数学归纳法第九讲
- 格式:docx
- 大小:48.55 KB
- 文档页数:3
第九讲 极限与探索性问题【考点透视】1.理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 2.了解数列极限和函数极限的概念.3.掌握极限的四则运算法则;会求某些数列与函数的极限.4.了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. 【例题解析】 考点1 数列的极限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注意:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;例1.数列{n a }满足:113a =,且对于任意的正整数m,n 都有m n m n a a a +=⋅,则12lim()n n a a a →∞+++=( )A.12B.23C.32D.2[考查目的]本题考查无穷递缩等比数列求和公式和公式lim 0(1)n n q q →∞=< 的应用.[解答过程]由113a =和m n m n a a a +=⋅得23111,,.9273n na a a ==∴=1211(1)133lim()lim .1213n n x x a a a →∞→∞-∴++⋅⋅⋅+==-故选A.例2.设常数0a >,421ax x ⎛⎫+ ⎪⎝⎭展开式中3x 的系数为32,则2lim()n n a a a →∞++⋅⋅⋅+=_____.[考查目的]本题考查利用二项式定理求出关键数, 再求极限的能力.[解答过程] 1482214r r rrr T C axx---+=,由18232,2,r r xxx r --==得4431=22r r C a -由知a=,所以212l i m ()1112n n a a a →∞++⋅⋅⋅+==-,所以为1. 例3.把21(1)(1)(1)n x x x +++++++展开成关于x 的多项式,其各项系数和为n a ,则21lim 1n n n a a ∞-+→等于( ) ( )A .14B .12C .1D .2[考查目的]本题考查无穷递缩等比数列求和公式和公式lim 0(1)n n q q →∞=< 的应用.[解答过程] 22121,1(1)(1)(1)122221,12nn nn n x a x x x -==+++++++=++++==--当时1212211211limlim lim lim 2 2.121122n n n n n n n n n n na a +∞∞∞∞----===-=+-+→→→→()∴()() 故选D例4.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n na n S →∞-= .思路启迪:由等差数列{}n a 的公差d 是2,先求出前n 项的和为n S 和通项n a . [解答过程] 221222,,2n n n n a a n a S na n a n -=+-=-+=+=+-()(n 1)(1)222222222122lim lim lim 3.1nn n n n aa n n a n n n a S n a n n→∞→∞→∞-+---+-===-+-+()()∴1(1) 故填3 小结:1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点: (1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算. 2.熟练掌握如下几个常用极限: (1) ∞→n lim C =C (C 为常数);(2) ∞→n lim (n1)p =0(p >0);(3) ∞→n lim d cn b an k k++=ca (k ∈N *,a 、b 、c 、d ∈R 且c ≠0);(4) ∞→n lim q n =0(|q |<1).例5.设正数a , b 满足4)(22lim =-+→b ax x x 则=++--+∞→nn n n n b a ab a2111lim( )(A )0(B )41(C )21(D )1解:221lim()4,24,.2x a x ax b a b b →+-=+-==∵∴4∴111111111112limlim lim .1224222n n n n n nx x x n n a a a a aba b a a b b b bb --+--→∞→∞→∞--+++====+++[()][()]则()() 故选B小结:重视在日常学习过程中运用化归思想. 考点2 函数的极限 1.函数极限的概念:(1)如果+∞→x lim f (x )=a 且-∞→x lim f (x )=a ,那么就说当x 趋向于无穷大时,函数f (x )的极限是a ,记作∞→x lim f (x )=a ,也可记作当x →∞时,f (x )→a.(2)一般地,当自变量x 无限趋近于常数x 0(但x 不等于x 0)时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋近于x 0时,函数f (x )的极限是a ,记作0lim x x →f (x )=a ,也可记作当x →x 0时,f (x )→a .(3)一般地,如果当x 从点x =x 0左侧(即x <x 0=无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数f (x )在点x 0处的左极限,记作-→0lim x x f (x )=a .如果从点x =x 0右侧(即x >x 0)无限趋近于x 0时,函数f (x )无限趋近于常数a ,就说a 是函数 f (x )在点x 0处的右极限,记作+→0lim x x f (x )=a .2.极限的四则运算法则:如果0lim x x → f (x )=a , 0lim x x →g (x )=b ,那么lim x x →[f (x )±g (x )]=a ±b ; 0lim x x →[f (x )·g (x )]=a ·b ; 0lim x x →)()(x g x f =ba (b ≠0). 例6. 1lim 231--→x x x x =( )A .等于0B .等于lC .等于3D .不存在[考查目的]本题主要考查利用同解变形求函数极限的能力.[解答过程] 32221111lim lim lim 1.11x x x x x x x x x x →→→--===--()故选B例7. =---→121lim 221x x x n ( )(A )0 (B )1(C )21(D )32[考查目的]本题主要考查利用分解因式同解变形求函数极限的能力. [解答过程] 2211111112lim lim lim .211113n n n x x x x x x x x x →→→--++===--+-+()()(2)()2故选D例8.若f (x )=11113-+-+x x 在点x =0处连续,则f (0)=__________________.思路启迪:利用逆向思维球解.解答过程:∵f (x )在点x =0处连续,∴f (0)=0lim →x f (x ),lim →x f (x )= 0lim→x 11113-+-+x x =lim→x 1111)1(332++++++x x x =23.答案: 23例9.设函数f (x )=ax 2+bx +c 是一个偶函数,且1lim →x f (x )=0,2lim -→x f (x )=-3,求这一函数最大值..思路启迪:由函数f (x )=ax 2+bx +c 是一个偶函数,利用f (-x )=f (x )构造方程,求出b 的值.解答过程:∵f (x )=ax 2+bx +c 是一偶函数, ∴f (-x )=f (x ),即ax 2+bx +c =ax 2-bx +c . ∴b =0.∴f (x )=ax 2+c .又1lim →x f (x )= 1lim →x ax 2+c =a +c =0, 2lim -→x f (x )=2lim -→x ax 2+c =4a +c =-3,∴a =-1,c =1.∴f (x )=-x 2+1.∴f (x )max =f (0)=1. ∴f (x )的最大值为1.例10.设f (x )是x 的三次多项式,已知ax 2lim →=ax x f 2)(-=ax 4lim→ax x f 4)(-=1.求ax 3lim→ax x f 3)(-的值(a 为非零常数).解答过程:由于ax 2lim→ax x f 2)(-=1,可知f (2a )=0. ① 同理f (4a )=0. ②由①②,可知f (x )必含有(x -2a )与(x -4a )的因式,由于f (x )是x 的三次多项式,故可设f (x )=A (x -2a )(x -4a )(x -C ). 这里A 、C 均为待定的常数. 由ax 2lim→ax x f 2)(-=1,即ax 2lim →ax C x a x a x A 2))(4)(2(----=ax 2lim →A (x -4a )(x -C )=1, 得A (2a -4a )(2a -C )=1,即4a 2A -2aCA =-1. ③ 同理,由于ax 4lim→ax x f 4)(-=1,得A (4a -2a )(4a -C )=1,即8a 2A -2aCA =1. ④ 由③④得C =3a ,A =221a ,因而f (x )=221a (x -2a )(x -4a )(x -3a ).∴ax 3lim→a x x f 3)(-=a x 3lim →221a(x -2a )(x -4a )=221a ·a ·(-a )=-21.例11 a 为常数,若+∞→x lim (12-x -ax )=0,则a 的值是____________..思路启迪:先对括号内的的式子变形.解答过程:∵+∞→x lim (12-x -ax )= +∞→x lim axx x a x +---112222=+∞→x lim axx x a +---11)1(222=0,∴1-a 2=0.∴a =±1.但a =-1时,分母→0, ∴a =1.考点3.函数的连续性及极限的应用 1.函数的连续性.一般地,函数f (x )在点x =x 0处连续必须满足下面三个条件:(1)函数f (x )在点x =x 0处有定义;(2)0lim x x →f (x )存在;(3)0lim x x →f (x )=f (x 0).如果函数y =f (x )在点x =x 0处及其附近有定义,而且0lim x x →f (x )=f (x 0),就说函数f (x )在点x 0处连续.2.如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值.3.若f (x )、g (x )都在点x 0处连续,则f (x )±g (x ),f (x )·g (x ),)()(x g x f (g (x )≠0)也在点x 0处连续.若u (x )在点x 0处连续,且f (u )在u 0=u (x 0)处连续,则复合函数f [u (x )]在点x 0处也连续.例12.f (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分 C.充要 D.既不充分又不必要 思路启迪:说明问题即可.解答过程:f (x )在x =x 0处有定义不一定连续. 答案:A 例13.f (x )=xxπcosπcos的不连续点为( )A.x =0B.x =122+k (k =0,±1,±2,…) C.x =0和x =2k π(k =0,±1,±2,…) D.x =0和x =122+k (k =0,±1,±2,…)思路启迪:由条件出发列方程解之.解答过程:由cos xπ=0,得xπ=k π+2π(k ∈Z ),∴x =)(122Z ∈+k k .又x =0也不是连续点,故选D 答案:D例14. 设f (x )=⎩⎨⎧≥+<),0(),0(e x xa x x当a 为________时,函数f (x )是连续的. 解答过程:+→0lim x f (x )= +→0lim x (a +x )=a , -→0lim x f (x )=-→0lim x e x =1,而f (0)=a ,故当a =1时,lim →x f (x )=f (0),即说明函数f (x )在x =0处连续,而在x ≠0时,f (x )显然连续,于是我们可判断当a =1时, f (x )在(-∞,+∞)内是连续的.小结:分段函数讨论连续性,一定要讨论在“分界点”的左、右极限,进而断定连续性.例15.已知函数f (x )=⎩⎨⎧-,1,为无理数为有理数x xx x 函数f (x )在哪点连续( )A.处处连续B.x =1C.x =0D.x =21思路启迪:考虑结果的启发性.解答过程:+→21lim x f (x )= -→21lim x f (x )=f (21).答案:D例16.抛物线y =b (ax )2、x 轴及直线AB :x =a 围成了如图(1)的阴影部分,AB 与x 轴交于点A ,把线段OA 分成n 等份,作以na 为底的内接矩形如图(2),阴影部分的面积为S 等于这些内接矩形面积之和当n →∞时的极限值,求S 的值.x xyyO O A A B(1)(2)思路启迪:先列出式子.解答过程:S =∞→n lim [b ·(n 1)2+b ·(n 2)2+b ·(n 3)2+…+b ·(n n 1-)2]2·na=∞→n lim3222)1(21n n -+++ ·ab=∞→n lim 36)12()1(n n n n -⋅⋅-·ab =31ab .例17.如图,在边长为l 的等边△ABC 中,圆O 1为△ABC 的内切圆,圆O 2与圆O 1外切,且与AB 、BC 相切,…,圆O n +1与圆O n 外切,且与AB 、BC 相切,如此无限继续下去,记圆O n 的面积为a n (n ∈N *). (1)证明{a n }是等比数列; (2)求∞→n lim (a 1+a 2+…+a n )的值.解答过程:(1)证明:记r n 为圆O n 的半径, 则r 1=2l tan30°=63l .nn n n r r r r +---11=sin30°=21,∴r n =31r n -1(n ≥2).于是a 1=πr 12=1212π-⋅n n a a l ,1-n n a a =(1-n n r r )2=91,∴{a n }成等比数列.(2)解:因为a n =(91)n -1·a 1(n ∈N *),所以∞→n lim (a 1+a 2+…+a n )=9111-a =32π32l .例18. 一弹性小球自h 0=5 m 高处自由下落,当它与水平地面每碰撞一次后速度减少到碰前的97,不计每次碰撞时间,则小球从开始下落到停止运动所经过的路程和时间分别是多少?解答过程:设小球第一次落地时速度为v 0,则有v 0=02gh =10(m/s ),那么第二,第三,…,第n +1次落地速度分别为v 1=97v 0,v 2=(97)2v 0,…,v n =(97)n v 0,小球开始下落到第一次与地相碰经过的路程为h 0=5 m,小球第一次与地相碰到第二次与地相碰经过的路程是L 1=2×gv 221=10×(2)97.小球第二次与地相碰到第三次与地相碰经过的路程为L 2, 则L 2=2×gv 222=10×(97)4.由数学归纳法可知,小球第n 次到第n +1次与地面碰撞经过路程为 L n =10×(97)2n .故从第一次到第n +1次所经过的路程为 S n +1=h 0+L 1+L 2+…+L n ,则整个过程总路程为S =∞→n lim S n +1=5+∞→n lim 10×222)97(1])97(1[)97(--n =5+1022)97(1)97(-=20.3(m ),小球从开始下落到第一次与地面相碰经过时间t 0=002g h =1(s ).小球从第一次与地相碰到第二次与地相碰经过的时间t 1=2×gv 1=2×97,同理可得t n =2×(97)n ,t n +1=t 0+t 1+t 2+…+t n ,则t =∞→n lim t n +1=1+∞→n lim 2×)97(1])97(1)[97(--n =8(s ). 考点4.新考题例19.(本小题满分12分)已知数列}{n a 、}{n b 与函数)(x f 、)(x g ,R ∈x 满足条件:))(()(,*11N ∈===+n b g b f a b b n n n .(I )若)()(,2)(),2,0(1)(b g b f x x g t t tx x f ≠=≠≠+=,且n n a +∞→lim 存在,求t 的取值范围,并求n n a +∞→lim (用t 表示).(II )若函数)(x f y =在R 上是增函数,1)1(,1),()(1<==-f b x f x g ,证明对任意的*N ∈n ,n n a a <+1.[考查目的]本小题主要考查数列的定义,数列的递推公式,等比数列,函数,不等式等基础知识,考查运用数学归纳法解决问题的能力. [解答过程](Ⅰ)解法一:由题设知2.1212,11,111≠+=⎩⎨⎧=+=++++t a ab a tb a n n n n n n 又已知得,可得 ).22(21221-+=-++t a t a n n由⎭⎬⎫⎩⎨⎧-+≠≠-+=-+≠≠≠22,02,0222,0,2),()(1t a t t ttb t a t t b g b f n 所以可知是等比数列,其首项为2,2t t t tb 公比为-+,于是.22)2)(2(,)2)(2(2211---+=-+=-+--t t t t tb a t t t tb t a n n n n 即又.022,1|2|0,lim ≠<<-<<t t t a n 且所以可得存在.22lim ta n n -=∞→解法二:由题设知2,211≠=++t b tb n n 且,可得 ).21(21211-+=-++t b t b n n由2121,02,021,0,2),()(-+⎭⎬⎫⎩⎨⎧-+≠≠-+≠≠≠t b t b t t b t t b g b f n 是首项为所以可知,公比为2t 的等比数列..21)2)(21(,)2)(21(2111---+=-+=-+--t t t b b t t b t b n n n n 即由,1|2|0,lim ,lim ,21<<=∞→∞→+t b a b a n n n n n n 于是可得存在则存在若可知所以.022≠<<-t t 且 .22lim 2lim tb a n n n n -==∞→∞→解法三:由题设知121+=+n n b tb ,即 2121+=+n n b t b ,①于是有,21212+=++n n b t b②②-①得n n n n n n n b b c b b t b b -=-=-++++1112),(2令,得.21n n c t c =+由,02,021)2(0,2),()(121≠≠+-=-=≠≠≠t b t b b c t t b g b f 可知 所以2,}{2t b b c n 公比为是首项为-的等比数列,于是.2)(2])2(1[42,)(21)2(1)(121121211b b b tt b a b b b t t b c c c b n n n nn n +---==+---=++++=++ 又.022,1|2|0,lim ≠<<-<<∞→t t t a n n 且所以可得存在.222)(24lim 12tb b b t a n n -=+--=∞→说明:数列{a n }通项公式的求法和结果的表达形式均不唯一,其他过程和结果参照以上评分标准.(Ⅱ)证明:因为).(),()(),()(1111n n n n n a f b b f b g a x f x g ==='=++-+即所以 下面用数学归纳法证明).(*1N ∈<+n a a n n (1)当1)1(,)(,1<=f x f n 且为增函数由时,得 ,)1()(,1)1()(,1)1()(1221211a f b f a f a f b f b f a =<=<<=<==即12a a <,结论成立.(2)假设n = k 时结论成立,即)(.1x f a a k k 由<+为增函数,得 121),()(+++<<k k k k b b a f a f 即, 进而得.),()(1212++++<<k k k k a a b f b f 即 这就是说当n = k +1时,结论也成立.根据(1)和(2)可知,对任意的.,1*n n a a n <∈+N例20已知公比为)10(<<q q 的无穷等比数列}{n a 各项的和为9,无穷等比数列}{2n a 各项的和为581.(Ⅰ)求数列}{n a 的首项1a 和公比q ;(Ⅱ)对给定的),,3,2,1(n k k ⋅⋅⋅=,设)(k T 是首项为k a ,公差为12-k a 的等差数列.求数列)(k T 的前10项之和;(Ⅲ)设i b 为数列)(i T 的第i 项,n n b b b S +⋅⋅⋅++=21,求n S ,并求正整数)1(>m m ,使得mS nn ∞→lim 存在且不等于零.(注:无穷等比数列各项的和即当∞→n 时该无穷数列前n 项和的极限)[考查目的]本题考查运用等比数列的前n 项和公式,从已知的条件入手列方程组求出等比数列的公比和首项.[解答过程] (Ⅰ)依题意可知,1121293,12.81315a a q q a q⎧==⎧⎪-⎪⎪⇒⎨⎨=⎪⎪=⎩⎪-⎩ (Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫ ⎝⎛⨯=n n a ,所以数列)2(T 的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155. (Ⅲ) i b =()()121--+i i a i a =()()112---i a i i =()()1321231--⎪⎭⎫ ⎝⎛--i i i ,()()2132271845--⎪⎭⎫ ⎝⎛+-=n n n S nn ,m n n n S ∞→lim =∞→n lim ()14518272.32n m m m n n n n n n ⎛⎫-+⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭当m=2时,m n n n S ∞→lim =-21,当m>2时,mn n n S ∞→lim =0,所以m=2.【专题训练】 一.选择题1.下列极限正确的个数是①∞→n lim αn 1=0(α>0);②∞→n lim q n =0;③∞→n lim nn nn 3232+-=-1 ; ④∞→n lim C =C (C 为常数)A.2B.3会C.4D.都不正确2.下列四个命题中正确的是A.若∞→n lim a n 2=A 2,则∞→n lim a n =A B.若a n >0,∞→n lim a n =A ,则A >0C.若∞→n lim a n =A ,则∞→n lim a n 2=A 2 D.若∞→n lim (a n -b )=0,则∞→n lim a n =∞→n lim b n3.+→0lim x x f (x )=-→0lim x x f (x )=a 是f (x )在x 0处存在极限的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.f (x )=⎩⎨⎧<≥,10,12x x x 下列结论正确的是( ) A.)(lim 1x f x +→=-→1lim x f (x ) B.)(lim 1x f x +→=2,)(lim 1x f x -→不存在C.+→1lim x f (x )=0, )(lim 1x f x -→不存在 D.+→1lim x f (x )≠-→1lim x f (x )5.下列图象表示的函数在x =x 0处连续的是( )xyOx 0xyOx 0x yO x 0xyOx 0①②③④A.①B.②③C.①④D.③④ 6.若f (x )在定义域[a ,b ]上有定义,则在该区间上( )A.一定连续B.一定不连续C.可能连续也可能不连续D.以上均不正确 7.已知31a cn c bn Lim ,5cbn cnanLim n 22n =++=++∞→∞→,如果bc ≠0,那么ban cn c bn anLim 22n ++++∞→=( )A 、 15B 、151 C 、53D 、358.若r 为实常数,则集合}R r ,|r |1|r |Limx |x {nn n ∈+=∞→A 、恰有一个元素B 、恰有两个元素C 、恰有三个元素D 、无数多个元素 9. 11(1)1lim 1,lim 1(22)x x f x x x f x →→--==--若则(C )A .-1B .1C .-21 D .2110. 已知()23,12,1x x f x x +≠⎧=⎨=⎩,下面结论正确的是( ) A.()f x 在1x =处连续 B.()5f x = C.()1lim 2x f x -→= D.()1lim 5x f x +→=二.填空题11.四个函数:①f (x )=x1;②g (x )=sin x ;③f (x )=|x |;④f (x )=ax 3+bx 2+cx +d .其中在x =0处连续的函数是____________.(把你认为正确的代号都填上) 12.下四个命题:①f (x )=x1在[0,1]上连续;②若f (x )是(a ,b )内的连续函数,则f (x )在(a ,b )内有最大值和最小值; ③2πlim →x xx cos 2sin 2=4;④若f (x )=⎪⎩⎪⎨⎧<+≥).0(1),0(x x x x 则0lim →x f (x )=0.其中正确命题的序号是____________.(请把你认为正确命题的序号都填上) 13.则a=______,b=______.14.函数f(x)在(0,+∞)内满足f ’(x)>0,f(0)>0,则nnnn n )](f [5)]3(f [4)](f [3)]3(f [2Lim π-+π--∞→=_________.15. ∞→n limnn ++++ 212=__________.16. ∞→n lim 32222-+n n n =____________.三.解答题17.求下列函数极限:错误!未找到引用源。
数学归纳法---------第九讲
问题:已知{}n a 中,)(12,211*+∈-
==N n a a a n
n ,求数列{}n a 的通项公式。
引例:费马猜想:),2,1,0(122 =+=n F n n 的数都是素数。
欧拉:64167004174294967297,55⨯===F n 时不是素数
启示:不完全归纳法能帮助我们发现猜想,但不能保证猜想的完全正确性
多米诺骨牌游戏
问题:能使多米诺骨牌全部倒下的条件是什么?
尝试利用多米诺骨牌原理来证明问题中的猜想:
归纳利用数学归纳法证明一个命题成立的基本步骤:
注意:
例1:利用数学归纳法证明:)(26422*∈+=++++N n n n n
练习:利用数学归纳法证明:)()12(5312*∈=-++++N n n n
例2:利用数学归纳法证明:2)2)(1(432+-=
++++n n n
例3:利用数学归纳法证明:6)12)(1(3212222++=
++++n n n n
★能力提升
是否存在常数,,,c b a 使得等式),(3
1)12(53122222c bn an n +=-++++ 对*N n ∈都成立,并证明你的结论。
检测题
1.若用数学归纳法证明凸n 边形各内角和等于0180)2(⨯-n ,则n 所取的第一个值为
2.用数学归纳法证明f (n )=1+21+31+…+n 2
1(*N n ∈)的过程中,从k n =到1+=k n 时,)1(+k f 比)(k f 共增加了_________项
3.某个关于自然数n 的命题,如果当k n =)(N k ∈时该命题成立,那么可推得1+=k n 时该命题也成立.现已知当5=n 时该命题不成立,那么可推得…………………( )
(A) 当6=n 时,该命题不成立; (B)当4=n 时,该命题不成立;
(C) 当6=n 时,该命题成立; (D)当4=n 时,该命题成立.
4.用数学归纳法证明:2
3333)1(21321⎥⎦⎤⎢⎣⎡+=++++n n n
5.用数学归纳法证明等式:
)(212111211214131211*∈+++++=--++-+-
N n n
n n n n。