沪科版数学八年级下册 第20章 数据的初步分析(通用)-一等奖创新教案
- 格式:docx
- 大小:14.48 KB
- 文档页数:6
沪科版八年级数学下册教学设计《第20章数据的初步分析20.2数据的集中趋势与离散程度(第5课时)》一. 教材分析本课时为沪科版八年级数学下册第20章数据的初步分析20.2数据的集中趋势与离散程度,主要内容包括数据的一般特征、众数、平均数、中位数以及方差、标准差的概念和计算。
这些内容是数据分析的基本工具,对于学生理解数据的内在规律,提高数据处理能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于数据的收集和处理有一定的了解。
但是,对于数据的集中趋势和离散程度的概念,以及如何运用这些概念来分析数据,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生从实际问题中抽象出数据集中趋势和离散程度的概念,并通过大量的实例来帮助学生理解和掌握。
三. 教学目标1.理解众数、平均数、中位数的概念,掌握它们的计算方法。
2.理解方差、标准差的概念,掌握它们的计算方法。
3.能够运用众数、平均数、中位数、方差、标准差等概念来分析数据的集中趋势和离散程度。
4.通过实例感受数据分析在实际生活中的应用。
四. 教学重难点1.众数、平均数、中位数的概念和计算。
2.方差、标准差的概念和计算。
3.运用众数、平均数、中位数、方差、标准差等概念来分析数据的集中趋势和离散程度。
五. 教学方法采用问题驱动的教学方法,通过实例来引导学生理解数据的集中趋势和离散程度的概念,并通过大量的练习来巩固学生的理解。
同时,运用小组合作的学习方式,让学生在讨论中加深对知识的理解。
六. 教学准备1.准备相关的实例和练习题。
2.准备计算器等辅助教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容:某班有50名学生,数学成绩分布在60-100分之间,最高分为100分,最低分为60分,求该班数学成绩的集中趋势和离散程度。
2.呈现(15分钟)通过多媒体展示众数、平均数、中位数、方差、标准差的定义和计算方法,并通过实例来解释这些概念。
沪科版八年级数学下册教学设计《第20章数据的初步分析20.2数据的集中趋势与离散程度(第2课时)》一. 教材分析《第20章数据的初步分析20.2数据的集中趋势与离散程度(第2课时)》这一节的内容,主要包括数据的集中趋势和离散程度的概念,以及平均数、中位数、众数、方差等数据的统计量度。
这些内容对于学生掌握数据的初步分析,以及进一步学习统计学知识都具有重要意义。
二. 学情分析八年级的学生已经初步掌握了数据的收集、整理和描述的方法,对于平均数、中位数、众数等概念也有了一定的了解。
但是,对于方差等离散程度的统计量度,以及它们在实际问题中的应用,可能还比较陌生。
因此,在教学过程中,需要引导学生将已有的知识与新内容相结合,通过实际问题来理解和掌握新知识。
三. 教学目标1.了解数据的集中趋势和离散程度的概念,掌握平均数、中位数、众数、方差等统计量度的计算方法。
2.能够运用这些统计量度分析实际问题,理解它们在数据分析中的作用。
3.培养学生的数据分析能力和解决问题的能力。
四. 教学重难点1.重点:数据的集中趋势和离散程度的概念,平均数、中位数、众数、方差等统计量度的计算方法。
2.难点:方差的计算方法,以及它在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过实际问题引入新知识,引导学生主动探究。
2.使用多媒体教学手段,如PPT等,帮助学生直观地理解概念和计算方法。
3.小组讨论和合作交流,培养学生的团队合作能力。
4.采用例题讲解和练习巩固相结合的方法,提高学生的解题能力。
六. 教学准备1.教学PPT2.练习题和学习资料3.计算器等辅助教学工具七. 教学过程1.导入(5分钟)通过一个实际问题引入新课,例如:某班级在一次数学考试中,成绩分布如下:90,85,88,92,87,86,84,83,85,89。
请问这个班级的平均成绩是多少?中位数是多少?众数是多少?2.呈现(15分钟)讲解平均数、中位数、众数的概念和计算方法,并通过PPT展示相应的例题。
第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法: 1、重点:会求加权平均数 2、难点:对“权”的理解 3、难点的突破方法:首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。
复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136“讨论”栏目中要讨论充分、得当,排除学生常见的思维障碍。
讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。
在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A 、B 、C 三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。
要使学生更好的去理解权的意义,可以再举一些生活、学习中的例子。
比如:初二.五班有4个小组,在一次测验中第一组有7名同学得了99分,1名同学得了61分,第二组有1名同学得到了100分、7名同学得62分。
能否由26210026199+<+得出第二小组平均成绩这样的结论?为什么?这个例子简单明了又便于学生想象理解,能够让学生从中体会到得99分的7个人比1个得61分的学生对平均成绩影响更大,从而理解权的意义。
在讨论栏目过后,引出加权平均数。
最好让学生将公式与小学学过的平均数计算公式作比较看看意义上是否一致,这样做利于学生把新旧知识联系起来,利于对加权平均数公式的理解,也利于理解“权”的意义。
第20章数据的初步分析【知识与技能】1.了解频数分布表和频率的意义.2.会画频数直方图.【过程与方法】进一步经历数据的收集与整理的过程,能根据统计结果做出合理的判断和预测,并能解决简单的实际问题.【情感态度】培养学生“用数学”的意识,通过小组合作的活动,培养学生的合作意识和能力.【教学重点】理解频数分布表的意义,制作频数分布表和画频数直方图.【教学难点】如何对一组数据进行整理,制作频数分布表和画出频数直方图.一、创设情境,导入新课某校学生在假期进行“空气质量情况调查”的课题研究时,他们从当地气象部门提供的今年上半年的资料中,随意抽取了30天的空气综合污染指数、数据如下:30、77、127、53、98、130、57、153、83、3240、85、167、64、184、201、66、38、87、4245、90、45、77、235、45、113、48、92、243根据国家环保局公布的《空气质量级别表》如何分析这列数据?【教学说明】通过实际问题导入新课,激发学生的探究兴趣.二、合作探究,探索新知1.把数据分成0-50、51-100、101-150、151-200、201-250共5组,进行整理,得出下表:空气污染指数分布表问题1:说说这30天空气质量的分布情况.学生通过表格可知:当地空气质量有9天优,12天良,3天轻度污染,3天中度污染.问题2:你能估算该地今年(365天)空气质量达到优级的天数吗?学生:365/30×9≈110(天)【教学说明】从表中可以看出空气质量达到优的频数为9,频率为0.3,于是可以估计全年空气质量达到优级的天数约365×≈110(天).渗透估计的思想问题3:面对大量的数据,如何获得它的整体分布情况呢?学生:讨论后回答:应仿照《空气污染指数分布表》对数据进行分组、列表.【教学说明】这里设计3个学生感兴趣的问题,让学生们发现生活中处处有数学,在探究问题的过程中,培养学生合作交流意识,分析问题,解决问题的能力.2.某校体卫组对八年级学生一周内平均每天参加课外锻炼的时间进行了抽查,结果如下:(单位:min)请同学们两人一组结合课本第108——110页内容对以下问题中的数据进行分组、列表和整理进而获得它的整体分布情况3.通过以上探究,请同学们总结画频数直方图分析数据的一般步骤?(1)计算这批数据中最大数与最小数的差由此可知这批数据的变动范围(2)决定组距和组数组距是指每个小组的两个端点间的距离.(3)决定分点.把表示分点的数取为比原数据多一位小数,就可避免数据在分点上.(4)列频数分布表.一组数据中落在每个小组内的个数就是这个组的频数,可采用唱票记录.如果一批数据共有n个,而其中某一组数据是m个,那么mn就是该组数据在这批数据中的出现的频率.(5)画频数直方图.要注意与条形图的区别.【教学说明】学生分析思考,相互交流中形成共识,对于小部分困难的学生,教师可适当提示三、示例讲解,掌握新知例某中学部分同学参加全国初中生数学竞赛,取得了优异的成绩.指导老师统计了所有参赛同学的成绩(每段包括左端点,且成绩都是整数,试题满分为120分),见下表:请根据统计数据,回答下列问题:(1)绘制频数分布直方图;(2)该中学参加本次数学竞赛的同学有多少人?(3)如果成绩在90分以上(含90分)的同学获得,那么该中学参赛同学的获奖率是多少?【分析】(1)题目中给出了分数段和人数,可以依此确定分组和频数后直接画出直方图;(2)各分数段的人数之和即为参加本次竞赛的同学的总数;(3)获奖率=获奖人数参赛总人数×100%.解:(1)绘制频数分布直方图如图所示:(2)4+6+8+7+5+2=32(人),即该中学参加本次数学竞赛的同学有32人.(3)90分以上的人数为:7+5+2=14(人),所以获奖率为14/32×100%=43.75%.【教学说明】这个例题主要考察频数直方图的画法,通过绘制的直方图可以得出各组数据的分布情况,从而对数据进行分析.这里要注意直方图与条形图的区别,不要混淆.四、练习反馈,巩固提高1.某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.9,最后一组的频数是15,则此次抽样调查的人数为_____人.(注:横轴上每组数据包含最小值不包含最大值)2.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图),那么仰卧起坐的次数在40~45的频率是_______(每组可含有最小值不含最大值)3.八(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?3.解:(1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08,故表格从上往下依次是:12户和0.08;(2)6121650++×100%=68%;(3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t的家庭大约有120户.【教学说明】巩固所学知识,了解学生掌握情况,通过成果的展示使学生获得成功的体验.五、师生互动,课堂小结通过这一节课的学习活动,你有哪些收获?给你印象最深的是什么?你还有哪些想法或疑惑?【教学说明】小结活动既要注重引导学生将数学知识体系化,又要从能力,情感态度等方面关注学生对课堂的整体感受.完成同步练习册中本课时的练习.本课教学要注意以下几点:1.融教学内容于具体情境之中.“学数学,用数学”的新课程理念.2.充分利用现代媒体手段,激发学生兴趣.由于本课教学过程中,使用统计图表的地方较多,因此,教学设计中充分利用现代多媒体的直观、形象作用,制成动画播放,有效地吸引了学生的注意力,调动了学生的积极性,学生在轻松愉快的气氛中学习既学到了知识,又受到了教育.同时也增大了教学容量,取得了较好的教学效果.3.分化重、难点,突出知识的形成过程.本课立足于学生已有知识,把教学重点和难点分解成了一系列探究性问题,以学生熟悉的生活情境为背景,依次设计了步步深入的探究活动,在这探究过程中,学生经历了知识的发生、发展和形成的过程,把知识的发现权交给学生,让他们在获取知识的过程中,体验到了成功的喜悦,体现了学生的主体作用,而教师只是积极的参与者、合作者和组织者.在本课探究学习活动中,学生的观察能力、表达能力动手操作能力及合作意识得到进一步加强,教师在课堂教学中的激励性评价则更激发了学生学习数学的兴趣和勇于探索的精神.。
沪科版八年级数学下册教学设计《第20章数据的初步分析20.2数据的集中趋势与离散程度(第2课时)》一. 教材分析《沪科版八年级数学下册》第20章《数据的初步分析》中的20.2节《数据的集中趋势与离散程度》是该章的重要内容。
本节内容主要介绍了数据的平均数、中位数、众数等集中趋势的概念及其计算方法,以及方差、标准差等离散程度的概念及其计算方法。
通过这部分的学习,学生能够掌握数据集中趋势和离散程度的基本概念,了解它们在实际问题中的应用。
二. 学情分析八年级的学生已经学习了代数、几何等基础知识,具备一定的逻辑思维能力和问题解决能力。
但是对于数据的处理和分析,部分学生可能还比较陌生,因此需要教师在教学中给予引导和帮助。
同时,学生对于实际问题的解决能力有待提高,因此教师在教学中应注重联系实际,让学生感受到数据分析的重要性。
三. 教学目标1.知识与技能:理解平均数、中位数、众数等数据的集中趋势的概念,掌握它们的计算方法;理解方差、标准差等数据的离散程度的概念,掌握它们的计算方法。
2.过程与方法:通过实例分析,培养学生的数据处理和分析能力,提高学生解决实际问题的能力。
3.情感态度与价值观:培养学生对数据分析的兴趣,让学生认识到数据分析在生活中的重要性。
四. 教学重难点1.重点:数据的集中趋势和离散程度的概念及其计算方法。
2.难点:数据的离散程度的理解和应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握数据的集中趋势和离散程度的概念。
2.任务驱动法:布置实际问题,让学生动手操作,培养学生的数据处理和分析能力。
3.小组合作学习:分组讨论和解决问题,培养学生的团队协作能力。
六. 教学准备1.准备相关的生活实例和问题,以便在课堂上进行教学演示和练习。
2.准备多媒体教学设备,如投影仪、电脑等,以便进行课件展示和教学互动。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的数据,如学生的身高、体重、成绩等,引导学生思考:如何描述这些数据的集中趋势和离散程度?2.呈现(10分钟)介绍平均数、中位数、众数等数据的集中趋势的概念及其计算方法,以及方差、标准差等数据的离散程度的概念及其计算方法。
20.1数据的频数分布1.理解掌握频数、频率的概念;(重点)2.会对数据进行分组,制作频数分布表和频数直方图.(难点)一、情境导入某班一次数学测验成绩如下:63849153698161699178758181677681799461 6989707087888690888567718287758795536574 77若想了解大部分同学处于哪个分数段?成绩的整体分布情况如何?你应该怎么做?二、合作探究探究点一:频数与频率某校对初三年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为()A.640人B.480人C.400人D.40人解析:根据“频率=频数÷数据总数”,得“频数=数据总数×频率”,将数据代入即可求解.根据题意,得该组的人数为1600×0.4=640(人).故选A.方法总结:此题考查频率、频数的关系:频率=频数÷数据总数.能够灵活运用此公式是解题的关键.探究点二:频数分布表今年3月份,我市教育局倡导中小学开展“4312”(即“四操”“三球”“一跑”“二艺”活动的简称)艺体普及活动.某校学生会为了了解全校同学对“4312”中部分项目的喜爱情况,随机调查了200名同学(每名同学仅选一项最喜爱的项目),根据调查结果列出了频数分布表:(1)请补全频数分布表;(2)在这次抽样调查中,喜爱哪个体育项目的同学最多?喜欢哪个体育项目的同学最少?(3)根据以上调查,试估计该校1620名学生中最喜爱健美操的同学约有多少人?解析:(1)题由各项频率之和为1可得健美操的频率为15%;因为喜欢篮球的频率为28%,样本容量(频数的和)为200,所以喜欢篮球的人数为200×28%=56(人),喜欢健美操的人数为200×15%=30(人);(2)题根据频率或频数可以直接得到各个体育项目的喜欢情况;(3)题从抽样调查可看出喜欢健美操的频率为15%,可以用调查中的频率估计总体中的喜欢健美操的频率也为15%.解:(1)56,30,15%;(2)喜欢篮球的同学最多,喜欢跑步的同学最少;(3)1620×15%=243(人).答:估计该校1620名学生中最喜爱健美操的同学约有243人.方法总结:能够熟练地运用频率和频数的公式,并把数据代入公式中求出每组数据的频数和频率.探究点三:频数直方图统计武汉园博会前20天日参观人数,得到如下频数分布表和频数直方图(部分未完成):武汉园博会前20天日参观人数的频数分布表(1)请补全频数分布表和频数直方图;(2)求出日参观人数不低于21.5万的天数和所占的百分比;(3)利用以上信息,试估计武汉园博会(会期247天)的参观总人数.解析:(1)根据表格的数据求出14.5~21.5小组的组中值,最后即可补全频数分布表和频数直方图;(2)根据表格知道日参观人数不低于22万的天数有两个小组,共9天,除以总人数即可求出所占的百分比;(3)利用每一组的组中值和每一组的频数可以求出武汉园博会(会期247天)的参观总人数.解:(1)14.5~21.5小组的组中值是(14.5+21.5)÷2=18,3÷20=0.15.武汉园博会前20天日参观人数的频数分布表(2)依题意得日参观人数不低于21.5万有6+3=9(天),所占百分比为9÷20=45%; (3)∵园博会前20天的平均每天参观人数约为11×5+18×6+25×6+32×320=40920=20.45(万人),∴武汉园博会(会期247天)的参观总人数约为20.45×247=5051.15(万人).答:武汉园博会(会期247天)的参观总人数约为5051.15万人. 方法总结:本题考查运用样本估计总体的思想,解决问题的关键是读懂频数分布直方图和从统计图中获取信息的能力.三、板书设计本节课通过实际问题引导学生对一组数据进行分析、分组、统计整理,进一步培养学生统计思想方法.经历对实际问题的分析、统计、整理等活动,感受统计的实用性和科学性,体会统计思想方法应用的广泛性.第1课时平均数1.掌握平均数和加权平均数的概念,会求一组数据的平均数和加权平均数;(重点) 2.会用平均数和加权平均数解决实际生活中的问题.(难点)一、情境导入某校有24人参加“希望杯”数学课外活动小组,分成三组进行竞争,在一次“希望杯”比赛前进行了摸底考试,成绩如下:甲:80、79、81、82、90、85、94、98;乙:90、83、78、84、82、96、97、80;丙:93、82、97、80、88、83、85、83.怎样比较这次考试三个小组的数学成绩呢?你有金点子吗?二、合作探究探究点一:平均数【类型一】求一组数据的平均数某班10名学生为支援“希望工程”,将平时积攒下来的零花钱捐献给贫困地区的失学儿童,每人捐款金额如下(单位:元):10,12,13,21,40,16,17,18,19,20.那么这10名同学平均捐款多少元?解析:利用平均数公式x=1n(x1+x2+…+x n)计算即可.解:x=110×(10+12+13+21+40+16+17+18+19+20)=18.6(元).答:这10名同学平均捐款18.6元.方法总结:利用公式求平均数时,要数清数据的个数,求数据总和时不要漏加数据.【类型二】已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a,4,6的平均数是5,则a的值是() A.8B.5C.4D.3解析:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型三】已知一组数据的平均数,求新数据的平均数已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是()A.6B.8C.10D.无法计算解析:∵数x1、x2、x3、x4、x5的平均数为5,∴数x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】根据统计表提供的信息计算加权平均数某学校在开展“节约每一滴水”的活动中,从八年级的200名同学中任选10名同这10名同学家庭一个月平均节约用水量是()A.0.9吨B.10吨C.1.2吨D.1.8吨解析:利用加权平均数公式计算.平均节约用水量为(0.5×2+1×3+1.5×4+2×1)÷10=1.2(吨).故选C.方法总结:在计算加权平均数时,一定要弄清,各数据的权.算术平均数实质上是各项权相等的加权平均数.【类型二】根据统计图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如下频数直方图,这个班学生的平均年龄是()A.14岁B.14.3岁C.14.5岁D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能做出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总分成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是() A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩是(90×40%+85×60%)=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分解析:根据题意得:85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式:一种是比的形式,如4∶3∶2;另一种是百分比的形式,如创新占50%.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果比较两数据大小,结果大的胜出.解:(1)x 乙=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲. 答:从平均成绩看,应选派甲;(2)x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4.∵79.5<80.4,∴应选派乙.答:综合各项成绩,应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.三、板书设计通过探索平均数和加权平均数的联系与区别,培养学生的思维能力;通过有关平均数问题的解决,提升学生的数学应用能力;通过解决实际问题,体会数学与社会生活的密切联系,了解数学的价值,增进学生对数学的理解和学好数学的信心.第2课时中位数与众数1.掌握中位数、众数的意义;(重点)2.能结合平均数、中位数和众数三者的差别,对数据做出初步判断.(难点)一、情境导入小明和小亮是同桌,同时也是学习上的竞争对手,本学期以来的5次数学测试成绩(单位:分)如下:小明:88、68、88、92、94小亮:72、85、87、93、93小明和小亮都认为自己的成绩比对方好,如果你是小明或者小亮,你能说出自己成绩好的理由吗?二、合作探究探究点一:中位数和众数【类型一】求中位数和众数12名成员的年龄情况如下:则这个小组成员年龄的众数和中位数分别是()A.15,16B.13,14C.13,15 D.14,14解析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数或中间两数的平均数.∵12岁有1人,13岁有4人,14岁有3人,15岁有2人,16岁有2人,∴出现次数最多的数据是13,∴队员年龄的众数为13;∵一共有12名队员,∴其中位数应是第6和第7名同学的年龄的平均数,∴中位数为(14+14)÷2=14.故选B.方法总结:本题考查了众数及中位数的概念,在确定中位数的时候应该先排序,确定众数的时候一定要仔细观察.【类型二】在统计图中求中位数或众数下图是某俱乐部篮球队队员年龄结构条形图,根据图中信息,求该队队员年龄的众数和中位数.解析:对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数的平均数)即可,本题是最中间的两个数的平均数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.解:由条形统计图中出现频数最大条形最高的数据是在第三组21岁中,故众数是21;因图中是按从小到大的顺序排列的,由图知该队有10人,其中第5和第6名队员的年龄都是21岁,故中位数是21.方法总结:本题考查的是众数和中位数的定义.在条形统计图中出现频数最大即条形最高的数据为众数.【类型三】中位数或众数与平均数的综合一组数据1,2,4,5,8,x的众数与平均数相等,那么x的值是________.解析:根据众数的概念得到这组数据的众数只可能为1、2、4、5、8中的数.讨论:当众数为1、2、4、5、8时分别计算出对应的平均数,然后根据众数与平均数是否相等即可得到x的值.这组数据的众数只可能为1、2、4、5、8中的数,∴当众数为1时,平均数=(1+2+4+5+8+1)÷6=3.5≠1;当众数为2时,平均数=(1+2+4+5+8+2)÷6=323≠2;当众数为4时,平均数=(1+2+4+5+8+4)÷6=4;当众数为5时,平均数=(1+2+4+5+8+5)÷6=416≠5;当众数为8时,平均数=(1+2+4+5+8+8)÷6=423≠8.故x的值为4.故填4.方法总结:本题考查了众数的概念:一组数据中出现次数最多的数叫这组数据的众数.探究点二:选择合适的数据代表某公司员工的月工资情况统计如下表:(1)分别计算该公司员工工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为适合?请简要说明理由.解析:本题用加权平均数公式计算平均数,统计表中统计了46名员工的工资数据,中位数是第23、24个数据的平均数,众数是1500元;对于第(2)问的答案不唯一,只要言之有理即可.解:(1)x=(7000×2+6000×4+4000×8+3500×20+3000×8+2700×4)÷(2+4+8+20+8+4)=3800(元).中位数为3500元,众数为3500元;(2)极端值7000元、6000元对数据的平均水平影响较大,因此选择中位数代表该公司员工的月工资水平更合适.方法总结:深刻理解平均数、众数、中位数的概念与区别,根据实际情况选择合适的数据代表.三、板书设计平均数、中位数和众数都是一组数据集中趋势的特征数,学生在小学就学习过.我们在这节课更深入地研究了它们各自的特点,并学会正确、合理地使用这些特征数.在实际生活中针对同一份材料、同一组数据,当人们怀着不同的目的,选择不同的数据代表,并从不同的角度进行分析时,看到的结果可能是截然不同的,所以我们应该根据不同的实际需要,确定用平均数、中位数还是众数来反映数据的特征,我们还要引导学生学会用数据说话,学会全面地看数据,因为这些与生活息息相关,教师应作为组织者、合作者和指导者,在教学本课时,让学生自我探索,并解决问题.第3课时用样本平均数估计总体平均数1.体会运用样本平均数去估计总体平均数的意义;(重点)2.会运用样本平均数估计总体平均数.(难点)一、情境导入果园里有100棵苹果树,在收获前,果农常会先估计果园里梨的产量.你认为该怎样估计呢?苹果的个数?还是每个苹果的质量?你会怎么办?二、合作探究探究点:用样本平均数估计总体平均数【类型一】根据统计表信息用样本平均数估计总体平均数某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯泡的平均使用寿命是多少?解析:抽出的100只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.解:根据题意得x=(800×10+1200×19+1600×25+2000×34+2400×12)÷100=1676.即样本平均数为1676.由此可以估计这批灯泡的平均使用寿命大约是1676小时.方法总结:解此类题应先求出样本的加权平均数,再根据样本的平均数估计总体的平均数.【类型二】根据统计图信息用样本平均数估计总体平均数种菜能手李大叔种植了一批新品种的黄瓜,为了考察这种黄瓜的生长情况,李大叔抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,请估计这个新品种黄瓜平均每株结多少根黄瓜.解析:先求样本的加权平均数,再估计总体即可.解:条形图中样本的平均数为10×10+13×15+14×20+15×1810+15+18+20≈13,故估计这个新品种黄瓜平均每株结13根黄瓜.方法总结:本题考查了加权平均数的计算和对条形图的理解,以及用样本估计总体的思想方法.【类型三】根据扇形图和频数分布表用样本平均数估计总体平均数济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:(1)扇形统计图中2.5米3对应扇形的圆心角为________度;(2)该小区300户居民5月份平均每户节约用水多少米3?解析:(1)首先计算出节水量2.5米3对应的居民数所占百分比,再用“360°×百分比”即可;(2)根据加权平均数公式计算即可.解:(1)120(2)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).答:该小区300户居民5月份平均每户节约用水2.1米3.方法总结:本题主要考查了统计表,扇形统计图,平均数,关键是看懂统计图表,从统计图表中获取必要的信息,熟练掌握平均数的计算方法.三、板书设计本节课是初中统计知识的重要组成部分,是重要的统计方法,也是中考常考的内容.通过对平均数的认识,在实际问题中感受抽样的必要性,体会用样本估计总体的思想.通过解决简单的实际问题,使学生形成一定的数据意识和解决问题的能力,进一步体会数学的应用价值.第1课时方差1.理解方差的概念与作用;(重点)2.理解和掌握方差的计算公式,能灵活运用方差来处理数据;(重点)3.会用计算器求数据的方差.一、情境导入从图中我们可以算出甲、乙两人射中的环数都是70环,但教练还是选择甲运动员参赛.问题1:从数学角度,你知道为什么教练员选甲运动员参赛吗? 问题2:你在现实生活中遇到过类似情况吗? 二、合作探究 探究点一:方差【类型一】 求数据的方差为了从甲、乙两名同学中选拔一个参加射击比赛,对他们的射击水平进行了测验,两个在相同条件下各射击10次,命中的环数如下(单位:环):甲:7,8,6,8,6,5,9,10,7,4; 乙:9,5,7,8,6,8,7,6,7,7.(1)求x 甲,x 乙,s 2甲,s 2乙;(2)你认为该选拔哪名同学参加射击比赛?为什么?解析:方差就是各变量值与其均值差的平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.解:(1)x 甲=(7+8+6+8+6+5+9+10+7+4)÷10=7,s 2甲=[(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]÷10=3,x 乙=(9+5+7+8+6+8+7+6+7+7)÷10=7,s 2乙=[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]÷10=1.2;(2)∵s 2甲>s 2乙,∴乙的成绩稳定,选择乙同学参加射击比赛.方法总结:用“先平均,再求差,然后平方,最后再平均”得到的结果就是方差. 【类型二】 已知原数据的方差,求新数据的方差如果一组数据x 1,x 2,…,x n 的方差是4,则另一组数据x 1+3,x 2+3,…,x n +3的方差是( )A .4B .7C .8D .19解析:根据题意得:数据x 1,x 2,…,x n 的平均数设为a ,则根据x 1+3,x 2+3,…,x n +3的平均数为a +3,再根据方差公式进行计算:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]即可得到答案.数据x 1,x 2,…,x n 的平均数设为a ,则数据x 1+3,x 2+3,…,x n +3的平均数为a +3,根据方差公式:s 2=1n [(x 1-a )2+(x 2-a )2+…+(x n -a )2]=4.则s 2=1n {[(x 1+3)-(a +3)]2+[(x 2+3)-(a +3)]2+…+[(x n +3)-(a +3)]}2=1n [(x 1-a )2+(x 2-a )2+…+(x n -a )2]=4.故选A.方法总结:此题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.【类型三】根据统计图表判断方差的大小如图是2014年1~12月份某市居民消费价格指数、工业产品出厂价格指数以及原材料等购进价格指数的折线统计图.由统计图可知,三种价格指数方差最小的是()A.居民消费价格指数B.工业产品出厂价格指数C.原材料等购进价格指数D.不能确定解析:从折线统计图中可以明显看出居民消费价格指数的波动最小,故方差最小的是居民消费价格指数.故选A.方法总结:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.【类型四】方差的应用某农科所在8个试验点对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:kg):甲:450,460,450,430,450,460,440,460;乙:440,470,460,440,430,450,470,440.则在这些试验点________的产量比较稳定(填“甲种玉米”或“乙种玉米”).解析:要说明这个试验点甲、乙两种玉米哪一种产量比较稳定,可以利用方差比较,方差小者较稳定.因为甲种玉米亩产量的平均数x甲=18(450×3+460×3+440+430)=450(kg),乙种玉米亩产量的平均数x乙=18(440×3+470×2+460+450+430)=450(kg),s2甲=(450-450)2+(460-450)2+…+(460-450)28=100,s2乙=(440-450)2+(470-450)2+…+(440-450)28=200.所以s2甲<s2乙,所以甲种玉米的产量较稳定.故填甲种玉米.方法总结:(1)方差是统计学中非常重要的一个特征数,当两组数据的平均数相同或接近时,通常比较两组数据的方差来判断数据的稳定性;(2)方差越大,数据的稳定性越差;方差越小,数据的稳定性越好.探究点二:用计算器求方差某校为了解八年级数学测试中甲、乙两班学生的成绩情况,从每班抽取10名学生的成绩(单位:分)进行分析,具体分数如下:甲:86,78,80,86,92,85,85,87,86,88;乙:78,91,87,82,85,89,81,86,76,87.用计算器分别计算它们的方差,并根据计算结果说明哪个班的测试成绩比较稳定.解析:若要判断甲、乙两个班哪个班学生的成绩更稳定,只需用计算器计算出它们的方差.通过比较方差的大小来比较成绩的稳定性,方差小的比方差大的成绩稳定.解:(1)按键ON/C ,打开计算器;(2)按键2ndf MODE ,将其设定至“Stat ”状态,按键2ndf DEL 清除计算器原先在“Stat ”模式下所储存的数据;(3)分别输入甲、乙两班学生的测试成绩;(4)计算s 甲显示结果为3.716180835,s 乙显示结果为4.578209257.∵s 甲<s 乙,∴s 2甲<s 2乙.∴甲班的成绩比较稳定.方法总结:根据用计算器求方差的方法进行计算,注意计算器的按键顺序.三、板书设计本课主要学习了用方差表示出一组数据与其平均值的离散程度,即稳定性.方差越小,稳定性越好.注意:用“先平均,再求差,然后平方,最后再平均”得到的结果.第2课时 用样本方差估计总体方差1.会用样本方差估计总体方差;(重点、难点)2.体会样本代表性的重要意义.一、情境导入某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名他们的平均进球数都是8,现在从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?二、合作探究探究点一:用样本方差估计总体方差 【类型一】 质量问题两台机床同时生产直径(单位:mm)为10的零件,为了检验产品的质量,质量检如果你是质量检验员,在收集到上述数据后,你将利用哪些统计知识来判断这两台机床生产的零件的质量优劣?解析:求出每组数据的平均数,根据方差公式求出每组的方差,然后根据方差的大小进行比较.解:x 甲=15(8+9+10+11+12)=10(mm),x 乙=15(7+10+10+10+13)=10(mm).由于x 甲=x 乙,因此平均直径不能反映两台机床生产出的零件的质量优劣;再计算方差,可得s 2甲=2,s 2乙=3.6, ∵s 2甲<s 2乙,∴甲机床生产出的零件直径波动小.∴从产品质量稳定性的角度看,甲机床生产的零件质量更好一些;从众数来看,甲机床只有1个零件的直径是10mm ,而乙机床有3个零件的直径是10mm ,∴从众数的角度看,乙机床生产的零件质量更好一些.方法总结:解决此题,要先分别计算两组数据的平均数,只有在平均数相等或非常接近的情况下,才能利用方差的大小判断数据的稳定性.【类型二】 产量问题在8个试验点对两个早稻品种进行栽培对比试验,它们在各试验点的产量如下(单位:kg):甲:402,492,495,409,460,420,456,501;乙:428,466,465,428,436,455,449,459.哪种水稻的平均产量较高?哪种水稻的产量比较稳定?解析:要比较哪种水稻的产量稳定,需比较两种水稻产量的方差. 解:x 甲=18(402+492+495+409+460+420+456+501)=454.375(kg),x 乙=18(428+466+465+428+436+455+449+459)=448.25(kg),s 2甲=18[(402-454.375)2+(492-454.375)2+…+(501-454.375)2]≈1407, s 2乙=18[(428-448.25)2+(466-448.25)2+…+(459-448.25)2]≈216. 因为x 甲>x 乙,所以甲种水稻的平均产量较高;又因为s 2甲>s 2乙,所以乙种水稻比甲种水稻的产量稳定,由此可估计乙种水稻的产量比较稳定.方法总结:方差越小,产量越稳定.当样本具有代表性时,可用样本方差去估计总体方差.变式训练:见《学练优》本课时练习“课堂达标训练”第3题 【类型三】 比赛成绩问题如图所示是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定解析:∵x 甲=8×4+9×2+10×410=9(环),x 乙=8×3+9×4+10×310=9(环),s 2甲=110×[4×(8-9)2+2×(9-9)2+4×(10-9)2]=0.8,s 2乙=110×[3×(9-8)2+4×(9-9)2+3×(10-9)2]=0.6,∵x 甲=x 乙,s 2甲>s 2乙,∴乙比甲的成绩稳定.故选B.方法总结:从统计图中读取数据信息是解决本题的前提.方差是反映数据稳定性的统计量,方差越小,数据稳定性越好.探究点二:根据方差做决策 【类型一】 根据方差做决策某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据(单位:个).统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?解析:平均数=总成绩÷学生人数;中位数是按次序排列后的第3个数.根据方差的计算公式得到数据的方差.解:甲班5名学生比赛成绩的中位数是97个,乙班5名学生比赛成绩的中位数是100个;x 甲=15×500=100(个),x 乙=15×500=100(个);s 2甲=15[(89-100)2+(100-100)2+(96-100)2+(118-100)2+(97-100)2]=94, s 2乙=15[(100-100)2+(96-100)2+(110-100)2+(90-100)2+(104-100)2]=46.4; 甲班的优秀率为2÷5×100%=40%,乙班的优秀率为3÷5×100%=60%;答:应选乙班定为冠军.因为乙班5名学生的比赛成绩的中位数比甲班大,方差比甲班小,优秀率比甲班高,综合评定乙班踢毽子水平较高.方法总结:在解决决策问题时,既要看平均成绩,又要看方差的大小,还要分析变化趋势,进行综合分析,从而做出科学的决策.【类型二】 结合方差与图表信息解决问题为了了解学生关注热点新闻的情况,“两会”期间 ,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________; (2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如下表).。
沪科版八年级数学下册教学设计《第20章数据的初步分析20.2数据的集中趋势与离散程度(第3课时)》一. 教材分析《沪科版八年级数学下册》第20章“数据的初步分析”,本章主要让学生了解数据的集中趋势和离散程度,掌握平均数、中位数、众数等概念,以及方差、标准差等衡量数据离散程度的统计量。
本节课是第20章的第3课时,主要内容是进一步探究数据的集中趋势与离散程度,通过具体案例让学生理解并掌握平均数、中位数、众数等在实际生活中的应用。
二. 学情分析八年级的学生已经掌握了初步的统计知识,对数据的收集、整理、表示有一定的了解。
但学生在实际应用中,可能对平均数、中位数、众数等概念混淆,对数据离散程度的认识不足。
因此,在教学过程中,需要引导学生通过实际案例深入理解这些概念,并学会运用它们解决实际问题。
三. 教学目标1.理解平均数、中位数、众数的含义,并能运用这些统计量描述数据的集中趋势。
2.掌握方差、标准差的概念,了解它们在衡量数据离散程度方面的作用。
3.能运用平均数、中位数、众数等统计量解决实际问题。
4.提高学生的数据分析能力,培养学生的数学素养。
四. 教学重难点1.重点:平均数、中位数、众数的含义及应用,方差、标准差的概念。
2.难点:方差、标准差的计算及在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际案例探究数据的集中趋势和离散程度。
2.运用数形结合的方法,让学生直观地理解平均数、中位数、众数等概念。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.利用信息技术手段,如数学软件、网络资源等,辅助教学,提高教学效果。
六. 教学准备1.教学课件:制作精美的课件,包含案例、图片、动画等,生动展示教学内容。
2.教学素材:准备相关实际问题素材,用于引导学生探究数据的集中趋势和离散程度。
3.数学软件:安装必要的数学软件,如Excel、Mathematica等,用于计算方差、标准差等。
20.1数据的频数分布一、教材分析在每在许多问题中,我们往往需要知道某一对象出现的频繁程度以及对象在一个小范围内的分布情况,即通过研究样本的分布去推测总体的分布。
本节通过生话中常见、学生感兴趣的实例引人频数与频率的概念,并经历列频数分布表,画频数分布直方图的过程,了解频数、频数分布的意义和作用。
二、教学目标1.了解频数、频率和频数分布的意义。
2.能画频数直方图,能初步把数字信息、图形和语言之间相互转化,能根据统计结果做出合理的判断和预测,3.在具体情境中感受统计图表与现实生活的密切联系,进一步树立数据分析的观念。
三、教学重难点重点:会用频数直方图来描述数据。
难点:得到一组数据的“频数分布”的过程。
四、教学过程(一)合作究,获得新知1.新知初探问题:某校学生在假期进行“空气质量情况调查”的课题研究时,他们从当地气象部门提供的今年上半年的资料中,随意抽取了30天的空气综合污染指数,数据如下:30,77,127,53,98,130,57,153,83,32,40,85,167,64,184,201,66,38,87,42,45,90,45,77,235,45,113,48,92,243把数据分成0-50 51-100.101-150,151-200 201-250共5个组,进行整理,得出下表:问题1:说说这30天空气质量,根据国家公布的级别,各级别各占多大的比率(即分布情况)。
问题2:你能估算该地今年(按365天计算)空气质量达到优级的天数吗?问题3:根据上述问题的探究,说说面对大量的数据,如何获得它的整体分布情况?【设计意图】通过对“空气质量情况调查”的问题探究,了解要把数据分组,并研究各组中数据各占多大比率(即分布),初步感悟“获得一组数据的分布情况”的大致步骤,为接下来的“面频数直方图”作铺垫。
2.探究新知问题:某校体卫组相对该校八年级全体学生一周内平均每天参加课外锻炼的时间(单位:min)有所了解,从中随机抽查了40名学生,结果如下:40,21,35,24,40,38,23,52,35,62,36,15,51,45,40,32,43,36,34,53,42,38,40,39,32,45,40,50,45,40,50,26,45,40,45,35,40,42,45,40。
沪科版八年级数学下册教学设计《第20章数据的初步分析20.2数据的集中趋势与离散程度(第3课时)》一. 教材分析沪教版八年级数学下册第20章《数据的初步分析》,本节课是该章节的第3课时,主要内容是数据的集中趋势与离散程度。
本节课的内容是对前面学习的平均数、中位数、众数等集中趋势的概念的巩固和拓展,同时引入方差、标准差等离散程度的指标,让学生能够更深入地理解数据的分布情况,为后续的数据分析打下基础。
二. 学情分析八年级的学生已经掌握了基本的数学运算能力和一定的逻辑思维能力,对于平均数、中位数、众数等概念已经有了一定的了解。
但是,对于方差、标准差等离散程度的概念可能会比较难以理解,需要通过具体的例子和实际操作来加深理解。
同时,学生可能对于实际应用数据分析解决实际问题还比较陌生,需要通过案例分析和练习来提高。
三. 教学目标1.让学生理解方差、标准差等离散程度的概念,并能够计算数据的方差和标准差。
2.让学生能够运用方差、标准差等指标分析数据的离散程度,并能够解释其在实际应用中的意义。
3.培养学生运用数据分析解决实际问题的能力,提高学生的数学素养。
四. 教学重难点1.重点:方差、标准差的概念和计算方法。
2.难点:方差、标准差在实际应用中的意义和运用。
五. 教学方法1.采用案例分析法,通过具体的例子让学生理解和掌握方差、标准差的概念和计算方法。
2.采用问题解决法,让学生通过解决实际问题,运用方差、标准差等指标分析数据的离散程度,提高学生的应用能力。
3.采用小组合作法,让学生通过小组讨论和合作,共同解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.PPT课件:包括方差、标准差的定义、计算方法、案例分析等。
2.练习题:包括计算方差、标准差和数据分析应用的题目。
3.数据分析软件:用于展示数据分析的结果。
七. 教学过程1.导入(5分钟)通过一个具体的数据案例,让学生观察数据的分布情况,引发学生对于数据离散程度的思考,进而引入本节课的内容。
沪科版数学八年级下册第20章数据的初步分析(通
用)-一等奖创新教案
第20章《数据的初步分析》单元复习教学设计
一、教学目标
1.知道本章的知识结构,并能用书面形式整理出来.
2.掌握对数据的集中趋势和离散程度的描述方法.
3.会用样本数据估计总体数据,解决简单的实际问题.
二、教学重难点
重点:熟练求出一组数据的平均数、中位数、众数和方差,会用样本估计总体.
难点:数据的收集与整理,选择合适的统计量对数据进行初步分析.
三、教学准备
多媒体课件
四、教学方法
讲练结合、自主讨论.
五、教学过程
本节课设计了五个教学环节:第一环节:归纳知识结构;第二环节:回顾重点内容;第三环节:综合运用提高;第四环节:课堂小结;第五环节:布置作业。
第一环节:归纳知识结构
本章内容已全部学完,请大家回忆一下,这一章学了哪些内容?这些内容之间有什么联系呢?
留出时间让学生思考、交流、梳理知识,然后多媒体展示知识结构图.
目的:引导学生将所学的知识整理归纳,总结出知识结构图,形成知识系统。
帮助学生掌握正确的学习方法,养成良好的学习习惯。
第二环节:回顾重点内容
引导学生根据知识结构图,把重点知识内容再回顾一下:
1.什么是频数与频率?怎样画频数分布直方图?
2.描述数据集中趋势的统计量有哪些?
3.怎样用方差描述数据的离散程度?
4.如何用样本数据去估计总体数据?
多媒体展示梳理要点
1.(1)频数与频率:
在n个数据中,某类数据出现的次数m称为该类数据出现的频数,m/n称为该类数据出现的频率.
(2)画频数分布直方图的一般步骤:
(1)计算这批数据中最大数与最小数的差
(2)决定组距和组数
(3)决定分点
(4)列频数分布表
(5)画频数直方图
2.数据的集中趋势:
平均数:
加权平均数:
众数:一组数据中出现次数最多的数据
中位数:一组数据按大小顺序排列后,位于正中间的一个数据或正中间两个数据的平均数
4.用样本数据估计总体数据
(1)用样本平均数估计总体平均数:
现实生活中总体平均数一般难以计算出来,常采用样本平均数估计总体平均数,若样本容
量太小,则差异较大
(3
.
数据的离散程度
极差:一组数据中最大数与最小数的差
方差:)(2)用样本方差估计总体方差:
在实际问题中也常采用样本方差估计总体方差
目的:帮助学生进一步掌握本章的重点知识内容,并会结合实例说明,从而夯实“双基”。
第三环节:综合运用提高
典例精讲1:
为了解我校八年级300名学生的视力情况,从中抽取了一部分学生的视力情况,进行数据整理后:
(1)在这个问题中,总体,个体分别是什么?
(2)填写频数统计表中未完成的部分:
分组频数频率
3.95~
4.25 2 0.04
6 0.12
4.55~4.85 23
4.85~
5.15
5.15~5.45 1 0.02
合计 1.00
(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计我校八年级学生视力正常的人数约为多少?版
(4)画出频数分布直方图.
典例精讲2:
我校九年级125班20名女生某次体育测试成绩统计如下表:成绩(分)60 70 80 90 100
人数(人)1 5 x y 2
(1)如果这20名女生的体育测试成绩的平均分是82分,求x、y的值;
(2)在(1)的条件下,设20名女生本次体育测试成绩的众数是a,中位数是b,求(a-b)2的值.
典例精讲3:
某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲93 82 88 81 93 79 84 78
乙83 92 80 95 90 80 85 75
现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
典例精讲4:
我市一花农对10盆同一品种的花施用甲、乙两种花肥,把10盆花分成甲、乙两组,每组5盆,记录其花期(单位:天)如下:甲组:25,23,28,22,27;乙组:27,24,24,27,23.
(1)10盆花的花期最多相差几天?
(2)施用何种花肥,花的平均花期较长?
(3)施用哪种花肥的效果更好?
目的:根据本本章知识要点,针对性选择4道例题,旨在考查学生对平均数、中位数和方差等计算的掌握情况;并能根据数据信息作出评判和决策;提高学生的估计能力和综合运用知识解决实际问题的能力,培养创新意识。
对本章知识技能的评价,应当更多地关注数据的代表在不同的实际问题情境中的意义和应用,而不要过于关注其具体运算的熟练程度。
第四环节:课堂小结
1. 本章知识结构和重点内容。
2. 综合运用统计知识解决实际问题。
3. 整理归纳知识的方法,勤于思考、善于总结的好习惯。
目的:围绕本节课的教学目标,进行知识、方法、能力、习惯全方位的小结,目的是为了学生的全面发展。
第五环节:布置作业
1. 课本本章的目标与评定。
2. 这节课,你有哪些收获?你还有什么疑惑?
我的收获有:
我的疑惑有:
3.课外作业(能力小测试)
六、板书设计
(第
20
章
数据的初步分析
复均数、中位数、众数、方差的定义
例题
1
、例题
2
、例题
3
、例题
4)
七、教学反思
1、本节复习课的容量比较大,需要要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用树图、表格、习题组等技术措施复习是有效的,本节课在这方面做了一些尝试。
2. 一方面要让充分学生思考和交流,积极发挥其主体作用;另一方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率。
能力小测试
1.一组数据按从小到大排列为2,4,8,x,10,14,若这组数据的中位数为9,则这组数据的众数为____________ ()
A.4___
B.8___
C.10___
D.14
2.已知一组数据5,8,10,x,9的众数是8,则这组数据的方差是()
A. 2.6___
B. 2.7___
C. 2.8___
D. 2.9
3.若5个正整数的中位数是3,唯一的众数是7,则这5个数的平均数是_______.
4.我市公务员招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数
作为总成绩,王强笔试90分,面试85分,则他的总成绩为_______分.
5.数据-2,-1,0,3,5的方差是_______.
6.为了从甲、乙两名同学中选拔一人参加我市中学生数学竞赛,
每个月学校对他们的学习进行一次测试,如图是两人赛前5次测试成绩的折线统计图.
(1)分别求出甲、乙两人的平均数和方差:
=_____,=______,=_____,=_______.
(2)若你是他们的辅导老师,应该选派谁去参赛?为什么?
7. 能力拓展
已知样本x1,x2,x3,…,xn的方差为5,则样本3x1+2,3x2+2,3x3+2,…,3xn+2的
方差为__.
www.。