第二节正项级数及其收敛法
- 格式:ppt
- 大小:727.50 KB
- 文档页数:33
数项级数2 正项级数的收敛性一、本节的例题选讲如下,后面附有详细的解答过程。
例1 讨论级数∑∞=−12141n n 的收敛性。
例2 讨论级数∑∞=−123n n n 的收敛性。
例3 讨论级数∑∞=−1253n n n n的收敛性。
例4 讨论级数∑∞=11sinn n的收敛性。
例5 讨论级数∑∞=⎪⎭⎫ ⎝⎛−11cos 1n n 的收敛性。
例6 讨论级数n n n πtan 23∑∞=的收敛性。
例7 讨论级数()∑∞=++3312n n n n 的收敛性。
例8 讨论级数()∑∞=>+1011n na a 的收敛性。
例9 讨论级数∑∞=−12121n n的收敛性。
例10 讨论级数∑∞=⎪⎭⎫⎝⎛+111ln n n 的收敛性。
例11 讨论级数∑∞=12sinn nπ的收敛性。
例12 讨论级数∑∞=122sinn nn π的收敛性。
例13 讨论级数()11!2nn n ∞=+∑的收敛性。
例14 讨论级数∑∞=123n n n 的收敛性。
例15 讨论级数∑∞=1!10n nn 的收敛性。
例16 讨论级数∑∞=−1212n nn 的收敛性。
例17 讨论级数∑∞=123n n n 的收敛性。
例18 讨论级数∑∞=12tann nn π的收敛性。
例19 讨论级数()[]∑∞=+11ln 1n n n 的收敛性。
例20 讨论级数123nn n n ∞=⎛⎫⎪−⎝⎭∑的收敛性。
二、上面例题的详细解答。
情况1 利用比较讨论法及其极限形式讨论正项级数的收敛性 例1 讨论级数∑∞=−12141n n 的收敛性。
解:∑∞=−12141n n 和11n n∞=∑都是正项级数,1limlim 2n n n→+∞→+∞==,调和级数11n n∞=∑发散,∴由比较判别法可知,级数∑∞=−12141n n 发散。
例2 讨论级数∑∞=−123n n n 的收敛性。
解: ∑∞=−123n n n 和211n n ∞=∑都是正项级数,22lim lim 3n n n →+∞==, P −级数211n n∞=∑收敛,∴由比较判别法可知,级数∑∞=−123n n n 收敛。