级数敛散性判别方法的归纳
- 格式:docx
- 大小:37.18 KB
- 文档页数:3
判断级数的敛散性的方法要判断级数的敛散性,我们可以使用不同的方法和定理。
下面我将介绍一些常用的方法和定理。
1. 常比较法:常比较法是判断级数收敛性最常用的方法之一。
当我们需要确定一个级数是否收敛时,我们可以将它与一个已知收敛或发散的级数进行比较。
1.1. 比较法:设a_n和b_n是两个正数列,若对于n>N,总有a_n≤b_n,则有以下结论:a) 若级数∑b_n收敛,则级数∑a_n也一定收敛;b) 若级数∑a_n发散,则级数∑b_n也一定发散。
1.2. 极限比较法:设a_n和b_n是两个正数列,若存在正数λ,使得对于足够大的n,总有0≤a_n / b_n ≤λ,则有以下结论:a) 若级数∑b_n收敛,则级数∑a_n也一定收敛;b) 若级数∑a_n发散,则级数∑b_n也一定发散。
使用比较法时,我们可以通过找到一个已知的收敛或发散的级数,将其与我们需要判断的级数进行比较。
根据比较的结果,我们可以得出结论。
2. 极限判别法:极限判别法是一种通过普遍公式或形式上的特殊处理,通过对级数的极限进行判断来判断级数的敛散性的方法。
2.1. 根值判别法:设a_n≥0,乘幂项是级数常见的形式之一,即∑a_n的n次方。
如果存在正数p 使得lim(n→∞)√n*a_n = a,则有以下结论:a) 若a < 1,则级数∑a_n收敛;b) 若a > 1,则级数∑a_n发散;c) 若a = 1,则极限判别法不能确定级数的敛散性。
2.2. 比值判别法:设a_n≠0,存在lim(n→∞) a_n+1 / a_n = q,则有以下结论:a) 若q < 1,则级数∑a_n绝对收敛;b) 若q > 1,则级数∑a_n发散;c) 若q = 1,则极限判别法不能确定级数的敛散性。
2.3. 积分判别法:对于一些形式上类似于函数积分的级数,我们可以使用积分判别法来判断其敛散性。
设f(x)是一个连续正函数,自变量x在[a, ∞)上连续递减,则有以下结论:a) 若∫(a, ∞) f(x) dx收敛,则级数∑f(n)从n = a到∞收敛;b) 若∫(a, ∞) f(x) dx发散,则级数∑f(n)从n = a到∞发散。
关于正项级数敛散性判定方法的总结比较1. 引言1.1 介绍正项级数是数学中一个非常重要的概念,它在数学分析、实变函数论等领域都有着广泛的应用。
正项级数的收敛性质对于理解数学问题、解决实际问题都有着重要的意义。
在研究正项级数的收敛散性判定方法时,我们可以利用一些常用的方法来对其进行分析和求解。
在数学中,我们经常会遇到各种各样的级数,如调和级数、几何级数等。
这些级数的收敛性质可能相差甚远,有些级数可能收敛,而有些级数可能发散。
我们需要通过一些方法来判断一个级数是否收敛。
对于正项级数而言,有一些常用的判定方法,如比较判别法、根值判别法、积分判别法、对数判别法等。
本文将重点介绍正项级数的收敛散性判定方法,通过比较这些方法的特点和适用范围,帮助读者更好地理解正项级数的收敛性质。
希望本文能够为相关领域的研究者提供一些帮助,并为未来的研究工作提供一定的参考。
1.2 研究意义正项级数是数学中重要的研究对象,对其收敛和发散性进行判定具有重要的理论和实际意义。
正项级数的收敛性判定可以帮助我们了解无穷级数的性质,进一步推导出一些重要的数学定理和结论。
正项级数在实际问题中的应用十分广泛,比如在概率论、统计学、物理学等领域都有着重要的应用价值。
通过对正项级数的收敛性进行准确判断,可以帮助我们更好地理解和解决实际问题。
研究正项级数的收敛性判定方法,可以拓展数学领域中的知识体系,丰富数学理论的内涵,推动数学学科的发展。
深入研究正项级数的收敛性判定方法具有重要的研究意义和实际应用价值。
1.3 研究现状正项级数是数学中重要的概念,其收敛性对于分析问题的解决具有重要的意义。
关于正项级数的收敛性判定方法,已经有许多经典的理论成果,这些方法在实际问题的解决中发挥着重要作用。
在研究现状方面,正项级数的收敛性已经得到了深入的研究和总结。
目前常用的级数收敛判定方法有比较判别法、根值判别法、积分判别法和对数判别法。
这些方法各有特点,能够适用于不同类型的正项级数,为研究者提供了多种选择。
摘要级数理论是数学分析的重要组成部分,研究级数对于深入探讨数学分析问题有着深远的意义。
级数理论中最重要的问题和学者研究最多的问题则是关于级数收敛与发散的问题。
级数的收敛与发散性质更是级数存在当中的最基本的立足点。
基于级数发散和收敛的问题,本文对级数进行了比较详细和系统的介绍,并在级数收敛性方面进行了较为详细的概括,包括级数的分类和收敛性的总结和应用。
本文第一个部分首先对常见的级数:常数项级数、正项级数、交错级数、函数项级数、幂级数、傅立叶级数,进行了大概的介绍,并从常见级数的定义、常见级数的分类、级数收敛发散的充要条件和对应级数常用的收敛判别方法进行详细的分析概括。
本文的第二个部分针对具体的级数收敛方法,从方法的定义和方法的具体例子应用两个方面对其进行较为全面的介绍和分析,其中包括:判别级数发散与收敛的简单方法、比较判别法、比值判别法、高斯判别法、达朗贝尔判别法、对数判别法、积分判别法、拉贝判别法、柯西判别法。
最后,本文第三部分通过整理级数散敛性判断的方法,对本文进行一个综合的概括,主要从基于级数类型的方法和基于通项特征的方法两个方面总结了解答收敛性问题的分析思路和如何更快的寻找有效的方法。
关键词:级数敛散性方法AbstractProgression theory is an important part of the mathematical analysis. The study of series is of profound significance for further discussing mathematical analysis problems. Series convergence and divergence problem is the most important question in progression theory that many researchers research on. For the analysis, series convergence and series divergence is of the basic foothold existing in mathematical analysis.Firstly, based on the series convergence and series divergence, this thesis gives a detailed and systematical introduction to series, and a more detailed summary of series convergence, including the classification of series, application of convergence. Firstly, this paper has a general introduction to common series, including constant series, series of positive term, staggered series, series with function terms, power series, fourier series. Besides, the paper has detailed analysis and summary of the definition of common series, the classification of common series, and the sufficient and necessary conditions for the convergence series, together with the commonly used identification methods of corresponding series.And then the second part of this article has a comprehensive introduction and analysis of the method’s definition and specific examples application of the method, including: simple method distinguishing the divergence of a series , comparative method, ratio method, Gauss method, D'Alembert discriminant method, Logarithmic method, integral method, Rabe method, and Cauchy method.Finally, the third part of this paper made a comprehensive summary through sorting out identifying methods of series convergence and divergence. Based on the types of series and the methods of general term characteristics, this paper summarized the analysis mentality and effective ways of solutions to convergence problem.Key words: Series Convergence Mathod第一章引言级数理论是数学分析的重要组成部分,与极限理论有密切的联系,它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。
级数的收敛与发散判定在数学中,级数是由一系列数相加而得到的无穷和。
研究级数的性质是数学分析的重要内容之一。
在本文中,我们将探讨级数的收敛与发散判定方法。
一、级数的定义与初步讨论首先,我们回顾一下级数的定义。
对于给定的数列{an},级数可以表示为∑an(n从1到无穷大)。
在判断级数的收敛与发散之前,我们先来了解一些基本概念。
1.1 部分和级数的部分和是指级数中前n项的和,记作Sn=∑an(n从1到n)。
部分和序列{Sn}是由n个部分和构成的数列,通过研究部分和序列,我们可以得到级数的一些性质。
1.2 收敛与发散对于给定的级数,如果它的部分和序列{Sn}存在有限的极限L,则称该级数收敛,记作∑an=L。
如果部分和序列{Sn}不存在有限的极限,即极限不存在或为无穷大,则该级数发散。
1.3 收敛级数与发散级数在收敛的级数中,部分和序列的极限L称为级数的和或总和。
对于发散的级数,则没有和的概念。
二、级数的收敛判定方法在实际计算中,我们需要确定给定级数的收敛性。
下面介绍一些常见的级数收敛判定方法。
2.1 正项级数判别法如果级数的每一项都是非负数,并且级数的部分和序列{Sn}有界,则该级数收敛。
这种情况下,我们可以直接计算出级数的和。
2.2 比较判别法比较判别法是通过将给定级数与已知的收敛或发散级数进行比较来判断级数的收敛性。
2.2.1 比较判别法之比较定理设∑an 和∑bn是两个级数,如果对于n充分大的正整数n,有0≤an≤bn,则以下结论成立:a) 当∑bn收敛时,∑an收敛;b) 当∑an发散时,∑bn发散。
2.2.2 比较判别法之极限形式设∑an 和∑bn是两个级数,并有an/bn的极限存在且为正数L。
则以下结论成立:a) 当L<∞时,若∑bn收敛,则∑an收敛;b) 当L>0时,若∑bn发散,则∑an发散。
2.3 比值判别法比值判别法使用级数的项之间的比值来判断级数的收敛性。
此处省略其他相关判别法...三、级数的发散判定方法除了判断级数的收敛性外,我们还需要关注级数的发散性。
华北水利水电大学课题 : 数项级数敛散性判别方法(总结)专业班级:水利港航39班成员组成:丁哲祥 201203901联系方式:2012.05.23数项级数敛散性判别法(总结)摘要:数项级数是逼近理论中的重要内容之一,也是高等数学的重要组成部分。
本章我们先介绍数项级数的一些基本性质和收敛判别方法然后讨论函数的幂级数展开和三角级数展开。
我们这学期学习过的数项级数敛散性判别法有许多,本文对数项级数敛散性的判别方法进行了分析归纳总结,得到的解题方法。
以便我们更好的掌握它。
关键词:数项级数敛散性判别方法总结Several series gatheredof the criterion scattered method (summary) Abstract:The sequence series is one of the main contents in the mathematical analysis. We learn this semester the several series gathered of the criterio n has many scattered method, this paper folding a series of logarithm scat tered discriminant method is analyzed sum-up, get the problem solving m ethod.Key words: Several series; Gathered scattered sex; Identifying method; a nalysis summary一. 数项级数的定义 :● 数项级数的定义设{a n }是一个数列,则称表达式a 1+a 2+a 3+…a n +… 为(常数项)无穷级数,简称数项级数或级数,记为∑∞=1n n a 或∑n a 称a n 为级数的通项或一般项。
正项级数敛散性的判别刘 兵 军无穷级数是数学分析的重要内容,是表示函数、研究函数的性质以及进行数值计算的一种工具。
级数在无穷级数中占据了较大的比重,其题型丰富且灵活。
本文给出了正项级数敛散性的各种判别方法,通过典型例题的讲解,使学员能以尽快掌握正项级数敛散性的判断问题。
一. 常数项级数的概念所谓无穷级数就是把无穷多个数按照一定的顺序加起来,所得的和式。
对于数列 ,,,,21n u u u ,由此数列构成的表达式+++++n u u u u 321叫做无穷级数,简称级数,记为∑∞=1n n u ,即+++++=∑∞=n n nu u u u u 3211, (1)其中第n 项n u 叫做级数(1)的一般项。
级数(1)的前n 项的和构成的数列n n u u u s +++= 21, ,3,2,1=n(2)称为级数(1)的部分和数列。
根据部分和数列可得级数敛散性及和的定义。
定义 如果级数(1)的部分和数列n s 有极限,即存在常数s ,使得=∞→n n s lim s ,则称级 数(1)收敛,极限s 称为级数(1)的和;否则称级数(1)发散。
级数收敛的必要条件 如果级数(1)收敛,则其一般项n u 趋于零。
二. 正项级数敛散性的判别由正数和零构成的级数称为正项级数。
比较审敛法是判别正项级数敛散性的一种常用且非常有效的方法。
比较审敛法 如果正项级数∑∞=1n n v 收敛,且满足),3,2,1( =≤n v u n n ,则∑∞=1n n u 收敛;如果正项级数∑∞=1n n v 发散,且满足),3,2,1( =≥n v u n n ,则∑∞=1n n u 发散;比较审敛法只适用于正项级数敛散性的判别,而寻求合适的级数∑∞=1n n v 是解题的关键。
几何级数∑∞=-11n n aq和p-级数∑∞=11n p n 常用来充当比较审敛法中的级数∑∞=1n n v 。
例1 证明级数∑∞=+1221n n 是收敛的。
关于正项级数敛散性判定方法的总结比较摘要:本文将对正项级数的敛散性问题进行研究,引入常用的比较判别法和比值判别法,而后再给出相应的级数作为比较尺度后,得到了相应的达朗贝尔判别法和柯西根式判别法,并给出了相应的极限形式和上下极限形式的版本。
在采用更加精细的级数作为比较尺度后,引出了拉贝尔判别法,并对上述的几种方法进行了总结和分析。
关键词:正项级数敛散性达朗贝尔判别法柯西根式判别法拉贝尔判别法引言随着正负无穷的引入,人们对于数字的理解不再拘泥于传统意义上的有限数字。
此时,关于一列已知序列求和的敛散性问题便应运而生。
如何判断一列序列求和是有限的还是发散的,成为数学分析中的一个重要问题,受到了很多的关注和研究,产生了诸如比较判别法、达朗贝尔判别法和柯西根式判别法等等。
本文将对目前常用的一些判定方法进行归纳,并对它们的适用性和局限性进行分析。
一、比较判别法、比值判别法及达朗贝尔判别法我们在本节中将介绍三种常用的判别方法——比较判别法、比值判别法和达朗贝尔判别法,在引入序列的上下极限以后,给出极限形式和上下极限形式下的达朗贝尔判别法,从而使得达朗贝尔判别法得到很好的总结和完善。
而后改变比较级数的尺度,对达朗贝尔判别法进行推广,引入拉贝尔判别法,使得比较变得更加的精细和准确[1]。
1.比较判别法和比值判别法当我们遇到一个未知的序列以后,我们可以将它与已知的收敛或者发散的序列进行比较,进而来判断它的敛散性,从而诞生了比较判别法和比值判别法。
为了下文的行文的简单性,我们用符号来表示[2]。
定理1(比较判别法)假设级数和均为正项级数,那么我们有:(1)如果收敛且存在和,使得,,那么也收敛;(2)如果发散且存在和,使得,,那么也发散。
为了方便使用,我们这里引入极限形式的比值判别法.推论1设级数和均为正项级数令则有:(1)如果收斂,且,那么也收敛;(2)如果发散,且,那么也发散。
同样的,对于严格的正项级数我们可以得到如下的比值判别法.定理2(比值判别法)假设级数和都是严格的正项级数,那么我们有:(1)如果收敛,且存在,使得,,那么也收敛;(2)如果发散,且存在,使得,,那么也发散。
摘要级数理论是数学分析的重要组成部分,研究级数对于深入探讨数学分析问题有着深远的意义。
级数理论中最重要的问题和学者研究最多的问题则是关于级数收敛与发散的问题。
级数的收敛与发散性质更是级数存在当中的最基本的立足点。
基于级数发散和收敛的问题,本文对级数进行了比较详细和系统的介绍,并在级数收敛性方面进行了较为详细的概括,包括级数的分类和收敛性的总结和应用。
本文第一个部分首先对常见的级数:常数项级数、正项级数、交错级数、函数项级数、幂级数、傅立叶级数,进行了大概的介绍,并从常见级数的定义、常见级数的分类、级数收敛发散的充要条件和对应级数常用的收敛判别方法进行详细的分析概括。
本文的第二个部分针对具体的级数收敛方法,从方法的定义和方法的具体例子应用两个方面对其进行较为全面的介绍和分析,其中包括:判别级数发散与收敛的简单方法、比较判别法、比值判别法、高斯判别法、达朗贝尔判别法、对数判别法、积分判别法、拉贝判别法、柯西判别法。
最后,本文第三部分通过整理级数散敛性判断的方法,对本文进行一个综合的概括,主要从基于级数类型的方法和基于通项特征的方法两个方面总结了解答收敛性问题的分析思路和如何更快的寻找有效的方法。
关键词:级数敛散性方法AbstractProgression theory is an important part of the mathematical analysis. The study of series is of profound significance for further discussing mathematical analysis problems. Series convergence and divergence problem is the most important question in progression theory that many researchers research on. For the analysis, series convergence and series divergence is of the basic foothold existing in mathematical analysis.Firstly, based on the series convergence and series divergence, this thesis gives a detailed and systematical introduction to series, and a more detailed summary of series convergence, including the classification of series, application of convergence. Firstly, this paper has a general introduction to common series, including constant series, series of positive term, staggered series, series with function terms, power series, fourier series. Besides, the paper has detailed analysis and summary of the definition of common series, the classification of common series, and the sufficient and necessary conditions for the convergence series, together with the commonly used identification methods of corresponding series.And then the second part of this article has a comprehensive introduction and analysis of the method’s definition and specific examples application of the method, including: simple method distinguishing the divergence of a series , comparative method, ratio method, Gauss method, D'Alembert discriminant method, Logarithmic method, integral method, Rabe method, and Cauchy method.Finally, the third part of this paper made a comprehensive summary through sorting out identifying methods of series convergence and divergence. Based on the types of series and the methods of general term characteristics, this paper summarized the analysis mentality and effective ways of solutions to convergence problem.Key words: Series Convergence Mathod第一章引言级数理论是数学分析的重要组成部分,与极限理论有密切的联系,它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。
级数敛散性判别方法的归纳(西北师大)摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。
关键词:级数 ;收敛;判别 ;发散一. 级数收敛的概念和基本性质给定一个数列{},形如n u ①n u u u +++21称为无穷级数(常简称级数),用表示。
无穷级数①的前n 项之和,记为∑∞=1n n u = ②∑==nn n n u s 1n u u u +++ 21称它为无穷级数的第n 个部分和,也简称部分和。
若无穷级数②的部分和数列{}收敛于s.则称无穷级数收敛,若级数的部分和发散则称级数n s ∑∞=1n n u 发散。
∑n v 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理:定理1若级数和都收敛,则对任意的常数c 和d ,级数∑n u ∑n v 亦收敛,且=c +d )(n n dv cu ∑+)(n n du cu ∑+∑n u ∑nv 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。
定理4 级数①收敛的充要条件是:任给>0,总存在自然数N ,使得当εm >N 和任意的自然数,都有<εp p m m m u u u ++++++ 21以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。
由于级数的复杂性,以下只研究正项级数的收敛判别。
二 正项级数的收敛判别各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{}有界,即存在某正整数M ,对一切正整数 n 有<M 。
无穷级数敛散性判别无穷级数在数学中扮演着重要的角色,我们经常需要判别一个级数是否收敛。
级数的收敛意味着其和存在,而发散则意味着级数的和不存在。
在实际问题中,我们经常需要确定级数的敛散性,因为这关系到级数所代表的数学模型的有效性和可行性。
1. 定义首先,让我们来看一下无穷级数的定义。
一个无穷级数是指形如a1+a2+a3+...的数列之和,其中a n称为级数的第n个项。
当我们讨论级数的敛散性时,我们实际上是在讨论级数的部分和序列是否收敛。
2. 级数收敛的判别条件接下来,我们来介绍一些常见的级数敛散性判别方法。
2.1 收敛级数对于一个正项级数$\\sum a_n$,如果数列$\\{s_n\\}$的部分和序列收敛,即$\\lim_{n\\to\\infty} s_n = s$存在,则该级数收敛,其中s n=a1+a2+...+a n。
2.2 正项级数收敛判别法正项级数$\\sum a_n$的比较判别法和比值判别法是常用的方法之一。
当我们能找到一个收敛级数$\\sum b_n$,使得对于足够大的n,恒有$a_n \\leq b_n$,则级数$\\sum a_n$也收敛。
同样,如果$\\lim_{n\\to\\infty} \\frac{a_{n+1}}{a_n} = L$存在,且L<1,则级数$\\sum a_n$收敛。
2.3 绝对收敛级数与条件收敛级数当级数的所有项取绝对值后构成的级数收敛时,称原级数为绝对收敛级数。
对于绝对收敛级数,我们通常可以改变项的次序而不改变级数的和。
如果级数收敛但不绝对收敛,则称之为条件收敛级数。
2.4 整数幂级数对于整数幂级数$\\sum a_nx^n$,我们可以利用收敛半径的计算来判别级数的敛散性。
收敛半径R是一个重要的概念,使得级数在|x|<R时一定收敛,在|x|>R 时一定发散。
3. 发散级数当级数的部分和序列$\\{s_n\\}$发散时,级数也称为发散级数。
级数收敛与发散的判定方法及其实际应用级数收敛与发散是数学中重要的概念,对于数学的发展与实际应用具有深远的影响。
本文将介绍级数收敛与发散的判定方法及其实际应用,并探讨其在现实生活中的应用。
首先,我们先来了解级数的定义。
级数是由一列数的和组成的数列,表示为S_n=a_1+a_2+...+a_n,其中a_1,a_2,...是级数的项。
一、级数收敛的判定方法:1. 极限判别法(常用方法):若lim(n→∞)a_n=0且|a_n+1/a_n|<1,则级数收敛;若|a_n+1/a_n|≥1,则级数发散。
2. 比值判别法:若lim(n→∞)|a_n+1/a_n|<1,则级数收敛;若lim(n→∞)|a_n+1/a_n|>1或不存在,则级数发散。
3. 根值判别法:若lim(n→∞)|a_n|^(1/n)<1,则级数收敛;若lim(n→∞)|a_n|^(1/n)>1或不存在,则级数发散。
4. 正项级数收敛(或发散)判别法:若级数的每一项都大于等于零,且具有收敛(或发散)的对比级数,则该级数收敛(或发散)。
二、级数收敛与发散的实际应用:1. 科学领域中的级数应用:在物理学和工程学中,级数方法广泛用于求解近似解的问题。
例如,泰勒级数可以用来近似某些函数,从而简化复杂的数学问题。
2. 金融领域中的级数应用:级数方法常用于计算复利问题。
例如,复利计算中的年金问题可以转化为级数求解,通过计算级数的和来得到最终结果。
3. 统计学中的级数应用:在概率论和统计学中,级数法常用于描述概率分布和求解随机变量的期望。
级数方法使得随机变量的分析更加简洁和系统。
4. 数据处理中的级数应用:在信号处理和图像处理中,级数法可以用于压缩和去噪等方面。
通过级数收敛的性质,可以对信号进行最优化处理。
三、级数收敛与发散的重要性:1. 级数作为一类特殊的数列,在数学理论中具有重要的地位。
深入理解级数的收敛与发散性质,对于推动数学理论发展具有积极的影响。
级数敛散性判别方法的归纳
级数是数列之和的概念在数学中的推广。
级数的敛散性是数学中的一个重要问题,判别级数的敛散性常用的有几个方法,包括比较判别法、比值判别法和积分判别法。
下面我们将对这几种方法进行详细的归纳阐述。
一、比较判别法(包括比较判别法和比较判别法的极限形式)
比较判别法的基本思想是用一个已知的级数和未知的级数进行比较,从而判断未知级数的敛散性。
1.比较判别法
对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有a_n≤cb_n成立,那么:
(1)若∑b_n收敛,则∑a_n也收敛。
(2)若∑b_n发散,则∑a_n也发散。
2.比较判别法的极限形式
对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有lim(a_n/b_n)=c成立,那么:
(1)若0<c<∞,则∑b_n收敛或发散,则∑a_n也收敛或发散。
(2)若c=0,则∑b_n收敛,则∑a_n也收敛。
(3)若c=∞,则∑b_n发散,则∑a_n也发散。
比较判别法适用于一些特殊情况,如∑(1/n^p)的敛散性可以通过与调和级数∑(1/n)做比较来判断。
二、比值判别法
比值判别法的基本思想是通过比较级数的相邻项之比的极限值,从而判断级数的敛散性。
对于正项级数∑a_n,计算lim(a_(n+1)/a_n),若这个极限存在:
(1)若0≤lim(a_(n+1)/a_n)<1,级数收敛;
(2)若lim(a_(n+1)/a_n)>1或lim(a_(n+1)/a_n)=∞,级数发散;
(3)若lim(a_(n+1)/a_n)=1,比值判别法无效,需使用其他方法。
比值判别法适用于一些具有指数函数的级数,如幂级数∑(x^n)的敛散性可以通过计算lim(x^(n+1)/x^n),进而判断。
三、积分判别法
积分判别法是通过将级数转化为函数积分的形式,从而判定级数的敛散性。
对于正项级数∑a_n,若存在函数f(x),使得f(x)满足以下条件:(1)f(x)在区间[1,+∞)上连续非负递减;
(2)级数∑a_n与函数积分∫f(x)dx存在以下关系:a_n=f(n),则(a)若∫f(x)dx在区间[1,+∞)上收敛,则级数∑a_n也收敛;
(b)若∫f(x)dx在区间[1,+∞)上发散,则级数∑a_n也发散。
积分判别法适用于一些存在复杂函数的级数,如指数函数与三角函数的组合级数。
需要注意的是,以上的判别方法适用于正项级数,对于一般级数,需要先进行正项分解,并在判别过程中考虑正负项的情况。
综上所述,比较判别法、比值判别法和积分判别法是判别级数敛散性常用的方法。
在应用这些方法时,我们需要根据级数的形式选择合适的判别方法,并进行适当的计算和推导,才能得出对级数敛散性的准确判断。