正项级数的比值判别法
- 格式:docx
- 大小:11.07 KB
- 文档页数:1
正项级数的判别法分布图示★正项级数 ★比较判别法★例1 ★例2 ★例3 ★例4 ★例5★比较判别法的极限形式★例6 ★例7 ★例8 ★例9 ★例10★比值判别法 ★例11 ★例12 ★例13 ★根值判别法 ★例14 ★例15 ★例16 ★内容小结 ★课堂练习 ★习题7-2内容要点一、正项级数收敛的充要条件是:它的部分和数列}{n s 有界. 以此为基础推出一系列级数收敛性的判别法:比较判别法;比较判别法的极限形式;推论(常用结论)比较判别法是判断正项级数收敛性的一个重要方法. 对一给定的正项级数,如果要用比较判别法来判别其收敛性,则首先要通过观察,找到另一个已知级数与其进行比较,并应用定理2进行判断. 只有知道一些重要级数的收敛性,并加以灵活应用,才能熟练掌握比较判别法. 至今为止,我们熟悉的重要的已知级数包括等比级数、调和级数以及-p 级数等. 要应用比较判别法来判别给定级数的收敛性,就必须给定级数的一般项与某一已知级数的一般项之间的不等式. 但有时直接建立这样的不等式相当困难,为应用方便,我们给出比较判别法的极限形式.使用比较判别法或其极限形式,需要找到一个已知级数作比较,这多少有些困难. 下面介绍的几个判别法,可以利用级数自身的特点,来判断级数的收敛性. 比值判别法(达朗贝尔判别法):适合1+n u 与n u 有公因式且nn n u u 1lim +∞→ 存在或等于无穷大的情形.根值判别法(柯西判别法):适合n u 中含有表达式的n 次幂,且ρ=∞→n n n u lim或等于∞+的情形.积分判别法:对于正项级数,1∑∞=n na ,如果}{na 可看作由一个在),1[+∞上单调减少函数)(x f 所产生, 即有).(n f a n = 则可用积分判别法来判定正项级数∑∞=1n n a 的敛散性.例题选讲比较判别法的应用例1(E01)讨论p —级数)0(131211>+++++p np p p 的收敛性. 解 1p ≤时,,11n np≥-∴p 级数发散. 1>p 时,由图可见,11⎰-<n n p p x dx n p p p n ns 131211++++=,111111111111121-+<⎪⎭⎫ ⎝⎛--+=+=+++<--⎰⎰⎰p n p x dx x dx x dx p n n n pp p即n s 有界,-∴p 级数收敛. 当1>p 时收敛 故-p 级数 . 当1≤p 时发散例2(E02)证明级数∑∞=+1)1(1n n n 是发散的.证)1(1+n n ,11+>n 而级数∑∞-+111n n 发散, ∴∑∞-+1)1(1n n n 发散.例3(E03)判别级数∑∞=+++122)2()1(12n n n n 的收敛性.解 运用比较判别法.因22)2()1(12+++n n n 22)2()1(22+++<n n n 3)1(2+<n ,23n < 而∑∞=131n n 是收敛的,所以原级数收敛.例4(E04)设n n n b c a ≤≤),,2,1( =n 且∑∞=1n na及∑∞=1n nb均收敛, 证明级数∑∞=1n nc收敛.证 由,n n n b c a ≤≤得 ,),2,1(0 =-≤-≤n a b a c n n n n 由于∑∞=1n na与∑∞=1n nb都收敛,故)(1nn na b ∑∞=-是收敛的,从而由比较判别法知,正项级数)(1n n na c∑∞=-也收敛.再由∑∞=1n na与)(1n n na c-∑∞=的收敛性可推知: 级数∑∞=1n n c )]([1n n n na c a∑∞=-+=也收敛.例5 设⎰=40tan πxdx a nn ,证明级数∑∞=1n nna λ)0(>λ收敛. 证 由⎰=40tan πxdx a n n ⎰<402sec tan πxdx x n⎰=40tan tan πx xd n⎪⎪⎭⎫⎝⎛+=+41tan 11πx n n 11+=n n 1< 得.λλ+<<110n n a n 因为,11>+λ所以∑∞=+111n n λ收敛, 由比较判别法知∑∞=1n nn a λ收敛.比较判别法及其推论的应用例6(E05)判定下列级数的敛散性:(1) ;11ln 12∑∞=⎪⎭⎫ ⎝⎛+n n (2).cos 111∑∞=⎪⎭⎫ ⎝⎛-+n n n π解 )1(因⎪⎭⎫ ⎝⎛+211ln n ),(1~2∞→n n 故 n n u n 2lim ∞→⎪⎭⎫ ⎝⎛+=∞→2211ln lim n n n 221lim n n n ⋅=∞→1=根据极限判别法,知所给级数收敛.)2(因为 n n u n 2/3lim ∞→⎪⎭⎫ ⎝⎛-+=∞→n n u n n n πcos 11lim 2/322211lim ⎪⎭⎫ ⎝⎛⋅+=∞→n n n nn π,212π=根据极限判别法, 知所给级数收敛.比值判别法的应用例7 判别级数∑∞=++1)(n an nn a n 的敛散性. 解 记an nn n a n u ++=)(a n n n n n n a n ⎪⎭⎫ ⎝⎛+=1,1a nn n a ⎪⎭⎫⎝⎛+= 采用比较法的极限形式,取,1an n v =因 nn n v u ∞→lim nn n a ⎪⎭⎫⎝⎛+=∞→1lim a e =,0≠ 所以原级数与级数∑∞=11n an具有相同的敛散性,从而知当1>a 时,级数∑∞=++1)(n an nn a n 收敛; 当1≤a 时,级数∑∞=++1)(n an nn a n 发散.例8 判别级数∑∞=⎪⎭⎫ ⎝⎛-1sin n n n ππ的敛散性. 解 选取级数∑∞=⎪⎭⎫⎝⎛13n n π作比较.由,613cos 1lim sinlim203=-=-→→x x x n x x x π可得3sinlim ⎪⎭⎫ ⎝⎛-∞→n n n n πππ.61=因级数∑∞=⎪⎭⎫⎝⎛13n n π收敛,所以原级数也收敛.注: 从以上解答过程中可以看到极限中的某些等价无穷小在级数审敛讨论时十分有用的,事实上级数的收敛性取决于通项n u 趋向于零的“快慢”程度.根值判别法的应用例9(E06)判别级数∑∞=⎪⎭⎫⎝⎛+-11ln 1n n n n的敛散性. 解 令)1ln()(x x x u +-=),0(0>>x .)(2x x v =由于2)1ln(limx x x x +-+∞→x x x 2111lim +-=+∞→)1(21lim x x +=+∞→,21=从而2111ln 1limn n n n ⎪⎭⎫ ⎝⎛+-∞→211ln1lim nn n n n +-=∞→.21= 由级数∑∞=121n n 的收敛推知本题所给级数也收敛.例10 级数,11∑∞=n p n 当1>p 时收敛, 有人说, 因为,111>+n 故级数∑∞=+1111n nn 收敛. 你认为他的说法对吗?解 不对.前者-p 级数的p 是一常数与n 无关,而后者n11+与n 有关,事实上 n n nn /11lim11+∞→1)(lim -∞→=n n n 1=由级数∑∞=11n n 的发散性,可知级数∑∞=+1111n nn 也发散.例11(E07)判别下列级数的收敛性:(1) ∑∞=1!1n n ; (2)∑∞=110!n n n . 解 )1(n n u u 1+!/1)!1/(1n n +=11+=n ,0−−→−∞→n 故级数∑∞=1!1n n 收敛. )2(n n u u 1+!1010)!1(1n n n n ⋅+=+,∞−−→−∞→n 故级数∑∞=110!n nn 发散.例12(E08)判别级数∑∞=⎪⎭⎫⎝⎛+1212n nn n 的敛散性.解 因为n nn )12(2+,22n n <而对于级数,212∑∞=n n n 由比值判别法,因 n n n u u 1lim +∞→21222)1(lim n n n n n ⋅+=+∞→2)11(21lim n n +=∞→21=,1< 所以级数∑∞=122n nn 收敛,从而原级数亦收敛.例13 判别级数)0(!1>∑∞=a na n n n n的收敛性.解 采用比较判别法,由于nn n u u 1lim +∞→!)1()!1(lim 11n a n n n a n n n n n ⋅⋅++=++∞→n n n a )/11(lim +=∞→,e a= 所以当e a <<0时,原级数收敛;当e a >时,原级数发散;当e a =时,比值法失效,但此时注意到:数列nn n x ⎪⎭⎫ ⎝⎛+=11严格单调增加,且,e n n<⎪⎭⎫⎝⎛+11 于是,11>=+nn n x eu u 即,n n u u >+1 故,e u u n =>1 由此得到,0lim ≠∞→n n u 所以当时原级数发散.例14(E09(2))判别级数2111n n n ∑∞=⎪⎭⎫⎝⎛-的收敛性.解 一般项含有n 次方, 故可采用根值判别法. 因为n n n u ∞→lim n n n n 211lim ⎪⎭⎫⎝⎛-=∞→nn n ⎪⎭⎫⎝⎛-=∞→11lim e1=1< 故所求级数收敛.例15(E09(1))判别级数∑∞=---1)1(2n n n的收敛性:解 因为n n n u ∞→lim nn n n n)(2lim ---∞→=nn n )1(12lim ---∞→=21=1< 由根值判别法知题设级数收敛.例16 判别级数∑∞=-+12)1(2n nn的收敛性. 解 因为n 21n n 2)1(2-+≤n23≤ 而,2121lim =∞→nn n ,2123lim =∞→n n nn n nn 2)1(2lim -+∞→21=1< 故原级数收敛.。
正项级数比值判别法
正项级数比值判别法是数学中常用的一种级数收敛性判别法。
它是通过比较相邻两项的比值来判断级数的收敛性。
具体来说,如果相邻两项的比值小于1,则级数收敛;如果相邻两项的比值大于1,则级数发散;如果相邻两项的比值等于1,则无法判断级数的收敛性。
这个判别法的原理可以通过数学公式来表示。
假设有一个正项级数a1, a2, a3, …,则它的相邻两项的比值为:
lim(n→∞) an+1/an
如果这个极限存在且小于1,则级数收敛;如果这个极限存在且大于1,则级数发散;如果这个极限不存在或等于1,则无法判断级数的收敛性。
这个判别法的应用非常广泛,可以用来判断各种类型的级数的收敛性。
例如,可以用它来判断调和级数的收敛性。
调和级数是指形如
1/1 + 1/2 + 1/3 + …的级数。
根据正项级数比值判别法,调和级数的相邻两项的比值为:
lim(n→∞) (1/(n+1))/(1/n) = lim(n→∞) n/(n+1) = 1
因此,调和级数的收敛性无法判断。
实际上,调和级数是发散的,这可以通过其他方法来证明。
除了调和级数,正项级数比值判别法还可以用来判断几何级数、指
数级数、幂级数等各种类型的级数的收敛性。
在实际应用中,我们通常会结合其他的级数收敛性判别法来判断级数的收敛性,以确保判断的准确性。
正项级数比值判别法是一种非常有用的级数收敛性判别法,它可以用来判断各种类型的级数的收敛性。
在使用时,我们需要注意判断条件的准确性,以确保判断的正确性。
正项级数收敛性的判别方法正项级数是指级数的每一项都是非负数的级数。
1.比较判别法:比较判别法是通过与已知收敛(或发散)的级数进行比较,判断待定级数的收敛性。
具体有以下两种情况:a.若存在一个已知的正项级数∑a_n和正数c,使得对于所有的n,有a_n≤c*b_n,那么只要∑b_n收敛,∑a_n也收敛;b.若存在一个已知的正项级数∑a_n和正数c,使得对于所有的n,有a_n≥c*b_n,那么只要∑b_n发散,∑a_n也发散。
2.比值判别法:比值判别法是通过计算级数的项之间的比值的极限,来判断级数的收敛性。
具体步骤如下:计算序列c_n=(a_{n+1})/a_n的极限lim_{n→∞}c_n。
根据c_n的不同取值范围,可以得出以下结论:a. 若lim_{n→∞}c_n < 1,那么级数∑a_n绝对收敛;b. 若lim_{n→∞}c_n > 1,那么级数∑a_n发散;c. 若lim_{n→∞}c_n = 1,那么该判别法不确定。
3.根值判别法:根值判别法是通过计算级数的项的根的极限,来判断级数的收敛性。
具体步骤如下:计算序列c_n=(a_n)^{1/n}的极限lim_{n→∞}c_n。
根据c_n的不同取值范围,可以得出以下结论:a. 若lim_{n→∞}c_n < 1,那么级数∑a_n绝对收敛;b. 若lim_{n→∞}c_n > 1,那么级数∑a_n发散;c. 若lim_{n→∞}c_n = 1,那么该判别法不确定。
4.积分判别法:积分判别法是将级数中的每一项转化为一个函数f(x),然后通过计算该函数在区间[a,∞)上的不定积分,来判断级数的收敛性。
具体步骤如下:a.将级数的每一项a_n转化为函数f(x)在区间[a,∞)上的函数表达式;b. 计算函数f(x)在区间[a, ∞)上的不定积分∫f(x)dx;c. 若不定积分∫f(x)dx收敛,那么级数∑a_n收敛;d. 若不定积分∫f(x)dx发散,那么级数∑a_n发散。
总结正项级数判别法的原理1.引言在学习数学中,我们经常会遇到各种各样的级数。
其中正项级数是一种比较特殊的级数,它是由一串正数相加而成的级数。
正项级数判别法是判断正项级数是否收敛的一种方法。
本篇文章将详细介绍正项级数判别法的原理及其应用。
2.原理正项级数判别法是在判断正项级数收敛的时候使用的一种方法。
正项级数指的是级数的各个项都是正数。
在判断正项级数是否收敛的时候,我们需要用到一个非常重要的原理:比较原理。
比较原理是正项级数判别法的核心原理。
以下是比较原理的两种形式:-若级数$\sum_{n=1}^{\infty}a_n$收敛,且对于所有$n\in N^+$,都满足$0\le b_n\le a_n$,则级数$\sum_{n=1}^{\infty} b_n$也收敛;-若级数$\sum_{n=1}^{\infty}b_n$发散,且对于所有$n\in N^+$,都满足$0\le b_n\le a_n$,则级数$\sum_{n=1}^{\infty} a_n$也发散。
比较原理的第一个形式说明了一个结论:“如果一个级数收敛,那么它的任何小于等于它的级数也收敛”。
这个结论非常重要,因为它让我们可以用更容易处理的级数来代替意义相同但更复杂的级数。
比较原理的第二个形式则说明了另一个结论:“如果一个级数发散,那么所有大于等于它的级数都发散”。
这个结论同样非常重要,因为它让我们可以用更容易处理的级数来判断一个级数是否发散。
在使用比较原理判断正项级数的收敛性时,我们需要找到一个小于等于该级数的级数,并且我们知道这个小于等于级数的级数是收敛的或者发散的。
如果这个小于等于级数的级数是收敛的,那么原级数也一定收敛;如果这个小于等于级数的级数是发散的,那么原级数也一定发散。
以上就是正项级数判别法的核心原理:比较原理。
接下来,我们将探讨在实际运用中如何找到一个小于等于该级数的级数,并且如何判断这个小于等于级数的级数是收敛的还是发散的。
无穷极数中的几个典型反例一、正项级数中比值判别法和根值判别法的反例(1) 比值差别法:例1:1(1)3nn ∞=+-∑级数1(1)3nn ∞=+-∑发散,但极限1limn n nu u +→∞并不存在因为级数13n ∞=∑发散而级数1(1)3nn ∞=-∑收敛。
所以级数1(1)3nn ∞=+-∑发散。
而11(1)n n nu u +++-=11(1)limlimn n n n nu u ++→∞→∞+-=并不存在。
当然,p-级数∑∞=11n np也是一个典型的反例, 1limn n nu u +→∞=1,但当p>1时收敛;1≤p 时,发散。
(2) 根值判别法:例2:1(1)3nnn ∞=⎤-⎥⎣⎦∑级数13nn ∞=⎣⎦∑收敛,但lim lim3n n →∞→∞=并不存在。
(1)21033nnn⎡⎤⎛⎫+-≤≤ ⎪⎢⎥ ⎪⎣⎦⎝⎭而113nn ∞=⎛⎫⎪ ⎪⎝⎭∑收敛(公比小于1的等比级数)。
由比较判别法,1(1)3nnn ∞=⎤+-⎥⎣⎦∑(1)3n-=是摆动数列。
故(1)limlim3nn n →∞→∞-=不存在。
注:在正项级数的敛散性判别中,比值判别法和根值判别法使用起来非常方便,但是它成立的条件是充分而非必要的。
二、 交错级数中使用莱布尼兹差别法的反例在交错级数的敛散性判别中,莱布尼兹判别法使用起来非常方便,但是有些情况下的交错级数不满足条件。
例3:2(1)nn ∞=-∑1n u =显而易见满足lim 0n n u →∞=,而不满足。
1(1,2,)n n u u n +≥= , 但作为任意项级数(1)(1)1(1)111n nnn n u n n n ⎤---⎣⎦===-----由级数21n n ∞=-∑收敛,而级数211n n ∞=-∑发散知,级数2nn ∞=∑发散。
例4: nn nn )1(1)1(2-+-∑∞=nn nn )1(1)1(2-+-∑∞==111)1(1))1(()1(222----=----n n n n n nnn,根据莱布尼兹判别法易知交错级数∑∞=--221)1(n nn n 收敛,而∑∞=-2211n n 收敛,所以原级数nn nn )1(1)1(2-+-∑∞=是收敛的。
级数判别法基本定理:正项级数收敛的充要条件是:∑∞=1n n a的部分和数列}{n S 有界。
1、 比较判别法:设∑∞=1n n a 和∑∞=1n n b是两个正项级数,且存在0>N ,使当N n >时,有不等式n n b a ≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。
○2:∑∑∞=∞=⇒101n n n n ba 发散发散。
2、 比较判别法极限形式:设∑∞=1n na 和∑∞=1n nb 是两个正项级数,且λ=+∞→n nn b a lim,则:○1:当+∞<<λ0时,∑∞=1n na 和∑∞=1n n b具有相同的敛散性。
○2:当0=λ时,∑∞=1n n b 收敛∑∞=⇒1n na 收敛。
○3:当+∞=λ时,∑∞=1n n b 发散∑∞=⇒1n na 发散。
3、 比较判别法II :设有两正项级数∑∑∞=∞=101n nn n b a 和,)0,0(≠≠n n b a 满足:nn n n b b a a 11++≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。
○2:∑∞=1n na发散∑∞=⇒1n n b发散。
4、 比值判别法(达朗贝尔):设∑∞=1n n a为正项级数,则:1°若当n 充分大时有:11<≤+q a a n n ,则级数∑∞=1n n a 必收敛。
2°若当n 充分大时有:11≥+n n a a ,则级数∑∞=1n n a 必发散。
5、 达朗贝尔判别法的极限形式:设∑∞=1n n a为正项级数,且2111lim limλλ==+∞→+∞→n n n n n n a a,a a ,+∞≤2,1λ,则:1°:当11<λ时,级数∑∞=1n n a 收敛。
2°:当12>λ时,级数∑∞=1n n a 发散。
6、 根值判别法(Cauchy ):设∑∞=1n n a为正项级数,则:1°:若当n 充分大时,有1<≤q a nn ,则级数∑∞=1n na 必收敛。
1.正项级数的比值判别法是什么?
答:后项比前项、大于1发散、小于1收敛。
正项级数,是一种数学用语。
在级数理论中,正项级数是非常重要的一种,对一般级数的研究有时可以通过对正项级数的研究来获得结果,就像非负函数广义积分和一般广义积分的关系一样。
所谓正项级数是这样一类级数:级数的每一项都是非负的。
正项级数收敛性的判别方法主要包括:利用部分和数列判别法、比较原则、比式判别法、根式判别法、积分判别法以及拉贝判别法等。
若数项级数各项的符号都相同,则称它为同号级数。
对于同号级数,只需研究各项都是由正数组成的级数,称它为正项级数。
如果级数的各项都是负数,则它乘以-1后就得到一个正项级数,它们具有相同的敛散性。