超声波流量测量技术综述
- 格式:ppt
- 大小:1.21 MB
- 文档页数:27
超声波流量计的原理及应用超声波流量计是一种利用超声波技术来测量流体流量的仪器。
它通过发送超声波脉冲,测量超声波在流体中的传播时间来确定流速,并根据流速和管道截面积计算出流量。
超声波流量计的原理是基于多普勒效应和声速传播原理,广泛应用于工业自动化、环保监测、水利水电、石油化工等领域。
超声波流量计的工作原理主要包括声速传播原理和多普勒效应两部分。
首先是声速传播原理,超声波在流体中传播的速度与流体的流速有关,当超声波沿着流体流动方向传播时,其传播速度会受到流体流速的影响。
根据声速传播原理,测量超声波在流体中传播的时间可以得到流速的信息。
其次是多普勒效应,当超声波遇到流体流动时,因为流体流速的影响导致超声波的频率发生变化,这种变化即为多普勒效应。
通过测量多普勒频移,可以得到流体的流速信息。
超声波流量计的应用范围非常广泛,包括但不限于以下几个方面:一、工业自动化领域在工业生产中,流量是一种重要的工艺参数,对流体的流量进行准确测量是保证工业生产质量的关键。
超声波流量计可以应用于水泥、化工、冶金、造纸等行业,用于测量水、蒸汽、液体或气体等的流量。
其非侵入式的测量方式保证了测量的准确性和稳定性,广泛应用于工业自动化生产中。
二、环保监测领域超声波流量计在环保监测领域也有着重要的应用。
在污水处理厂、水处理设备等环境中,需要对流体的流量进行监测和控制,以保证环境保护的需要。
超声波流量计可以应用于这些领域,通过对流体流速和流量的准确测量,实现对环保设备的高效运行和环境保护的实现。
三、水利水电领域水力发电厂、水库、水泵站等水利水电设施对水流量的监测和管理非常重要。
超声波流量计可以应用于这些领域,用于准确测量水流速和水流量,帮助实现对水资源的合理利用和水利工程的安全运行。
四、石油化工领域在石油化工领域,对流体流量的准确测量是保障生产质量和安全的重要环节。
超声波流量计可以应用于原油、天然气、炼油、化肥等领域,用于测量液体和气体的流量,并实现对生产过程的准确控制。
《超声流量检测信号处理技术研究》一、引言随着工业技术的飞速发展,流量检测在各个领域中的应用日益广泛。
超声流量检测技术因其高精度、非侵入式等特点,在液体流量测量中占有重要地位。
然而,由于实际应用中面临的复杂环境与多种干扰因素,超声流量检测信号的处理技术成为了研究的重点。
本文旨在探讨超声流量检测信号处理技术的相关研究,分析其原理、方法及发展趋势。
二、超声流量检测基本原理超声流量检测技术主要通过测量流体中超声波传播的时间或速度来确定流体流量。
其基本原理包括发射器发送超声波信号,信号经流体及接收器之间的路径传播后,由接收器接收并转换成电信号。
通过对电信号的处理与分析,得出流体的流量。
三、超声流量检测信号处理技术在超声流量检测中,信号处理是关键环节。
良好的信号处理技术能够提高检测的准确性和稳定性。
目前,常用的超声流量检测信号处理技术包括滤波、放大、数字化、频谱分析等。
(一)滤波技术滤波技术是消除信号中的噪声、干扰的重要手段。
针对超声流量检测信号的特点,常采用数字滤波器进行滤波处理,如低通滤波器、带通滤波器等,以消除频率范围外的噪声干扰。
(二)放大技术由于超声波信号在传播过程中会受到多种因素的影响,导致信号强度减弱。
因此,需要通过放大技术对接收到的信号进行放大处理,以提高信噪比。
(三)数字化技术数字化技术是将接收到的信号转换成数字信号,便于后续的信号处理与分析。
在超声流量检测中,常采用模数转换器(ADC)进行信号的数字化处理。
(四)频谱分析技术频谱分析技术是对数字化后的信号进行频域分析,以提取出有用的信息。
在超声流量检测中,通过频谱分析可以得到流体流速、流向等信息。
四、超声流量检测信号处理技术的发展趋势随着科技的不断发展,超声流量检测信号处理技术也在不断进步。
未来,超声流量检测信号处理技术的发展将主要体现在以下几个方面:(一)智能化处理随着人工智能技术的不断发展,越来越多的智能算法被应用于超声流量检测信号处理中。
超声波测流技术的研究与应用随着工业化的不断发展和社会的不断进步,流量测量技术也得到了不断的升级和完善。
超声波测流技术作为一种新兴的流量测量手段,其测量范围广泛、精度高、应用领域广泛,受到越来越多的关注和研究。
本文将从超声波测流技术的基本原理、研究进展及其在工业生产中的应用等方面进行详细探讨。
一、超声波测流技术的基本原理超声波是一种高频率的机械波,由振动源引发,传播到介质中,并通过介质中的传导和散射作用进行传播。
超声波的频率一般高于20kHz,可以测量各种介质中的流速。
超声波测流技术是利用超声波的传播速度来测量介质中的流速。
超声波传输时会受到介质的散射、衰减等因素的影响,因此在超声波测流技术中,需要使用多种技术手段来消除影响因素,保证测量精度,而这些技术手段也是超声波测流技术得以不断完善和发展的重要因素。
二、超声波测流技术的研究进展自20世纪50年代,超声波测流技术就开始在工业领域中得到了应用,随着科研技术的不断发展和工业技术的不断进步,超声波测流技术也在不断升级和改进,目前已经发展出多种类型的超声波传感器和多种压电材料。
另外,在超声波测流技术的研究中,还涌现出了一批优秀的学术研究团队和研究机构,推动了超声波测流技术的发展。
1. 超声波传感器技术的发展超声波传感器是超声波测流技术的核心部分,其设计和制造直接影响着测量的精度和性能。
目前,超声波传感器的设计和制造已经变得更加复杂和精细,传感器尺寸不断缩小,测量精度不断提高。
例如,普通材料的超声波传感器已经可以测量较小的液体流量,而对于带有颗粒或泡沫的介质,可以采用特殊材料的超声波传感器来进行测量,提高测量的可靠性和精度。
2. 压电材料技术的发展压电材料是超声波传感器的核心元件,也是超声波测流技术的重要组成部分。
随着压电材料技术的发展,具有良好性能和稳定可靠性的压电材料得到了广泛的应用。
例如,目前采用铅锆钛(PZT)等高性能压电材料的传感器已经成为超声波测量领域的主流。
超声波流量计技术指标超声波流量计是一种广泛应用于工业领域的流量测量装置,利用超声波传感器测量流体的流速和流量。
超声波流量计具有许多优点,例如可靠性高、精度高、非侵入式测量、适用于各种管道材料和流体等,因此在很多领域得到了广泛的应用。
超声波流量计的技术指标包括测量精度、测量范围、输出信号、测量方式等。
首先是测量精度。
超声波流量计的测量精度通常可以达到0.5%~1%。
这是由于超声波流量计利用超声波传感器测量流体的流速,通过对流速进行积分运算得到流量。
传感器的准确度和稳定性非常重要,它们会影响测量结果的准确性。
其次是测量范围。
超声波流量计的测量范围通常是根据管道内径来确定的。
一般来说,超声波流量计适用于内径为DN15~DN6000的管道,能够测量的流速范围为0.1 m/s~25 m/s,流量范围可达到0.01m³/h~1000000 m³/h。
因此,超声波流量计可以应用于各种不同尺寸的管道和流量要求。
另一个重要的技术指标是输出信号。
超声波流量计通常提供多种输出信号选项,如模拟信号输出、数字信号输出和总线信号输出。
模拟信号输出一般为4~20 mA或0~10 V,可以直接连接到控制系统中进行实时监测和控制。
数字信号输出一般为RS485或RS232接口,可以与计算机或其他设备进行通信。
总线信号输出一般为MODBUS、HART、PROFIBUS等,可以与现场总线系统进行集成。
最后是测量方式。
超声波流量计的测量方式有成对差距法、多普勒频移法和时间差法等。
成对差距法是最常用的方法,通过将超声波沿着流体的流动方向和相反方向传播,测量声波传播的速度差来计算流速和流量。
多普勒频移法则是通过测量超声波在流体中的频率变化来计算流速和流量。
时间差法则是通过测量超声波在流体中传播的时间差来计算流速和流量。
不同的测量方式适用于不同的流体和流速范围。
总之,超声波流量计是一种高精度、范围广、稳定可靠的流量测量设备。
超声波速度测量系统技术报告1导言1.1研究背景和意义超声波被用来测量流体流量已经有几十年了。
1928年,法国人于滕成功研制出世界上第一台超声波流量计。
而时差式超声波流量计为了使超声波流量计具有一定的精度,对时间测量要求相当高的测量精度,这在当时是很难实现的。
1955年,美国研制成功声学循环法迈克松流量计,用于测量航空燃油的流量。
50年代末,超声波流量计从理论研究阶段进入工业应用阶段。
但是电子电路太复杂,无法占据稳固的地位。
80年代中后期,单片机技术的应用使超声波流量计向高性能、智能化方向发展。
由于采用单片机作为中央处理单元,该系统不仅能进行复杂的数学运算和数据处理,还能进一步提高超声波流量计的测量精度。
此外,还可以设计友好的人机界面,使系统具有参数设置、自动检错调试等辅助功能,极大地方便了用户的操作和使用。
单片机在超声波流量计中的应用,是超声波流量计真正进入工业测量领域。
1.2超声波流量计的现状近10年来,基于高速数字信号处理技术和微处理器技术的进步,新型探头材料和技术的研究,以及通道结构和流动力学的研究,超声波流量测量技术取得了长足的进步,显示出强大的技术优势,形成了快速发展的势头。
其巨大的潜在生命力是显而易见的。
在国外,以美国Controlotron公司和Ploysonics公司为代表的产品多采用数字信号处理技术,如“同步调制”和FFT技术。
他们广泛采用以DSP为核心的数字处理电路,可以更快更实时地处理超声信号,同时可以实现一些复杂的算法。
例如,Ploysonics公司的DDF3088是新一代全数字便携式多普勒流量计。
它采用数字滤波和数字频谱分析技术,能自动识别多普勒信号和噪声信号,抗干扰能力强。
采用高分辨率液晶显示器,可现场进行多普勒分析。
在测量方法上,有的采用改进的时差法消除温度对速度的影响,时差法和多普勒法的结合,如Controlotron公司开发的480超声波流量计,使产品的适用性更强。
超声波流量计的原理及应用超声波流量计是一种利用超声波技术实现测量流体流量的仪器。
它具有非接触式、无移动部件、高精度、可重复性好、测量范围宽等优点,因此被广泛应用于工业自动控制和流量测量领域。
本文将介绍超声波流量计的原理及其应用。
超声波流量计的测量原理主要是利用超声波在不同介质中传播速度不同而实现的流量测量。
超声波是一种高频振动波,其频率一般在20 kHz~10 MHz之间。
在超声波流量计中,通常使用2~3 MHz的超声波。
超声波在流体中传播时,其传播速度会受到流体速度和温度的影响。
当超声波从流体中穿过时,其传播速度将发生变化。
当超声波沿一定角度入射流体中时,其传播速度的改变量将与流体速度成正比。
超声波流量计通常采用时差测量方式进行测量。
即通过超声波在被测流体中传播的时间差来计算流体速度。
通常使用两个或多个超声波探头,其中一个探头发出超声波,被测流体中的另一个探头接收超声波的反射信号,两个探头之间的时间差就是流体速度的测量值,进而可以确定流量值。
1、水处理行业超声波流量计广泛应用于水处理行业,用于测量工业水用量、废水排放量、流量控制等。
在水处理过程中,精确测量水的流量对于实现稳定的水处理有着至关重要的作用,超声波流量计以其非接触式、高精度等特点成为了水处理行业中首选的流量计。
2、石油和化学行业超声波流量计在油气开采及化学加工领域中的应用越来越广泛。
它可以用来测量原油、石油产品、液化气、化学液体等的流量。
在化学工业中,超声波流量计则被用于测量反应器中的流量,以控制反应条件。
3、食品及制药行业超声波流量计在食品及制药行业中也有广泛应用。
在食品加工过程中,超声波流量计可以用于测量牛奶、汁、饮料、啤酒等液体的流量,以确保食品加工的质量;在制药行业中,超声波流量计可以被用来测量制药过程中的流量,以确保药品的品质和稳定性。
4、供水及暖通行业超声波流量计也可以用于测量冷热水的流量,在供水及暖通行业中应用广泛。
在室内水、燃气等流体计量方面,超声波流量计在多个领域都有广泛的应用。
超声波测流体流量专利技术综述发表时间:2019-05-23T17:17:10.360Z 来源:《基层建设》2019年第4期作者:吕扬[导读] 在工业生产过程中,温度、压力、流量时工业过程测量的三大参数,其中流量作为工业过程中的一个重要检测参数,在自动化检测领域占据着重要的位置。
国家知识产权局专利局专利审查协作天津中心一、概述在工业生产过程中,温度、压力、流量时工业过程测量的三大参数,其中流量作为工业过程中的一个重要检测参数,在自动化检测领域占据着重要的位置。
流量计作为标准计量器具在石油、化工、煤炭、电力、交通、冶金及人民日常生活等国民经济的各个领域获得广泛地应用。
超声波流量计研究具有近80年的历史。
最早是在1931年,Rutten发表了关于利用声波测量管道流体流量的理论基础;在1957年左右,Grosso作了关于超声波流量计发展的一些技术理论评述;在20世纪50年代,基于频差法的MAXSON流量计研制成功,其主要用于测量航空燃料,这意味着超声流量计从此由研究阶段进入了应用阶段;在20世纪60年代末,出现了多普勒效应的超声波流量计,有关超声波流量计的大量专利也相继问世,随着电子技术的不断发展,在20世纪70年代,超声波流量计的性能逐步提高,其应用也得到了推广,理论研究也逐渐增多。
我国自行研发超声波流量计比较晚。
20世纪90年代由同济大学声学研究室、上海光华仪表厂、唐山仪表厂等单位开始研制超声波流量计,并逐步应用到煤气流量计量中。
目前国内有华中科技大学、天津大学、浙江大学、清华大学深圳研究生院、哈尔滨工业大学等高等院校都在进行超声波流量计的研究,也已取得了一定的研究成果,并且国内生产超声波流量计的公司已经有几十家,但与国外的超声波流量计研究相比差距较大。
二、超声波流量计专利申请分析本文利用国家知识产权局网站的专利检索与服务系统,主要对超声波流量计在中国的专利申请量进行分析,通过关键词和分类号相结合的方式在中文数据库CNABS进行检索,统计的专利申请数据截止到2017年12月31日。
超声波流量计的技术参数超声波流量计是一种用于测量流体流量的仪器,它利用超声波测量技术进行流量测量。
这种流量计具有测量精度高、不易受介质影响、可靠性高等优点,因此在工业生产中得到了广泛应用。
下面我们来了解一下超声波流量计的技术参数。
1. 测量范围超声波流量计的测量范围是指它能够测量的流量范围。
一般而言,超声波流量计的测量范围可以根据不同型号进行调整,但是在实际应用中,通常需要根据实际情况来选择合适的型号和测量范围。
2. 测量精度测量精度是指超声波流量计在测量过程中的误差大小。
这个参数对于超声波流量计非常重要,因为它直接影响到测量结果的准确性。
一般而言,超声波流量计的测量精度可以达到0.5%~1%,但是具体精度还需要根据实际情况来进行调整。
3. 测量介质超声波流量计的测量介质是指它能够测量的流体介质的种类。
一般而言,超声波流量计可以测量各种液体介质,包括清水、污水、蒸汽、石油等。
4. 测量管径测量管径是指超声波流量计适用的管径范围。
一般而言,超声波流量计适用的管径范围比较广泛,可以测量几乎所有管径范围的管道,但是具体的管径范围还需要根据不同型号来进行选择。
5. 工作温度和压力工作温度和压力是指超声波流量计能够正常工作的温度和压力范围。
一般而言,超声波流量计的工作温度范围为-40℃~+120℃,工作压力范围为0~10MPa。
6. 输出信号输出信号是指超声波流量计输出的信号类型。
一般而言,超声波流量计的输出信号类型有模拟信号和数字信号两种。
其中,模拟信号通常为4~20mA,数字信号则可以为RS485、HART等。
7. 电源要求电源要求是指超声波流量计的电源供应要求。
一般而言,超声波流量计的电源供应要求是24VDC,也有一些型号可以支持100~240VAC的电源供应。
8. 安装方式安装方式是指超声波流量计的安装方式。
一般而言,超声波流量计的安装方式有法兰式、夹式、螺纹式等多种方式,具体的安装方式需要根据实际情况来选择。
超声波液体流量计的技术介绍超声波流量计超声波发生器应用数字化控制技术一般有三种形式:1、超声波流量计采用AVR高档单片机控制单片机是一种在一块芯片上集成了CPU.RAM/ ROM、定时器/计数器和I/O接口等单元的微控制芯片,具有速度快,功能强、效率高、体积小,性能可靠、抗干扰能力强等优点,在各种控制系统中应用广泛。
单片机的CPU经历了由4、8,16、32直至64位的发展过程。
在超声波发生器中,单片机主要用作数据采集和运算处理、电压电流调节、PWM信号生成、系统状态监控和故障自我诊断等,一般作为整个电路的主控芯片运行,完成多种综合功能。
配合D/A 转换器和MOSFET功率模块实现脉宽调制.另外,单片机还具有对过流,过热。
欠压等情况的中断保护以及监控功能。
单片机控制克服了模拟电路的固有缺陷,通过数字化的控制方法,得到高精度和高稳定度的控制特性,并可实现灵活多样的控制功能。
2、超声波流量计采用DSP控制数字信号处理器{DSP}是近年来迅速崛起的新一代可编程处理器。
其内部集成了波特率超声波发生器和FiFO缓冲器,提供高速同步串口和标准异步串口,有的片内还集成了采样/保持和A/D转换电路,并提供PWM信号输出。
与单片机相比,DSP具有更快的CPU。
更高的集成度和更大容量的存储器。
DSP属于精简指令系统计算机(Risc),大多数指令都能在一个周期内完成并可通过并行处理技术,在一个指令周期内完成多条指令。
同时,DSP采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存储程序和数据。
内置高速的硬件乘法器,增加了多级流水线。
使其具有高速的数据运算能力。
而单片机为复杂指令系统计算机(CiSC),多数指令要2-3个指令周期才能完成.单片机采用诺依曼结构,程序和数据在同一空间存储,同一时刻只能单独访问指令或数据。
单片机的ALU只能做加法,而乘法则需要由软件来实现,因而需要占用较多的指令周期,速度比较慢。
与16位单片机相比。
超声波流量测试技术现状与展望摘要:超声波流量计是一种非接触流量计,因此有着别的流量计所不具备的优势,具体运用到液体流量的测量中,不会改变流体的流态。
本文通过介绍超声波流量计的运用场合、发展历程、原理、分类以及发展现状,对将来的发展做出展望。
近年来,正是它优于其他类型流量计而获得了很大的发展空间,未来它通过跟计算机及相应软件之间的不断融合,未来的超声波流量计会获得更好的发展。
关键词:超声波流量计;原理;分类;现状;展望1 前言流量是工业生产过程检测控制中的一个很重要的参数, 在石油、化工、水电等部门, 对液态流体流量的检测已成为生产中不可缺少的组成部分。
要准确地检测流量就要依赖于有效的测试工具——流量计,它是利用超声波在液体中传播时所载流体流速的信息来实现流量的测量的仪器,具有非接触、高灵敏度的特点,不破坏原来流量的流场。
它由超声波换能器、电子转换线路、流量显示累积系统3部分组成。
超声波流量计以其结构简单、压力损失小、使用方便等独特优点得到了广泛的应用。
[1]超声波原理用于流量测量,早期出现在航空煤油的测量或作为精密医疗仪器用于对人体血管流量的测量,性能优越但造价昂贵。
近年来,随着电子技术、数字技术和声楔材料等技术的快速发展,成本随之降低,应用领域业已涉及水利、电力、冶金等行业,其优越的性价比正日趋成为流量测量的首选仪表之一。
[2]2 超声波流量测试技术综述2.1 超声波流量计特点超声波流量计基于微处理技术,大多采用集成电路及低电压宽脉冲发射技术而设计的。
在测量技术上,为取得更高的分辨率和更大的测量范围,多使用0.1ns 超高分辨率时间测量线路。
它专门用于液体介质测量特别是水的测量。
其显著特点是:精度等级为±1.0%,可在不停产状态下带压安装,主机既可安装于值控室还可输出电流、脉冲等标准信号并可利用RS232或RS485接口通讯进行计量数据远程传送。
[3]由于超声波在流动的流体中传播时可以载上流体流速的信息, 因此我们可以通过对接收到的超声波信号进行处理, 得到相应的流体流速。
超声波流量计的技术参数超声波流量计(Ultrasonic flowmeter)是一种利用超声波进行流量测量的仪器。
它具有非接触、不堵塞、不漏水、无压力损失、可实现大口径测量等优点,因此在液体和气体流量测量方面广泛应用于工业领域。
以下是超声波流量计的技术参数的详细介绍:1.测量范围:超声波流量计可适用于不同范围的流量测量,通常以标准立方米/小时(Nm³/h)或立方米/小时(m³/h)为单位。
可以根据实际需要选择不同的测量范围。
2.精度:超声波流量计的精度是指它所能实现的测量结果的准确程度。
通常以百分比表示,如±1%、±0.5%等。
精度越高,测量结果越准确。
3.工作温度:超声波流量计能够适应的工作温度范围会影响它的应用领域。
一般情况下,它能够适应从低温到高温的条件。
4. 工作压力:超声波流量计的工作压力范围是指它能够承受的液体或气体压力的上限和下限。
通常以千帕(Kpa)或兆帕(MPa)为单位。
5.流体速度范围:超声波流量计的测量准确性与流体速度有关。
该仪器通常适用于不同范围的流速,常以米/秒(m/s)为单位。
6.仪器耗电量:超声波流量计的耗电量会影响其在使用中的稳定性和耐用性。
较低的耗电量可延长设备的寿命,并降低使用成本。
7.测量信号输出:超声波流量计通常会提供不同类型的测量信号输出接口,如模拟输出(4-20mA或0-10V)、数字输出(RS485、MODBUS等)等。
这样用户可以根据实际需要进行数据采集和监控。
8.安装方式:超声波流量计可以有不同的安装方式,如插入式、固定式、螺纹式等。
不同的安装方式适用于不同的场合和管道尺寸。
9.电源需求:超声波流量计通常会有不同的电源需求,包括电压和电流。
需要根据实际情况提供相应的电源设施。
10.仪器重量和尺寸:超声波流量计的重量和尺寸直接影响其安装和使用的方便性。
较轻便和小巧的仪器易于安装和携带。
以上就是超声波流量计的技术参数的详细介绍,超声波流量计作为一种精度高、稳定性强、适用范围广的流量测量仪器,在工业生产和自动化控制方面具有重要的应用价值。
超声波测流量原理
超声波测流量是一种常用的测量流体流量的技术,其原理基于超声波在流体中传播的特性。
其工作原理如下:
1. 发送器发射超声波信号:超声波传感器中的发送器会发射一束超声波信号,通常为频率在1-10MHz之间的声波。
2. 超声波信号经过流体介质:超声波信号会经过流体介质,传播的速度受到介质密度、温度和压力等因素的影响。
3. 超声波信号被接收器接收:超声波传感器中的接收器会接收到经过流体介质后的超声波信号。
4. 计算流速:通过测量超声波信号的传播时间和接收到的信号强度,可以计算出流体的流速。
超声波测流量技术的优势在于非侵入性、无压力损失、精度高等特点。
它广泛应用于各种工业领域中,如化工、石油、水处理等。
在流体管道中安装超声波传感器,可以实时监测流体的流速和流量,从而对工艺进行控制和优化。
此外,超声波测流量技术还可以用于检测管道中的气体和液体的流速,可以实现多种流体介质的测量。
浅析超声波流量测量技术测量空调水流量摘要:本文以便携式tds-100p型超声波流量计为例,介绍使用超声波流量计测量空调水流量的操作步骤及注意的技术要点,并总结了使测量结果准确性的技术措施。
关键词:超声波流量计空调水流量中图分类号:r445文献标识码: a 文章编号:目前,空调水流量测量方法以超声波流量计测量最为简单、便捷、安全。
超声波流量计适用范围广,安装方便,能适应不同管径和各种介质,超声波传感器安装在管道外面,对管内介质的流动毫无影响,能保证工作人员的人身安全及生产流程的安全。
超声波流量计的组成及工作原理:超声波流量计由主机(带键盘、显示器及微型打印机)、外缚式标准m型传感器(也叫探头)、电源线以及主机与传感器的连接线组成。
tds-100p型便携式超声波流量计采用内置式可充电式镍氢电池工作,充满后一般可工作20小时左右。
测量原理为超声波传播时间差原理。
时间差式是利用时间差法测量流速,即某一速度的声波由于流体流动而使得其在两传感器之间传播时间发生变化,通过测量这一相对变化就可获得流体流速,通过输入管道的规格尺寸,进而求得流体流量。
2、超声波流量计测量空调水流量的操作步骤及应注意的技术要点:2.1输入参数。
打开机子,输入所测试对象参数:包括管道外径、管壁厚度(用超声波测厚仪测量)、管材、衬材参数(若有的话,可包括衬里厚度和衬材声速)、流体类型、探头类型(因为该主机可支持多种不同探头)、探头安装方式。
输入完上述参数后,便显示出按上述探头安装方式的探头安装距离。
然后操作者按上述的安装方式及传感器探头的安装距离安装探头。
2.2 根据现场实际情况,正确选择确定空调水流量测点位置。
超声波流量计的安装在所有流量计的安装中是最简单、便捷的,只要选择一个合适的测量点,把测量点处的管道参数输入到流量计中,然后把探头安装在管道上即可。
选择测量点时要求选择流体流畅分布均匀的部分,为了保证测量精度,一般应遵循以下原则:2.2.1 要选择充满流体的管段,如管路的垂直部分或充满流体的水平管段。
《超声流量检测信号处理技术研究》一、引言随着工业自动化和智能化水平的不断提高,流量检测作为工业生产过程中的重要参数之一,其准确性和可靠性显得尤为重要。
超声流量检测技术因其非接触、无磨损、测量范围广等优点,在流量检测领域得到了广泛应用。
然而,超声流量检测信号的处理技术对于提高测量精度和稳定性具有关键作用。
本文将重点研究超声流量检测信号处理技术,探讨其原理、方法及应用。
二、超声流量检测基本原理超声流量检测技术基于超声波在流体中的传播速度与流体流速的关系进行测量。
当超声波在流体中传播时,流体的流速会影响超声波的传播时间,通过测量超声波顺流和逆流的传播时间差,可以计算出流体的流速。
超声流量检测具有非接触、无磨损、测量范围广等优点,因此在工业生产中得到了广泛应用。
三、超声流量检测信号处理技术(一)信号采集与预处理超声流量检测信号的采集是整个测量过程的基础。
通过传感器接收超声波信号,并将其转换为电信号。
由于环境中存在的噪声和干扰,需要对采集到的信号进行预处理,包括滤波、放大、数字化等操作,以提高信号的信噪比和准确性。
(二)信号分析与处理信号分析与处理是超声流量检测的核心环节。
通过对预处理后的信号进行频域分析和时域分析,提取出与流量相关的信息。
常用的信号处理方法包括频谱分析、相关分析、数字滤波等。
这些方法可以有效地提取出有用信息,抑制噪声和干扰,提高测量的准确性和稳定性。
(三)流量计算与校正根据信号分析与处理的结果,可以计算出流体的流速和流量。
同时,为了进一步提高测量精度和稳定性,需要进行流量校正。
校正方法包括标准仪器比对法、温度压力补偿法等。
通过对测量结果进行校正,可以消除环境因素对测量结果的影响,提高测量的准确性和可靠性。
四、超声流量检测信号处理技术的应用超声流量检测信号处理技术广泛应用于石油、化工、水处理、食品等行业。
在石油化工行业中,超声流量检测可以用于测量油品、气体等流体的流量;在水处理行业中,可以用于测量水的流量和浊度等参数;在食品行业中,可以用于测量液体食品的流量和生产过程中的控制等。