统计学基础知识
- 格式:docx
- 大小:18.83 KB
- 文档页数:5
统计学基础知识要点统计学是一门研究数据收集、分析和解释的学科,是许多学科和领域中必不可少的工具。
在本文中,将介绍统计学的基础知识要点,帮助读者理解统计学的基本概念和应用。
一、数据类型在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是以数值表示的,可进行数值计算和比较的数据,如身高、体重等;定性数据则是描述个体特征的非数值数据,如性别、颜色等。
了解数据类型对于选择合适的统计方法非常重要。
二、测量尺度测量尺度指的是衡量数据的方式,常见的测量尺度包括名义尺度、序数尺度、区间尺度和比率尺度。
名义尺度仅用于分类,如性别;序数尺度可以排序,但没有固定的数值差异,如教育程度;区间尺度具有固定的数值差异,但没有绝对零点,如温度;比率尺度具有固定的数值差异和绝对零点,如年龄。
三、描述统计学描述统计学是对数据进行整理、总结和描述的方法。
其中常见的统计量包括平均数、中位数、众数和标准差等。
平均数是一组数据的算术平均值,中位数是将一组数据按大小顺序排列后的中间值,众数是数据中出现频率最高的值,标准差衡量数据的离散程度。
四、概率与概率分布概率是用来描述随机事件发生可能性的数值,常用的表示方法是百分比或小数。
概率分布是描述随机变量可能取得各个值的概率的函数或表格。
常见的概率分布包括正态分布、均匀分布和泊松分布等。
五、参数估计与假设检验参数估计是根据样本数据来估计总体特征的方法,常见的参数估计方法包括点估计和区间估计。
假设检验是通过对样本数据进行统计推断来对总体假设进行验证的方法,常用的假设检验方法包括t检验和卡方检验等。
六、相关分析与回归分析相关分析用于研究两个变量之间的关系,可以通过计算相关系数来描述变量之间的相关程度。
回归分析是一种用于预测和解释因果关系的统计方法,可以建立变量之间的数学模型。
七、抽样与调查抽样是从总体中选择出样本的过程,通过对样本进行研究得出对总体的结论。
调查是一种常用的数据收集方法,可以通过问卷调查、访谈等方式获取数据。
统计学理论基础知识(史上最全最完整)统计学是一门关于收集、分析、解释和展示数据的学科。
它在许多领域中都发挥着重要作用,包括自然科学、社会科学、商业和医学等。
基本概念- 数据:统计学的研究对象,可以是数值、文字或图像等。
- 总体与样本:总体是我们想要研究的所有个体或事物,而样本是从总体中选择的一部分。
- 参数与统计量:参数是总体的数值特征,统计量是样本的数值特征。
- 频数与频率:频数是某个数值出现的次数,频率是频数与样本大小之比。
描述统计学- 中心趋势:用于衡量数据集中的位置,常用的统计量有平均数、中位数和众数。
- 变异程度:用于衡量数据集中的离散程度,常用的统计量有标准差、方差和四分位数。
- 数据分布:用于描述数据集中每个值的频率分布情况,常用的图表有直方图和箱线图。
推断统计学- 参数估计:通过样本统计量对总体参数进行估计,包括点估计和区间估计。
- 假设检验:根据样本数据对总体参数的假设进行推断性统计分析,包括设置原假设和备择假设,并进行显著性检验。
相关分析- 相关系数:用于衡量两个变量之间的关联程度,常用的相关系数有Pearson相关系数和Spearman等级相关系数。
- 回归分析:用于建立变量之间的数学关系,常用的回归分析有线性回归和多元回归。
统计学软件- 常用统计软件:如SPSS、R、Excel等。
- 数据可视化工具:如Tableau、Power BI等。
这份文档提供了统计学的基础知识概述,包括基本概念、描述统计学、推断统计学、相关分析和统计学软件。
它将帮助读者理解统计学的核心概念和方法,为进一步探索统计学打下坚实的基础。
统计学基础知识统计学是一门研究收集、整理、分析和解释数据的学科,它在各个领域都有广泛的应用。
无论是在科学研究、经济管理、医学领域还是社会科学等领域,统计学都扮演着重要的角色。
本文将介绍统计学的基础知识,包括数据的类型、统计描述、概率与概率分布以及假设检验等内容。
一、数据的类型在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是用数值表示的,可以进行数学运算,如身高、体重等;而定性数据则是描述性的,通常用文字或符号表示,如性别、职业等。
了解数据的类型对于选择合适的统计方法非常重要。
二、统计描述统计描述是对数据进行概括和总结的过程。
其中最常见的统计描述指标包括均值、中位数、众数、标准差和方差等。
其中,均值是指所有观测值的平均值,中位数是将数据按大小排列后位于中间的数值,众数是数据中出现次数最多的数值。
标准差和方差是用来衡量数据的离散程度。
通过统计描述指标,我们可以更好地了解数据的分布和趋势。
三、概率与概率分布概率是统计学中一个重要的概念,它用来描述一个事件发生的可能性。
概率值介于0和1之间,0表示不可能事件,1表示必然事件。
概率分布则是对所有可能事件及其对应概率的描述。
常用的概率分布包括正态分布、二项分布和泊松分布等。
正态分布是一种最为常见的连续性概率分布,它的特点是均值和标准差完全确定了分布的形状。
二项分布是一种离散性概率分布,用于描述在给定次数的独立重复试验中成功次数的概率。
泊松分布则是一种用于描述单位时间或单位空间内事件发生次数的概率分布。
了解概率与概率分布对于统计学分析和预测具有重要意义。
四、假设检验假设检验是统计学中常用的方法之一,用于通过对样本数据进行分析来对总体进行推断。
假设检验通常包括两类假设:零假设和备择假设。
零假设是一种关于总体参数的陈述,备择假设则是对零假设的否定。
通过对样本数据进行统计分析,我们可以进行假设检验来判断零假设是否成立。
常见的假设检验方法包括t检验、卡方检验和方差分析等。
统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。
它提供了一种用来了解和解释各种数据的方法和工具。
统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。
定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。
2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。
收集数据时需要注意样本的代表性,并尽量避免抽样偏差。
3. 描述性统计:描述性统计是用来总结和描述数据的方法。
常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。
4. 概率:概率是研究随机事件发生可能性的数学工具。
它可以用来计算事件发生的概率,从而预测未来事件的可能性。
概率可以分为古典概率和条件概率等不同类型。
5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。
常见的概率分布包括均匀分布、正态分布和泊松分布等。
概率分布可以用来计算随机变量的期望、方差等统计指标。
6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。
通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。
假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。
7. 相关分析:相关分析是用来研究两个变量之间关系的方法。
它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 回归分析:回归分析是研究因果关系的统计方法。
它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。
常见的回归分析包括线性回归和多元回归等。
9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。
它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。
10. 统计软件:统计软件是进行统计分析的工具。
统计学基础知识点统计学是一门研究收集、整理、分析和解释数据的学科,它在各个领域都扮演着重要的角色。
无论是在科学研究、商业决策还是社会政策制定中,统计学都提供了有力的工具和方法来帮助我们理解和解释数据。
本文将介绍一些统计学的基础知识点,包括数据类型、数据收集和整理、描述统计和推断统计等。
一、数据类型在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是可以用数字来表示和度量的,例如身高、体重、年龄等。
定性数据则是描述性的,不能用数字来度量,例如性别、颜色、职业等。
了解数据的类型对于选择适当的统计方法非常重要。
二、数据收集和整理数据的收集是统计研究的第一步。
收集数据的方法包括观察、实验和调查等。
观察法是通过观察现象来收集数据,实验法是通过控制变量来观察因果关系,而调查法则是通过问卷调查或访谈来收集数据。
在收集到数据后,我们需要对数据进行整理和清洗。
数据整理包括数据输入、数据编码和数据录入等步骤,确保数据的准确性和一致性。
数据清洗则是处理数据中的异常值、缺失值和离群值等,以保证数据的可靠性和可用性。
三、描述统计描述统计是对数据进行总结和描述的方法。
常用的描述统计方法包括中心趋势度量和离散程度度量。
中心趋势度量包括平均数、中位数和众数等,用于描述数据的集中程度;离散程度度量包括标准差、方差和范围等,用于描述数据的分散程度。
另外,描述统计还可以通过绘制图表来展示数据的分布和关系。
常用的图表包括条形图、饼图、直方图和散点图等,它们能够直观地展示数据的特征和趋势。
四、推断统计推断统计是基于样本数据对总体进行推断的方法。
在统计推断中,我们通过对样本数据的分析来对总体参数进行估计,并对估计结果进行推断。
常用的推断统计方法包括假设检验和置信区间。
假设检验是用来检验某个假设是否成立的统计方法。
在假设检验中,我们先提出一个原假设和一个备择假设,然后利用样本数据进行假设检验,从而得出对原假设的结论。
置信区间是对总体参数的一个范围估计。
第一篇本手册内容涵盖了统计的基本概念、常用方法和实际应用等方面,以正式、得体的语言编写而成。
一、统计基本概念1. 总体与样本:总体是研究对象的全体,样本是从总体中抽取的一部分。
2. 变量与数据:变量是表示研究对象的特征或属性的名称,数据则是具体的数值或分类结果。
3. 概率与随机抽样:概率描述事件发生的可能性,随机抽样是从总体中抽取样本的方法。
二、常用统计方法1. 描述性统计:描述数据的基本特征,包括均值、中位数、众数、方差等。
2. 推断性统计:利用样本信息推断总体特征,包括参数估计、假设检验、回归分析等。
3. 图表呈现:通过图表直观展示数据的分布、关系和变化趋势,如直方图、折线图、散点图等。
三、实际应用1. 调查设计与数据分析:运用统计方法设计调查方案,收集、整理和分析数据,得出科学结论。
2. 质量控制:通过统计方法监控生产过程,发现并解决质量问题。
3. 预测与决策:运用统计模型预测未来趋势,为决策提供依据和支持。
四、注意事项1. 样本选取要具有代表性和广泛性,避免偏见和误差。
2. 统计方法选择要合理、科学,根据研究目的和数据特点进行选择。
3. 解释统计结果时要客观、谨慎,避免过度推断和误导。
第二篇一、统计学基础知识统计学是一门研究数据收集、整理、分析和推断的科学。
在手册中,您将了解到统计学的基本概念、研究方法和应用领域。
同时,手册还会介绍统计学中的一些基本概念,如总体、个体、样本、参数、统计量等,以及不同类型的数据(定型数据、定量数据、分类数据和顺序数据)及其各自的统计方法。
二、描述性统计描述性统计是统计学中的基础部分,旨在通过各种统计指标(如均值、中位数、众数、方差、标准差等)对数据进行描述和分析。
手册将详细介绍这些指标的计算方法和适用场景,以及如何通过图表(如直方图、箱线图、散点图等)直观地展示数据的分布和规律。
三、推理性统计推理性统计是统计学中的核心部分,主要研究如何从一组数据中推断出总体特征。
统计分析学基础知识点总结一、统计学的基本概念1.总体和样本总体是指研究对象的全部个体或事物的集合,样本是从总体中抽取的部分个体或事物的集合。
在统计学中,我们通常通过对样本进行分析来进行总体的推断。
2.变量和数据类型变量是指在研究中所测量的特定属性或属性,它可以是数量变量(比如身高、体重)也可以是分类变量(比如性别、职业)。
数据类型包括定量数据和定性数据,定量数据是指其取值可以进行数值运算,定性数据是指其取值为某种类别或符号。
3.测度尺度在统计学中,我们通常将变量分为不同的测度尺度,包括名义尺度(仅仅表示事物标识的意义)、顺序尺度(表示顺序关系)、区间尺度(表示等距关系)和比率尺度(表示等比关系),不同的尺度对于统计分析的方法和技术有重要的影响。
4.概率概率是描述不确定事件发生可能性的一种数值。
在统计学中,我们通过概率来对随机事件进行描述和预测,并且使用统计概率来进行统计推断。
5.统计量统计量是指从样本数据中计算得到的数值指标,比如均值、方差、标准差等。
统计量可以帮助我们从样本数据中获取总体特征的信息,并且在假设检验、参数估计等统计推断中起到重要的作用。
6.概率分布在统计学中,我们通常通过概率分布来描述随机变量的取值概率规律。
常见的概率分布包括正态分布、均匀分布、指数分布等,它们在统计分析中都有重要的应用。
7.统计推断统计推断是指根据样本数据对总体特征进行推断的一种方法。
它包括参数估计和假设检验两种基本方法,通过这些方法,我们可以对总体参数进行估计和推断。
8.统计学的应用统计学在科学研究、社会调查、市场调查、生物医学等领域都有重要的应用,它可以帮助我们从数据中获取信息,揭示事物规律,为决策提供依据。
二、常用的统计方法和分析技术1.描述统计描述统计是指通过对数据的整理和描述来获取数据特征的一种方法。
常见的描述统计方法包括均值、中位数、众数、标准差、方差等指标,它们可以帮助我们了解数据的集中趋势和离散程度。
统计学基础知识统计学是一门研究收集、分析、解释和展示数据的学科。
它提供了一种方法,能够更好地理解和应用各种数据。
统计学在各个领域都有重要的应用,不论是在科学研究、商业决策还是社会科学中,都离不开统计学的支持。
本文将介绍统计学的基础知识,包括统计学的定义、常见的统计术语以及常用的统计方法。
一、统计学的定义统计学是一门研究如何收集、整理、分析和解释数据以及从数据中得出结论的学科。
它包括描述性统计和推论统计两个方面。
描述性统计用来总结和描述数据的特征,如平均数、中位数、频率分布等;推论统计则用来根据样本数据推断总体的特征,如置信区间、假设检验等。
二、常见的统计术语1. 总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分。
通过对样本进行统计分析,可以得到对总体的推断。
2. 变量:研究对象的属性或特征,可以是数量型(如身高、年龄)或质量型(如性别、颜色)。
3. 数据类型:数据可以分为定性和定量两种类型。
定性数据用来描述特征或分类,如性别、颜色;定量数据用来表示数量或程度,如身高、温度。
4. 频数和频率:频数是指数据中某个取值出现的次数,频率是指某个取值出现的频率,即频数除以总数。
5. 中心趋势:用来描述数据的集中程度,包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排序后的中间值,众数是出现次数最多的值。
6. 离散程度:用来描述数据的离散程度,包括极差、方差和标准差。
极差是最大观测值与最小观测值之差,方差是观测值与平均数之差的平方和的平均数,标准差是方差的平方根。
三、常用的统计方法1. 描述性统计:描述性统计用来总结和描述数据的特征。
常见的描述性统计方法包括计数、百分比、平均数、中位数、众数、极差、方差和标准差。
2. 概率分布:概率分布描述了随机变量的取值及其对应的概率。
常见的概率分布包括正态分布、泊松分布和二项分布等。
3. 推论统计:推论统计用来从样本数据中推断总体的特征,并进行统计推断。
统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。
在统计学中,常用的变量类型有两种:定量变量和定性变量。
定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。
2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。
中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。
3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。
概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。
4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。
点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。
5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。
参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。
6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。
7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。
在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。
8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。
常用的实验设计方法有完全随机设计、区组设计和受试者设计等。
以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。
中级经济师中级经济基础预习资料专题7统计学概述统计学基础知识一、统计学统计学是一门关于数据的学科,概括来讲,统计学是关于收集、整理、分析数据和从数据中得出结论的科学。
统计学有两个分支:描述统计和推断统计。
1.描述统计:描述统计是研究数据收集、整理和描述的统计学方法。
统计描述的内容包括:(1)如何取得所需要的数据;(2)如何用图表或数学方法对数据进行整理和展示;(3)如何描述数据的一般特征;2.推断统计:推断统计是研究如何利用样本数据推断总体特征的统计学方法。
推断统计的内容包括:(1)参数估计利用样本信息推断总体特征;(2)假设检验:利用样本信息判断对总体假设是否成立。
【提示】某公司要评测顾客满意度,从中随机抽取一部分顾客,调查他们对该公司的质量感知、满意状况和忠诚度等信息,再对公司顾客总体满意度情况进行估计;验证满意度高的客户更倾向于成为忠诚客。
☆快速检测☆【真题·多选】下列统计处理中,属于描述统计的有()。
(2019年真题)A.利用折线图展示生产者价格指数的变化B.利用圆形图展示居民消费支出构成C.利用图形展示居民消费价格指数的基本走势D.在某个城市随机抽取一部分居民住户对该城市居民收入进行估计E.根据1%人口抽样数据推算我国总人口【答案】ABC【解析】描述统计是研究数据收集、整理和描述的统计学方法,其内容包括如何取得所需要的数据,如何用图表或数学方法对数据进行整理和展示,如何描述数据的一般性特征。
选项ABC属于描述统计,选项DE属于推断统计。
【真题·单选】下列统计处理中,属于推断统计的是()。
(2021年真题)A.利用统计表展示2020年我国主要工业产品产量B.利用抽样调查数据估计粮食产量C.利用直方图显示分组数据频数分布特征D.利用圆形图显示居民生活支出构成【答案】B【解析】推断统计是研究如何利用样本数据来推断总体特征的统计学方法,其内容包括参数估计和假设检验两大类。
故选B。
统计学基础知识
统计学基础知识汇总
统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
你知道多少统计学基础知识呢?下面是yjbys店铺为大家带来的统计学基础知识。
欢迎阅读。
一、名词解释
1、统计学
统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
2、指标和标志
标志是说明总体单位属性或特征的名称。
指标是说明总体综合数量特征和数量关系的数字资料。
3、总体、样本和单位
统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
简称总体。
构成总体的个体则称为总体单位,简称单位。
样本是从总体中抽取的一部分单位。
4、统计调查
统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。
它是取得统计数据的重要手段。
5、统计绝对数和统计相对数
反映总体规模的绝对数量值,在社会经济统计中称为总量指标。
统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标
时期指标是反映总体在一段时期内累计总量的数字资料,是流量。
时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。
7、抽样估计和假设检验
抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。
假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异
标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。
数量标志和指标在统计中称为变量。
9、参数和统计量
参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。
统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。
10、抽样平均误差
样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。
重复抽样的抽样平均误差为总体标准差的1/。
11、抽样极限误差
抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。
我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。
12、重复抽样和不重复抽样
重复抽样也称为回置抽样,是从总体中随机抽取一个样本时,每次抽取一个样本单位时都放回的抽样方式。
不重复抽样也叫不回置抽样,它是在每次抽取样本单位时都不放回的抽样方式。
13、点估计和区间估计
点估计也叫定值估计,就是直接用抽样平均数代替总体平均数,用抽样成数代替总体成数。
区间估计是在一定概率保证下,用样本统计量和抽样平均误差去推断总体参数的可能范围的估计方法。
14、统计指数
广义上来说,它是表明社会经济现象的数量对比关系的相对指标。
狭义上来说,它是反映不能直接相加对比的复杂总体综合变动的动态相对数。
15、综合法总指数
凡是一个总量指标可以分解为两个或两个以上的因素指标时,将其中一个或一个以上的因素指标固定下来,仅观察另一个因素指标的变动程度,这样的总指数就叫综合法指数。
16、平均法总指数
平均法总指数是通过对个体指数进行加权平均而求得的反映不能直接加总的多个个体所组成的复杂总体综合变动的指数。
分为两种:加权算术平均法总指数和加权调和平均法总指数。
17、时间数列
时间数列是指同一观察现象的观察值按其发生的时间先后顺序排列而形成的数列。
时间数列也称为时间序列和动态数列。
18、相关分析和回归分析
相关分析是一种分析几个变量之间是否存在关系以及它们的关系如何的统计方法。
回归分析是指对具有显著相关关系的现象,根据其关系形态,选择一合适的数学模式,用来近似地表达变量见的平均变动关系的统计分析的方法。
19、时间序列的最初水平、中间水平和最末水平
时间数列中第一个观察值称为最处水平,最后一个观察值称为最末水平,其余各个观察值称为中间水平。
20、调查对象、调查单位和填报单位
调查对象是所要研究对象的总体。
调查单位是所要研究对象的个体。
填报单位是提交调查资料的单位。
调查单位和填报单位有时相同,有时不同。
21、环比发展速度和定基发展速度
环比发展速度是以报告期水平与其前一期水平对比,所得到的动态相对数。
表明现象逐期的发展变动程度。
定基发展速度是用报告期水平与某一固定基期水平(通常为最初水平)对比,所得到的动态相对数。
它表明所观察现象在一段时期内发展的总速度。
22、经常性调查与一次性调查的区别
两者的区分是以调查单位的登记在时间上是否具有连续性为依据的。
经常性调查的对象本身具有连续不断变化的特点。
商品零售额。
一次性调查的对象是时点现象。
如人口普查。
二、简答题
1、指标和标志的区别与联系
两者的区别:(1)指标是反映总体特征的,而标志是反映总体单位特征的。
(2)标志可以用文字来反映,也可以用数字来表示。
而指标都是用数量来表示的。
两者的联系:(1)指标是指标的汇总和综合。
(2)根据研究目的的不同,两者有时可以互换。
2、统计总体的特点
(1)同质性。
即总体单位都必须具有某些共同的品质标志属性或数量标志属性。
这是构成总体的前提。
(2)大量性。
即构成总体的总体单位数目要足够多。
这是形成总体的充分条件。
(3)差异性。
即总体单位必须具有一个或若干个可变的品质标志或数量标志。
这是形成总体的必要条件。
3、重点调查、抽样调查、典型调查的区别与联系
联系:都是非全面调查,调查对象都是总体中的一部分
区别:
4、统计绝对数的分类
(1)按其反映总体内容的不同分:总体单位总量和总体标志总量。
(2)按其反映不同的时间状况不同分:时期指标和时点指标。
(3)按其采用的计量单位的不同分:实物指标、价值指标和劳动指标。
5、时期指标和时点指标的区别
时期指标:(1)连续记数,其值可以相加(2)具有时间长度,与时间长短有关 (3)是流量
时点指标:(1)间断记数,其值不可以相加,相加无实际意义(2)不具有时间长度,与时间长短无关 (3)是存量。