中值定理学习课程
- 格式:ppt
- 大小:1.04 MB
- 文档页数:18
毕业论文题目:积分中值定理及应用学号:姓名:年级:系别:数学系专业:数学与应用数学指导教师:完成日期:年月日积分中值定理及应用摘要本论文的主要内容是积分中值定理及其应用,全文分为以下几个方面:积分中值定理及推广、积分中值定理中值点ξ的渐进性、积分中值定理的应用。
首先讨论了定积分中值定理、第一积分中值定理、第二中值定理以及它们的推广,而且还给出了这些定理的详细证明过程。
其次研究了中值定理中值点ξ的渐进性,对第一积分中值定理的ξ点做了详细讨论,给出了详细清楚的证明过程。
而第二积分中值定理的渐进性问题只证明了其中的一种情形,其他证明过程只作简要说明。
最后归纳了积分中值定理的应用,给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号、比较积分大小,证明函数单调性还有阿贝尔判别法和狄理克莱判别法这两个定理的证明。
关键词:积分中值定理;推广;应用;渐进性INTEGRAL MEAN V ALUE THEOREM AND APPLICATIONAbstractThe main content of this paper is integral mean value theorem and its application ,the letter divides into the following respects :Integral mean value theorem and promotion 、Integral mean value theorem point in the progressive 、The application of integral mean value theorem .First discuss the definite integral mean value theorem 、the first integral mean value theorem 、the first second mean value theorem and their promotion ,and it gives the theorem of the detailed process of proof .Secondly the mean value theorem point in the progressive ,the first integral mean value theorem to do a detailed discussion of the points ,gives the detailed processclear evidence .And the second integral mean-value theorem proved, the only problem with one of the case ,other identification process only briefly .Finally summarizes the integral mean value theorem of applications ,to give some simple situation such as estimated integral value ,calculation of the definite integral contains limit ,sure integral symbols ,contrast integral size ,prove functional monotonicity and the theorems proof of Abel discriminant method and DiLi klein discriminant method .Key words: integral mean-value; theorem promotion ;apply;progressive目录1 前言 (3)2积分中值定理 (4)2.1定积分中值定理及推广 (4)2.1.1定积分中值定理 (4)2.1.2定积分中值定理的推广 (6)2.2积分第一中值定理及推广 (6)2.2.1积分第一中值定理 (6)2.2.2积分第一中值定理的推广 (6)2.3积分第一中值定理及推广 (9)2.3.1积分第二中值定理 (9)2.3.2积分第二中值定理的推广 (12)2.4重积分的中值定理 (12)2.4.1二重积分的中值定理 (12)2.4.2三重积分的中值定理 (13)2.5曲线积分中值定理 (14)2.5.1第一曲线积分中值定理 (14)2.5.2第二曲线积分中值定理 (14)2.6曲面积分中值定理 (16)2.6.1第一曲面积分中值定理 (16)2.6.2第二曲面积分中值定理 (16)3 积分中值定理中值点的渐进性 (18)3.1 第一积分中值定理中值点的渐进性 (18)3.2 第二积分中值定理中值点的渐进性 (22)4 积分中值定理的应用 (24)4.1 估计积分值 (2424)4.2 求含定积分的极限 (25)4.3 确定积分号 (27)4.4 比较积分大小 (27)4.5 证明中值点的存在性 (2827)4.6 证明函数的单调性 (28)4.7 证明定理 (29)结论 (32)参考文献 (33)致谢 (34)1前言随着时代的发展,数学也跟着时代步伐大迈步前进。
微分中值定理教案章节一:预备知识1.1 函数的极限教学目标:理解函数极限的概念,掌握极限的计算方法。
教学内容:引入函数极限的概念,探讨极限的性质和计算方法,如夹逼定理、单调有界定理等。
教学方法:通过具体例子和问题引导学生理解极限的概念,利用图形和数学分析软件演示极限过程,让学生体会极限的意义。
1.2 连续函数教学目标:理解连续函数的概念,掌握连续函数的性质和判断方法。
教学内容:介绍连续函数的定义,探讨连续函数的性质,如保号性、保界性等,学习连续函数的判断方法。
教学方法:通过具体例子和问题引导学生理解连续函数的概念,利用图形和数学分析软件演示连续函数的性质,让学生掌握判断连续函数的方法。
教案章节二:微分中值定理2.1 罗尔定理教学目标:理解罗尔定理的内容和意义,学会运用罗尔定理解决问题。
教学内容:介绍罗尔定理的定义,探讨罗尔定理的条件和结论,学习如何应用罗尔定理解决问题。
教学方法:通过具体例子和问题引导学生理解罗尔定理的内容,利用图形和数学分析软件演示罗尔定理的应用,让学生学会运用罗尔定理解决问题。
2.2 拉格朗日中值定理教学目标:理解拉格朗日中值定理的内容和意义,学会运用拉格朗日中值定理解决问题。
教学内容:介绍拉格朗日中值定理的定义,探讨拉格朗日中值定理的条件和结论,学习如何应用拉格朗日中值定理解决问题。
教学方法:通过具体例子和问题引导学生理解拉格朗日中值定理的内容,利用图形和数学分析软件演示拉格朗日中值定理的应用,让学生学会运用拉格朗日中值定理解决问题。
教案章节三:微分中值定理的应用3.1 导数的应用教学目标:理解导数的概念,掌握导数的计算方法。
教学内容:引入导数的概念,探讨导数的性质和计算方法,如求导法则、高阶导数等。
教学方法:通过具体例子和问题引导学生理解导数的概念,利用图形和数学分析软件演示导数过程,让学生体会导数的意义。
3.2 函数的单调性教学目标:理解函数单调性的概念,掌握函数单调性的判断方法。
微分中值定理教案一、教学目标1. 理解微分中值定理的概念和意义。
2. 掌握罗尔定理、拉格朗日中值定理和柯西中值定理的证明和应用。
3. 能够运用微分中值定理解决实际问题。
二、教学内容1. 罗尔定理:若函数f(x)在区间[a, b]上连续,在区间(a, b)内可导,并且在区间端点处的函数值相等,即f(a) = f(b),则在区间(a, b)内至少存在一点c,使得f'(c) = 0。
2. 拉格朗日中值定理:若函数f(x)在区间[a, b]上连续,在区间(a, b)内可导,则在区间(a, b)内至少存在一点c,使得f'(c) = (f(b) f(a))/(b a)。
3. 柯西中值定理:若函数f(x)和g(x)在区间[a, b]上连续,在区间(a, b)内可导,且f'(x)和g'(x)在区间(a, b)内至少有连续的一阶导数,则当f(x)和g(x)满足f(a) = f(b)和g(a) = g(b)时,有(f(b) f(a))/(g(b) g(a)) = f'(c) / g'(c),其中c是区间(a,b)内某个点。
三、教学方法1. 采用讲授法,讲解微分中值定理的概念、证明和应用。
2. 利用示例和练习题,让学生巩固微分中值定理的理解和应用。
3. 通过小组讨论和报告,培养学生的合作和表达能力。
四、教学步骤1. 引入微分中值定理的概念,讲解罗尔定理、拉格朗日中值定理和柯西中值定理的定义和意义。
2. 对每个定理进行详细的证明,并结合示例进行解释。
3. 布置练习题,让学生应用微分中值定理解决问题。
4. 组织小组讨论和报告,让学生深入理解和探讨微分中值定理的性质和应用。
五、教学评估1. 课堂练习题的完成情况,评估学生对微分中值定理的理解和应用能力。
2. 小组讨论和报告的表现,评估学生的合作和表达能力。
3. 课后作业和考试,评估学生对微分中值定理的掌握程度。
六、教学拓展1. 探讨微分中值定理的推广形式,如蒙日中值定理和泰勒公式。
课程名称课程名称 高等数学高等数学年级年级 专业 授课教师授课教师授课时间授课时间学时授课授课 题目题目微分中值定理教学教学 目标目标知识目标:知识目标:掌握微分中值定理、, 培养学生联系的、辩证统一的思想;培养学生解决实际问题的能力。
生解决实际问题的能力。
技能目标:技能目标:会利用高等数学的知识解决问题素质目标:素质目标: 学会用高数的思维考虑问题学会用高数的思维考虑问题 教学教学 重点重点微分中值定理、教学教学 难点难点微分中值定理、教学教学 方法方法讲授法、讨论法、案例教学法讲授法、讨论法、案例教学法 教学教学 准备准备教师教师:: 教案学生:预习相关知识教学过程设计教学过程设计教学内容教学内容教师活动教师活动 学生活动学生活动第一节 微分中值定理一、罗尔中值定理一、罗尔中值定理 定理1如果函数f(x)f(x)满足下列条件:满足下列条件:满足下列条件: (1)在闭区间[)在闭区间[a a ,b ]上连续;]上连续; (2)在开区间()在开区间(a a ,b)b)内可导;内可导;内可导;(3)在区间两端点的函数值相等,即f(a)=f(b)f(a)=f(b)。
则至少存在一点ξ∈(a (a,,b)b),使得,使得f ′(ξ)=0)=0。
罗尔中值定理的几何意义是:若连续曲线y=f(x)的弧AB 上处处具有不垂直于x 轴的切线且两端点的纵坐标相等,则在这弧上至少能找到一点,使曲线在该点处的切线平行于x 轴(如图4-1-1所示)。
例1 设f(x)=(x-1)(x-2)(x-3), 不求导数判断f ′(x)=0实根的个数,并指出所在范围。
解 因为f(1)=f(2)=f(3)=0f(1)=f(2)=f(3)=0,,所以f(x)在[在[11,2],[2,3]上满足罗尔中值定理条件,因此有f ′(x)=0(x)=0,于是在(,于是在(,于是在(11,2)内至少有一个实根,在(2,3)内至少有一个实根,又因f ′(x)为二次多项式,故f ′(x)=0只能有两个实根,分别在区间(别在区间(11,2)及()及(22,3)内。