 C.4 D.5设计意图:让学生理解集合的个数与元素的关系.4.已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}.(1)若a=-1,试判断集合A,B之间是否存在子集关系;(2)若A⊇B,求实数a的取值范围.设计意图:这题相对有一定难度,考察学生对于空集的理解,估计很多学生会忽略空集的情况,这也是今后学习时一个重要的考虑情况.参考答案:1.A2.把集合M在数轴上画出来(如图),M={x|-2≤x<2}.由数轴知U3.B4.(1)B是A的真子集;(2)-1≤a≤4.。
子集、全集、补集[知识要点]1.子集的概念:如果集合A中的任意一个元素都是集合B),那么称集合A为集合B的子集(subset),记作或,.还可以用Venn图表示.我们规定:.即空集是任何集合的子集.根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即.⑵子集具有传递性,即若且,则.2.真子集:如果且,这时集合A称为集合B的真子集(proper subset).记作:A B⑵定:空集是任何非空集合的真子集.⑵如果A B, B,那么3.两个集合相等:如果与同时成立,那么中的元素是一样的,即.4.全集:如果集合S包含有我们所要研究的各个集合,这时S可以看作一个全集(Universal set),全集通常记作U.5.补集:设,由S中不属于A的所有元素组成的集合称为S的子集A的补集(complementary set), 记作:(读作A在S中的补集),即补集的Venn图表示:[简单练习]1.判断以下关系是否正确:⑴;⑵;⑶;⑷;⑸;⑹;2.下列关系中正确的个数为()①0∈{0},②Φ{0},③{0,1}{(0,1)},④{(a,b)}={(b,a)}A)1 (B)2 (C)3 (D)43.集合的真子集的个数是()(A)16 (B)15 (C)14 (D) 13a B∈BA⊆AB⊇BA⊆A∅⊆A A⊆BA⊆B C⊆A C⊆BA⊆A B≠C A CBA⊆B A⊆,A B A B=A S⊆Að{,}.SA x x S x A=∈∉且ð{}{}a a⊆{}{}1,2,33,2,1={}0∅⊆{}00∈{}0∅∈{}0∅=⊆{}8,6,4,24.集合,,,,则下面包含关系中不正确的是( )(A ) (B) (C) (D)5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}. (Ⅰ)若M N ,求实数a 的取值范围; (Ⅱ)若M N ,求实数a 的取值范围.6.设,写出的所有子集.[巩固提高]1.四个关系式:①;②0;③;④.其中表述正确的是( ) A .①,②B .①,③C . ①,④D . ②,④2.若U={x ∣x 是三角形},P={ x ∣x 是直角三角形},则( )A .{x ∣x 是直角三角形}B .{x ∣x 是锐角三角形}C .{x ∣x 是钝角三角形}D .{x ∣x 是锐角三角形或钝角三角形}3.下列四个命题:①;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中正确的有( )A.0个 B.1个 C.2个 D.3个4.满足关系 的集合A的个数是( ) A.5 B.6 C.7 D.8{}正方形=A {}矩形=B {}平行四边形=C {}梯形=D B A ⊆C B ⊆D C ⊆C A ⊆⊆⊇{}13,A x x x Z =-<<∈A ∅}0{⊂}0{∈}0{∈∅}0{=∅=P CU{}0∅={}1,2A ⊆{}1,2,3,4,55.设A=,B={x ∣1< x <6,x ,则 .6.U={x ∣,则U 的所有子集是 .7.已知集合,≥,且满足,求实数的取值范围.8.设全集,,,求实数的值.9.已知,. (1)若,求的取值范围; (2),求的取值范围;(3) ,求的取值范围.10.已知M={x ∣x },N={x ∣x } (1)若M ,求得取值范围; (2)若M ,求得取值范围; (3)若,求得取值范围.{}5,x x x N ≤∈}N ∈=B CA},01582R x x x ∈=+-}5|{<<=x a x A x x B |{=}2B A ⊆a {}22,3,23U a a =+-{}21,2A a =-{}5U C A =a {}3A x x =<{}B x x a =<B A ⊆a A B ⊆a RC A R C B a ,0>R x ∈,a >R x ∈N ⊆a N ⊇a M CRN CRa。