数学分析(1)复习要点
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
数分一知识点总结
1.实数与完备性:实数是数学分析的基础,它包括有理数和无理数两部分。
实数的完备性是指实数域中任意一个非空有上界的集合都有最小上界。
这个性质为后续的极限理论和微积分的发展奠定了基础。
2.函数的极限:函数的极限是数学分析中的一个重要概念,它描述了当自变量趋于某个特定值时,函数值的趋势。
函数的极限性质和计算方法在理解和运用后续微积分知识中起着至关重要的作用。
3.函数的连续性:函数的连续性是指函数在某一点的极限值等于函数在该点的取值。
连续函数在实际问题中有着广泛的应用,例如物理问题中的速度、加速度等都可以通过连续函数来描述。
4.微分:微分是微积分的基础,它描述了函数在某一点处的变化率。
微分的概念是牛顿和莱布尼茨独立发现的,是微积分的开端。
5.积分:积分是微积分的另一个重要组成部分,它是对函数的面积或曲线下的总变化量的求和。
积分和微分是微积分的两个互逆的运算,它们构成了微积分学的基本理论。
以上是数学分析中的一些重要知识点的简要总结,数学分析作为数学的基础课程,对于后续的数学知识和理论都有着重要的作用。
希望通过本篇文章的总结,读者能够更好地理解和掌握数学分析的相关知识,为日后的学习和应用打下坚实的基础。
大一数学分析知识点数学分析是大一学生学习数学的重要课程之一,它是数学的基础,对于建立数学思维和培养逻辑推理能力至关重要。
下面将介绍大一数学分析的主要知识点。
1. 实数与数轴在数学分析中,实数是最基本的数的概念。
我们通常使用数轴来表示实数,并可以进行加法、减法、乘法和除法等基本运算。
数轴是一条直线,上面的点与实数一一对应,通过数轴我们可以直观地理解实数之间的大小关系。
2. 极限与连续极限是数学分析的核心概念之一。
极限表示函数趋近于某个值时的性质。
在分析中,我们经常使用极限来进行函数的定义、推导和计算。
连续是一个函数在某一点上的极限等于该点函数值的性质,连续函数具有很多重要的性质和应用。
3. 导数与微分导数是描述函数变化率的概念,它表示函数在某一点上的变化趋势。
导数具有很多重要的性质,通过导数可以求解函数的最值、判断函数的增减性等。
微分是导数的应用,可以用来进行近似计算和优化问题的求解。
4. 不定积分与定积分不定积分是导数的逆运算,通过不定积分可以求解函数的原函数(也称为原函数或不定积分)。
定积分是求解函数与坐标轴之间的面积或曲线长度的一种方法,它具有重要的几何和物理意义。
5. 无穷级数无穷级数是一类特殊的数列求和问题,它在数学分析中有着广泛的应用。
通过对无穷级数的研究,我们可以了解数列的收敛性和敛散性,掌握级数求和的方法和技巧。
6. 一元函数的极值与最值一元函数的极值与最值是函数在定义域内达到的最大值和最小值。
通过求解函数的极值可以解决很多实际问题,如经济学中的利润最大化和生态学中的物种竞争问题等。
7. 曲线的图像与性质数学分析中研究函数图像与性质是一个重要的方向。
通过函数的图像,我们可以直观地认识函数的性质,如单调性、凸凹性和对称性等。
熟练掌握函数图像的绘制和性质的分析是数学分析学习的关键。
8. 泰勒展开与级数泰勒展开是一种将函数在某一点附近用幂级数表示的方法,通过泰勒展开可以近似计算函数的值和研究函数的性质。
大一数学分析知识点笔记一、实数与数系1. 实数的定义与性质实数由有理数和无理数组成,满足以下性质:- 实数集是一个完备的、有序的数系。
- 实数满足加法和乘法封闭性。
- 实数满足交换、结合和分配律。
2. 有理数与无理数有理数是可以表示为整数之间的比值的数,无理数是不能表示为有理数的比值的数。
3. 数系和数轴数系包括自然数、整数、有理数和实数,而数轴则是一种图示实数的工具。
二、极限与连续性1. 函数极限函数极限是函数在某一点上的趋近值。
常用的极限定义包括:- 函数极限的$\epsilon-\delta$定义。
- 函数极限的无穷小定义。
2. 无穷大与无穷小无穷大是指函数在某一点上无限趋近于正无穷或负无穷,无穷小则是指函数在某一点上无限趋近于零。
3. 连续性与间断点函数在某一点上连续是指函数在该点上既有左极限又有右极限,并且两者相等于函数值。
间断点则是指函数在某一点上不连续的点。
三、导数与微分1. 导数的定义与性质导数是函数在某一点上的变化率或斜率。
常用的导数定义包括:- 函数导数的极限定义。
- 函数导数的差商定义。
导数具有以下性质:- 可导函数一定连续,但连续函数不一定可导。
- 导数可以表示为函数的斜率。
- 函数的和、差、积、商的导数公式。
2. 高阶导数与微分高阶导数是指导数的导数,微分则是函数在某一点上的变化量。
3. 函数的凹凸性与拐点函数的凹凸性是指函数曲线的弯曲程度,拐点则是指函数曲线变曲率的点。
四、不定积分与定积分1. 不定积分的概念与性质不定积分是函数的一个原函数集合,具有以下性质:- 不定积分的线性性质。
- 常用的基本积分公式。
2. 定积分的概念与性质定积分是函数在一定区间上的面积或曲线长度,具有以下性质:- 定积分的可加性与线性性质。
- 牛顿-莱布尼茨公式与换元积分法。
3. 定积分的应用定积分在几何、物理和经济等领域有广泛的应用,包括计算曲线下的面积、求解几何体的体积以及计算函数的平均值等。
大一数学分析知识点重点数学分析作为大一学生的一门重要数学基础课程,涵盖了许多重要的知识点。
在本文中,将重点介绍大一数学分析的知识点,以帮助学生更好地理解和掌握这门课程。
一、极限与连续性1. 极限的概念及性质:- 极限的定义:对于函数f(x),当x无限接近某一点a时,f(x)的极限是指当x充分靠近a时,f(x)的值也趋于某一固定的常数L。
- 极限的基本性质:唯一性、局部有界性、保序性等。
2. 极限计算的方法:- 函数极限的四则运算法则:加法、减法、乘法、除法。
- 复合函数的极限:通过分解成简单的极限求解。
- 无穷小量与无穷大量的关系:比较阶数大小。
3. 连续性的概念及性质:- 连续函数的定义:对于函数f(x),如果对于任意给定的x,当x无限接近某一点a时,f(x)的极限等于f(a),则称函数f(x)在点a处连续。
- 连续函数的性质:Intermediate Value Theorem、最值定理等。
二、函数的导数与微分1. 导数的定义及性质:- 导数的定义:函数f(x)在点x处的导数是指该点处的切线斜率。
- 导数的性质:线性性、乘法法则、链式法则等。
2. 常见函数的导数:- 幂函数、指数函数、对数函数的导数。
- 三角函数、反三角函数的导数。
3. 函数的微分:- 微分的定义:函数f(x)在点a处的微分是指函数在该点的导数与自变量变化的增量之积。
- 微分的性质:导数与微分的关系、微分近似等。
三、不定积分与定积分1. 不定积分的概念及性质:- 不定积分的定义:如果对于函数F(x),其导函数是f(x),则称F(x)是f(x)的一个原函数,记作∫f(x)dx=F(x)+C。
- 不定积分的性质:线性性、换元积分法、分部积分法等。
2. 常见函数的不定积分:- 幂函数、指数函数、对数函数的不定积分。
- 三角函数、反三角函数的不定积分。
3. 定积分的概念及性质:- 定积分的定义:表示曲线y=f(x)与x轴之间的面积。
数学分析第一章实数集与函数§1.实数一、 实数及其性质1. 实数的定义:实数,是有理数和无理数的总称。
2. 实数的六大性质:①(四则运算封闭性):实数集R 对加、减、乘、除(除数不为0)四则运算封闭,即任意两个实数的和、差、积、商(除数不为0)仍然是实数。
②(有序性):实数集是有序的,即任意两个实数a, b 必满足以下三种关系之一:a<b 、a=b 、a>b 。
③(传递性):实数的大小关系具有传递性,即若a>b, b>c 则a>c 。
④(阿基米德性):实数具有阿基米德性,即对任何a, b ∈R, 若b>a>0,则存在正整数na>b.⑤(稠密性):实数集R 具有稠密性,即任意两个不相等的实数之间必有另外一个实数,且既有有理数也有无理数。
⑥实数集R 与数轴上点一一对应。
二、 绝对值与不等式1. 实数绝对值的性质: ①0;00a a a a =-≥==当且仅当时有 ②-a a a ≤≤ ③;a h h a h a h h a h <<=>-<<≤<=>-≤≤ ④a b a b a b -≤±≤+三角不等式⑤ab a b = ⑥(0)a a b b b=≠ §2数集·确界原理一、 区间与邻域1. 有限区间:开区间:{}x a x b <<记作(),a b ;闭区间:{}x a x b ≤≤记作[],a b ;半开半闭区间:{}x a x b ≤<记作[),a b ,{}x a x b <≤记作(],a b无限区间:(]{},a x a -∞=≤,(){},a x x a -∞=≤,(){},a x x a +∞=>,(){},x x R -∞+∞=-∞<<+∞=2. 邻域:设a R ∈,0>,满足绝对值不等式x a -<的全体实数x 的集合称为点a 的邻域,记作();U a 或写作()U a ,即有(){}();,U a x x a a a =-<=-+。
数学分析重点知识点总结•相关推荐数学分析重点知识点总结在日复一日的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。
想要一份整理好的知识点吗?下面是小编为大家收集的数学分析重点知识点总结,欢迎阅读与收藏。
数学分析重点知识点总结1一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。
二、平面向量和三角函数对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。
三、数列数列这个板块,重点考两个方面:一个通项;一个是求和。
四、空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。
五、概率和统计概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。
六、解析几何这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
数学分析重点知识点总结21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
数学分析知识点最全汇总本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质1、实数(,q p q p ⎧≠⎪⎪⎨⎪⎪⎩有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示.{}|R x x =为实数--全体实数的集合.[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:例: 2.001 2.0009999→;利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中00,a b 为非负整数,,k k a b (1,2,)k =为整数,09,09k k a b ≤≤≤≤.若有3 2.99992.001 2.0099993 2.9999→-→--→-;;,0,1,2,k k a b k ==,则称x 与y 相等,记为x y =;若00a b >或存在非负整数l ,使得,0,1,2,,k k a b k l ==,而11l l a b ++>,则称x 大于y 或y 小于x ,分别记为x y >或y x <.对于负实数x 、y ,若按上述规定分别有x y -=-或x y ->-,则分别称为x y =与x y <(或y x >).规定:任何非负实数大于任何负实数.2) 实数比较大小的等价条件(通过有限小数来比较).定义2(不足近似与过剩近似):01.n x a a a =为非负实数,称有理数01.n n x a a a =为实数x 的n 位不足近似;110n n n x x =+称为实数x 的n 位过剩近似,0,1,2,n =.对于负实数01.nx a a a =-,其n 位不足近似011.10n n n x a a a =--;n 位过剩近似01.n n x a a a =-.注:实数x 的不足近似n x 当n 增大时不减,即有012x x x ≤≤≤; 过剩近似n x 当n 增大时不增,即有012x x x ≥≥≥. 命题:记01.n x a a a =,01.n y b b b =为两个实数,则x y >的等价条件是:存在非负整数n ,使n n x y >(其中n x 为x 的n 位不足近似,n y 为y 的n 位过剩近似).命题应用例1.设,x y 为实数,x y <,证明存在有理数r ,满足x r y <<.证明:由x y <,知:存在非负整数n ,使得n n x y <.令()12n n r x y =+,则r 为有理数,且 n n x x r y y ≤<<≤.即x r y <<.3、实数常用性质(详见附录Ⅱ.289302P P -).1)封闭性(实数集R 对,,,+-⨯÷)四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.2)有序性:,a b R ∀∈,关系,,a b a b a b <>=,三者必居其一,也只居其一.3)传递性:a b c R ∀∈,,,,a b b c a c >>>若,则.4)阿基米德性:,,0a b R b a n N ∀∈>>⇒∃∈使得na b >.5)稠密性:两个不等的实数之间总有另一个实数.6)一一对应关系:实数集R 与数轴上的点有着一一对应关系. 例2.设,a b R ∀∈,证明:若对任何正数ε,有a b ε<+,则a b ≤.(提示:反证法.利用“有序性”,取a b ε=-)二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为,0||0a a a a a ≥⎧=⎨-<⎩. 2、几何意义从数轴看,数a 的绝对值||a 就是点a 到原点的距离.||x a -表示就是数轴上点x 与a 之间的距离.3、性质1)||||0;||00a a a a =-≥=⇔=(非负性);2)||||a a a -≤≤;3)||a h h a h <⇔-<<,||.(0)a h h a h h ≤⇔-≤≤>;4)对任何,a b R ∈有||||||||||a b a b a b -≤±≤+(三角不等式); 5)||||||ab a b =⋅;6)||||a ab b =(0b ≠). 三、几个重要不等式1、,222ab b a ≥+ .1 sin ≤x . sin x x ≤2、均值不等式:对,,,,21+∈∀R n a a a 记 ,1 )(121∑==+++=ni i n i a n n a a a a M (算术平均值) ,)(1121nn i i n n i a a a a a G ⎪⎪⎭⎫ ⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=n i i n i i n i a n a n a a a na H (调和平均值)有平均值不等式:),( )( )(i i i a M a G a H ≤≤即: 1212111n n n a a a nn a a a +++≤≤+++等号当且仅当n a a a === 21时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过),1->∀x 有不等式(1)1, .n x nx n +≥+∈N当1->x 且0≠x ,N ∈n 且2≥n 时,有严格不等式.1)1(nx x n +>+ 证:由01>+x 且>+++++=-++⇒≠+111)1(1)1( ,01 n n x n x x ).1( )1( x n x n n n +=+>.1)1( nx x n +>+⇒4、利用二项展开式得到的不等式:对,0>∀h 由二项展开式,!3)2)(1(!2)1(1)1(32n n h h n n n h n n nh h ++--+-++=+ 有 >+n h )1( 上式右端任何一项.[练习]P4.5[课堂小结]:实数:⎧⎨⎩一 实数及其性质二 绝对值与不等式. [作业]P4.1.(1),2.(2)、(3),3§2数集和确界原理授课章节:第一章实数集与函数——§2数集和确界原理教学目的:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理).教学难点:确界的定义及其应用.教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1实数的相关内容.下面,我们先来检验一下自学的效果如何!1、证明:对任何x R ∈有:(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. (111(2)12,121x x x x x -=+-≥--∴-+-≥())(2121,231,23 2.x x x x x x -+-≥-+-≥-+-≥()三式相加化简即可)2、证明:||||||x y x y -≤-.3、设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.4、设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<.[引申]:①由题1可联想到什么样的结论呢这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一、区间与邻域1、 区间(用来表示变量的变化范围)设,a b R ∈且a b <.⎧⎨⎩有限区间区间无限区间,其中 {}{}{}{}|(,)|[,]|[,)|(,]x R a x b a b x R a x b a b x R a x b a b x R a x b a b ⎧∈<<=⎪⎪⎪∈≤≤=⎪⎨⎪⎪∈≤<=⎧⎪⎪⎨⎪∈<≤=⎪⎩⎩开区间: 闭区间: 有限区间闭开区间:半开半闭区间开闭区间:{}{}{}{}{}|[,).|(,].|(,).|(,).|.x R x a a x R x a a x R x a a x R x a a x R x R ⎧∈≥=+∞⎪∈≤=-∞⎪⎪∈>=+∞⎨⎪∈<=-∞⎪⎪∈-∞<<+∞=⎩无限区间2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1)a 的δ邻域:设,0a R δ∈>,满足不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻域,记作(;)U a δ,或简记为()U a ,即 {}(;)||(,)U a x x a a a δδδδ=-<=-+.其中a δ称为该邻域的中心,称为该邻域的半径.(2)点a 的空心δ邻域{}(;)0||(,)(,)()o o U a x x a a a a a U a δδδδ=<-<=-⋃+.(3)a 的δ右邻域和点a 的空心δ右邻域{}{}00(;)[,)();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ++++=+=≤<+=+=<<+(4)点a 的δ左邻域和点a 的空心δ左邻域{}{}00(;)(,]();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ+---=-=-<≤=-=-<<(5)∞邻域,+∞邻域,-∞邻域{}()||,U x x M ∞=>(其中M 为充分大的正数);{}(),U x x M +∞=>{}()U x x M -∞=<-二 、有界集与无界集1、 定义1(上、下界):设S 为R 中的一个数集.若存在数()M L ,使得一切x S ∈都有()x M x L ≤≥,则称S 为有上(下)界的数集.数()M L 称为S 的上界(下界);若数集S 既有上界,又有下界,则称S 为有界集.闭区间[],a b 、开区间b a b a ,( ),(为有限数)、邻域等都是有界数集,集合 {}) , ( ,sin ∞+∞-∈==x x y y E 也是有界数集.若数集S 不是有界集,则称S 为无界集.) , 0 ( , ) 0 , ( , ) , (∞+∞-∞+∞-等都是无界数集,集合 ⎭⎬⎫⎩⎨⎧∈==) 1 , 0 ( ,1 x xy y E 也是无界数集. 注:1)上(下)界若存在,不唯一;2)上(下)界与S 的关系如何?看下例:例1 讨论数集{}|N n n +=为正整数的有界性.解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +无上界.因为假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取[]0[]1n M M M =+(符号表示不超过的最大整数),则0n N +∈,且0n M >. 综上所述知:N +是有下界无上界的数集,因而是无界集.例2证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗对下界呢(答:不唯一 ,有无穷多个).三 、确界与确界原理1、定义定义2(上确界) 设S 是R 中的一个数集,若数η满足:(1) 对一切,x S ∈有x η≤(即η是S 的上界); (2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S 的上界中最小的一个),则称数η为数集S 的上确界,记作sup .S η=从定义中可以得出:上确界就是上界中的最小者.命题1sup M E = 充要条件1),x E x M ∀∈≤;2)00,,o x S x M εε∀>∃∈>-使得.证明:必要性,用反证法.设2)不成立,则00,,o x E x M εε∃>∀∈≤-使得均有,与M 是上界中最小的一个矛盾.充分性(用反证法),设M 不是E 的上确界,即0M ∃是上界,但0M M >.令00M M ε=->,由2),0x E ∃∈,使得00x M M ε>-=,与0M 是E 的上界矛盾.定义3(下确界)设S 是R 中的一个数集,若数ξ满足:(1)对一切,x S ∈有x ξ≥(即ξ是S 的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S 的下界中最大的一个),则称数ξ为数集S 的下确界,记作inf S ξ=.从定义中可以得出:下确界就是下界中的最大者.命题2 inf S ξ=的充要条件:1),x E x ξ∀∈≥;2)ε∀>0,00,x S x ∈有<.ξε+上确界与下确界统称为确界.例3(1),) 1(1⎭⎬⎫⎩⎨⎧-+=n S n 则sup S = 1 ;inf S = 0 . (2){}.),0( ,sin π∈==x x y y E 则sup S = 1 ;inf S = 0 . 注:非空有界数集的上(或下)确界是唯一的.命题3:设数集A 有上(下)确界,则这上(下)确界必是唯一的.证明:设sup A η=,sup A η'=且ηη'≠,则不妨设ηη'<A sup =η⇒A x ∈∀有η≤xsup A η'=⇒对ηη'<,0x A ∃∈使0x η<,矛盾.例:sup 0R -= ,sup 11n Z n n +∈⎛⎫= ⎪+⎝⎭ ,1inf 12n Z n n +∈⎛⎫= ⎪+⎝⎭ {}5,0,3,9,11E =-则有inf 5E =-.开区间(),a b与闭区间[],a b有相同的上确界b与下确界a例4设S 和A 是非空数集,且有.A S ⊃则有.inf inf ,sup sup A S A S ≤≥.例5设A 和B 是非空数集.若对A x ∈∀和,B y ∈∀都有,y x ≤则有.inf sup B A ≤证明:,B y ∈∀y 是A 的上界,.sup y A ≤⇒A sup ⇒是B 的下界,.inf sup B A ≤⇒例6A 和B 为非空数集,.B A S =试证明:{}. inf , inf m in inf B A S = 证明:,S x ∈∀有A x ∈或,B x ∈由A inf 和B inf 分别是A 和B 的下界,有A x inf ≥或{}. inf , inf m in .infB A x B x ≥⇒≥即{} inf , inf m in B A 是数集S 的下界,{}. inf , inf m in inf B A S ≥⇒又S A S ,⇒⊃的下界就是A 的下界,S inf 是S 的下界,S inf ⇒是A 的下界,;inf inf A S ≤⇒同理有.inf inf B S ≤于是有{} inf , inf m in inf B A S ≤.综上,有{} inf , inf m in inf B A S =.1. 数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2. 确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若E max 存在,必有.sup max E E =对下确界有类似的结论.4. 确界原理:Th1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 ,E R E ⊂非空,E x ∈∃,我们可以找到一个整数p ,使得p 不是E 上界,而1p +是E 的上界.然后我们遍查9.,,2.,1.p p p 和1+p ,我们可以找到一个0q ,900≤≤q ,使得0.q p 不是E 上界,)1.(0+q p 是E 上界,如果再找第二位小数1q ,, 如此下去,最后得到 210.q q q p ,它是一个实数,即为E 的上确界. 证明:(书上对上确界的情况给出证明,下面讲对下确界的证明)不妨设S 中的元素都为非负数,则存在非负整数n ,使得1)S x ∈∀,有n x >;2)存在S x ∈1,有1+≤n x ;把区间]1,(+n n 10等分,分点为n.1,n.2,...,n.9, 存在1n ,使得1)S ∈∀,有;1.n n x >;2)存在S x ∈2,使得10112.+≤n n x . 再对开区间111(.,.]10n n n n +10等分,同理存在2n ,使得1)对任何S x ∈,有21.n n n x >;2)存在2x ,使2101212.+≤n n n x 继续重复此步骤,知对任何 ,2,1=k ,存在k n 使得1)对任何S x ∈,k k n n n n x 10121.-> ;2)存在S x k ∈,k k n n n n x 21.≤.因此得到 k n n n n 21.=η.以下证明S inf =η.(ⅰ)对任意S x ∈,η>x ;(ⅱ)对任何ηα>,存在S x ∈'使x '>α.[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3函数概念授课章节:第一章实数集与函数——§3 函数概念教学目的:使学生深刻理解函数概念.教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1设,D M R∀∈,⊂,如果存在对应法则f,使对x D存在唯一的一个数y M∈与之对应,则称f是定义在数集D上的函数,记作:f D M→→ .|x y数集D称为函数f的定义域,x所对应的y,称为f在点x的函数值,记为()f x.全体函数值的集合称为函数f的值域,记作f D.()即{}==∈.()|(),f D y y f x x D2.几点说明(1)函数定义的记号中“:f D M →”表示按法则f 建立D 到M 的函数关系,|x y →表示这两个数集中元素之间的对应关系,也记作|()x f x →.习惯上称x 自变量,y 为因变量.(2) 函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈ ().x x R ψ=∈(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则f 来表示一个函数.即“函数()y f x =”或“函数f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象.a 称为()f a 的原象.(5)函数定义中,x D ∀∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二 、函数的表示方法1 主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2 可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.例如 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数) (借助于sgnx 可表示()||,f x x =即()||sgn f x x x x ==).2)用语言叙述的函数.(注意;以下函数不是分段函数)例 1)[]y x =(取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [][]1x x x ≤<+, 即[]01x x ≤-<.与此有关一个的函数[]{}y x x x =-(非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数, 这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数 1,(,,()0,0,1(0,1)p p x p q N qq q R x x +⎧=∈⎪=⎨⎪=⎩当为既约分数),当和内的无理数.三 函数的四则运算给定两个函数12,,,f x D g x D ∈∈,记12D D D =,并设D φ≠,定义f 与g 在D 上的和、差、积运算如下:若在D 中除去使()0g x =的值,即令{}2\()0,D D x g x x D φ=≠∈≠,可在D 上定义f 与g 的商运算如下;()(),()f x L x x Dg x =∈. 注:1)若12D D D φ==,则f 与g 不能进行四则运算.2)为叙述方便,函数f 与g 的和、差、积、商常分别写为:,,,f f g f g fg g+-. 四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为m 的物体自由下落,速度为v ,则功率E 为2221122E mv E mg t v gt ⎫=⎪⇒=⎬⎪=⎭. 抽去该问题的实际意义,我们得到两个函数21(),2f v mv v gt ==,把()v t 代入f ,即得221(())2f v t mg t =.这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;2()arcsin ,[1,1],()2,y f u u u D u g x x x E R ==∈=-==+∈=.就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数(),,(),y f u u D u g x x E =∈=∈,{}()E x f x D E =∈,若E φ≠,则对每一个x E ∈,通过g 对应D 内唯一一个值u ,而u 又通过f 对应唯一一个值y ,这就确定了一个定义在E 上的函数,它以x 为自变量,y 因变量,记作(()),y f g x x E =∈或()(),y f g x x E =∈.简记为f g .称为函数f 和g 的复合函数,并称f 为外函数,g 为内函数,u 为中间变量.3. 例子例 .1)( ,)(2x x g u u u f y -==== 求 ()[]).()(x g f x g f = 并求定义域.例 ⑴._______________)( ,1)1(2=++=-x f x x x f⑵ .1122xx x x f +=⎪⎭⎫ ⎝⎛+ 则)( )(=x fA. ,2xB. ,12+xC. ,22-xD. .22+x例 讨论函数()[0,)y f u u ==∈+∞与函数()u g x x R ==∈能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行在哪个数集上进行复合函数的最终定义域是什么例如:2sin ,1y u u v x ===-,复合成:[1,1]y x =∈-.2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函数,在分解时也要注意定义域的变化. ①2log (0,1)log ,1.a a y x y u u z x =∈→===-②2arcsin , 1.y y u u v x =→===+③2sin 222,,sin .x u y y u v v x =→===五、反函数1.引言在函数()y f x =中把x 叫做自变量,y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:2()1,f u u t ==+ 那么u 对于f 来讲是自变量,但对t 来讲,u 是因变量.习惯上说函数()y f x =中x 是自变量,y 是因变量,是基于y 随x 的变化现时变化.但有时我们不仅要研究y 随x 的变化状况,也要研究x 随y 的变化的状况.对此,我们引入反函数的概念.2.反函数概念定义设→X f :R 是一函数,如果∀1x ,X x ∈2, 由)()(2121x f x f x x ≠⇒≠(或由2121)()(x x x f x f =⇒=),则称f 在X 上是 1-1 的.若Y X f →:,)(X f Y =,称f 为满的.若 Y X f →:是满的 1-1 的,则称f 为1-1对应.→X f :R 是1-1 的意味着)(x f y =对固定y 至多有一个解x ,Y X f →:是1-1 的意味着对Y y ∈,)(x f y =有且仅有一个解x .定义 设Y X f →:是1-1对应.Y y ∈∀, 由)(x f y =唯一确定一个X x ∈, 由这种对应法则所确定的函数称为)(x f y =的反函数,记为)(1y f x -=.反函数的定义域和值域恰为原函数的值域和定义域Y X f →:X Y f →-:1显然有X X I f f →=-:1 (恒等变换)Y Y I f f →=-:1 (恒等变换)Y X f f →=--:)(11.从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 )(1x f y -=, 这样它的图形与 )(x f y =的图形是关于对角线x y =对称的.严格单调函数是1-1对应的,所以严格单调函数有反函数. 但 1-1 对应的函数(有反函数)不一定是严格单调的,看下面例子⎩⎨⎧≤≤-<≤=21,310,)(x x x x x f它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 Y X f →:的定义域X 和值域Y ,考虑 1-1对应条件.固定 Y y ∈,解方程 y x f =)( 得出 )(1y f x -=.2. 按习惯,自变量x 、因变量y 互换,得)(1x f y -=. 例 求 2)(x x e e x sh y --== :R → R 的反函数. 解 固定y ,为解 2x x e e y --=,令 z e x =,方程变为 122-=z zy0122=--zy z12+±=y y z ( 舍去12+-y y )得)1ln(2++=y y x ,即)()1ln(12x sh x x y -=++=,称为反双曲正弦. 定理 给定函数)(x f y =,其定义域和值域分别记为X 和Y , 若在Y 上存在函数)(y g ,使得 x x f g =))((, 则有)()(1y f y g -=. 分析:要证两层结论:一是)(x f y =的反函数存在,我们只要证它是 1-1 对应就行了;二是要证1()()g y f y -=. 证 要证)(x f y =的反函数存在,只要证)(x f 是X 到Y 的 1-1 对应.∀1x ,X x ∈2,若)()(21x f x f =, 则由定理条件,我们有对应.再证1()()g y f y -=.∀Y y ∈,∃X x ∈,使得)(x f y =.由反函数定义 )(1y f x -=,再由定理条件()(())g y g f x x ==.1()()g y f y -⇒=例 :f R R →,若))((x f f 存在唯一(|∃)不动点,则)(x f 也|∃不动点.证 存在性,设)]([* * x f f x =,)]([)(* * x f f f x f =,即)(* x f 是f f 的不动点,由唯一性* * )(x x f =,即存在)(x f 的不动点* x .唯一性: 设)(x f x =,))(()(x f f x f x ==,说明 x 是f f 的不动点,由唯一性,x =*x .从映射的观点看函数. 设函数(),y f x x D =∈.满足:对于值域()f D 中的每一个值y ,D中有且只有一个值x ,使得()f x y =,则按此对应法则得到一个定义在()f D 上的函数,称这个函数为f 的反函数,记作 1:(),(|)f f D D y x -→→或1(),()x f y y f D -=∈.3、注释a) 并不是任何函数都有反函数,从映射的观点看,函数f 有反函数,意味着f 是D与()f D 之间的一个一一映射,称1f -为映射f 的逆映射,它把()f D D →;b) 函数f 与1f -互为反函数,并有:1(()),,f f x x x D -≡∈1(()),().f f x y y f D -≡∈c) 在反函数的表示1(),()x f y y f D -=∈中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数f 的反函数1f -可以改写为1(),().y f x x f D -=∈应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六 、初等函数1.基本初等函数(6类)常量函数 y C =(C为常数);幂函数 ()y x R αα=∈;指数函数(0,1)x y a a a =>≠;对数函数 log (0,1)a y x a a =>≠;三角函数 sin ,cos ,,c y x y x y tgx y tgx ====;反三角函数 arcsin ,arccos ,,y x y x y arctgx y arcctgx ====.注:幂函数()y x R αα=∈和指数函数(0,1)x y a a a =>≠都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数0,1a a >≠,设x 为无理数,我们规定:{}{}sup |,1|,01r x r xr a r a a a r a <⎧>⎪=⎨<<⎪⎩r<x为有理数当时,inf 为有理数当时. 这样解决了中学数学仅对有理数x定义xa 的缺陷.[问题]:这样的定义有意义否更明确一点相应的“确界是否存在呢”2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如:22112sin cos ,sin(),l g ,||.a e y x x y y o x y x x x -=+==+= 不是初等函数的函数,称为非初等函数.如Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1) y = (2) ln |sin |.y x =3.初等函数的几个特例: 设函数)(x f 和)(x g 都是初等函数, 则(1) )( x f 是初等函数, 因为 ().)( )( 2x f x f =(2){})( , )(m ax )(x g x f x =Φ 和 {})( , )(m in )(x g x f x =φ都是初等函数,因为 {})( , )(m ax )(x g x f x =Φ[])()()()(21x g x f x g x f -++=, {})( , )(m in )(x g x f x =φ [])()()()(21x g x f x g x f --+= . (3)幂指函数 ()()0)( )()(>x f x f x g 是初等函数,因为()(). )()(ln )()(ln )()(x f x g x f x g e e x f x g ==[作业] 15P : 3;4:(2)、(3); 5:(2); 7:(3);11§4具有某些特性的函数授课章节:第一章实数集与函数——§4具有某些特性的函数教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义1设f为定义在D上的函数,若存在数()M L,使得对每一个x D∈有()(())≤≥,则称f为D上的有上(下)界函数,f x M f x L()M L称为f在D上的一个上(下)界.注:(1)f在D上有上(下)界,意味着值域()f D是一个有上(下)界的数集;(2)又若()M L为f在D上的一个上(下)界,则任何大于M(小于L)的数也是f在D上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:sin=,1是其一个上y x界,下界为-1,则易见任何小于-1的数都可作为其下界;任何大于1的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;(4)由(1)及“有界集”定义,可类比给出“有界函数”定义:f在D上有界⇔()f D是一个有界集⇔f在D上既有上界又有下界⇔f在D上的有上界函数,也为D上的有下界函数.2、有界函数定义定义2设f为定义在D上的函数.若存在正数M,使得对每一个∈有|()|x D≤,则称f为D上的有界函数.f x M注:(1)几何意义:f 为D 上的有界函数,则f 的图象完全落在y M =和y M =-之间;(2)f 在D 上有界⇔f 在D 上既有上界又有下界;例子:sin ,cos y x y x ==;(3)关于函数f 在D 上无上界、无下界或无界的定义. 3、 例题例 1 证明:f X R →有界的充要条件为:∃M ,m ,使得对X x ∈∀,M x f m ≤≤)(.证明 如果:f X R →有界,按定义∃M >0,X x ∈∀有()f x M ≤,即()M f x M -≤≤,取M m -=,M M =即可.反之如果∃M ,m 使得,()x X m f x M ∀∈≤≤,令{}0max 1,M M m =+,则0()f x M ≤,即∃00M >,使得对x X ∀∈有0()f x M ≤,即:f X R →有界.例2.证明1()f x x=为(0,1]上的无上界函数. 例3.设,f g 为D 上的有界函数.证明:(1){}inf ()inf ()inf ()()x D x D x D f x g x f x g x ∈∈∈+≤+; (2){}sup ()()sup ()sup ()x Dx Dx Df xg x f x g x ∈∈∈+≤+.例4验证函数 325)(2+=x xx f 在R 内有界. 解法一 由,62322)3()2(32222x x x x =⋅≥+=+当0≠x 时,有.3625625325325 )( 22≤=≤+=+=x x x x x x x f 30 )0( ≤=f ,∴ 对 ,R ∈∀x 总有 ,3 )( ≤x f 即)(x f 在R 内有界. 解法二 令 ,3252⇒+=x x y 关于x 的二次方程 03522=+-y x yx 有实数根.22245 y -=∆∴.2 ,42425,02≤⇒≤≤⇒≥y y 解法三 令 ⎪⎭⎫⎝⎛-∈=2,2 ,23ππt tgt x 对应). , (∞+∞-∈x 于是 ==+=+⎪⎪⎭⎫⎝⎛=+=t t t t tg tgt tgt tgt x x x f 2222sec 1cos sin 65123353232235325)(.6252sin 625 )( ,2sin 625 ≤=⇒=t x f t二、单调函数定义3设f 为定义在D 上的函数,1212,,,x x D x x ∀∈< (1)若12()()f x f x ≤,则称f 为D 上的增函数;若12()()f x f x <,则称f 为D 上的严格增函数.(2)若12()()f x f x ≥,则称f 为D 上的减函数;若12()()f x f x >,则称f 为D 上的严格减函数.例5.证明:3y x =在(,)-∞+∞上是严格增函数.证明:设21x x <,))((222121213231x x x x x x x x ++-=- 如021<x x ,则3231120x x x x <⇒>> 如120x x >,则22331122120,x x x x x x ++>⇒<故03231<-x x 即得证. 例6.讨论函数[]y x =在R 上的单调性.12,x x R ∀∈,当12x x <时,有[][]12x x ≤,但此函数在R 上的不是严格增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分,f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理1.设(),y f x x D =∈为严格增(减)函数,则f 必有反函数1f -,且1f -在其定义域()f D 上也是严格增(减)函数.证明:设f 在D 上严格增函数.对(),,()y f D x D f x y ∀∈∈=有使.下面证明这样的x 只有一个.事实上,对于D 内任一1,x x ≠由于f 在D 上严格增函数,当1x x <时1()f x y <,当1x x >时1()f x y >,总之1()f x y ≠.即(),,()y f D x D f x y ∀∈∈=都只存在唯一的一使得,从而例7 讨论函数2y x =在(,)-∞+∞上反函数的存在性;如果2y x =在(,)-∞+∞上不存在反函数,在(,)-∞+∞的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明:x y a =当1a >时在R上严格增,当01a <<时在R 上严格递减.三、奇函数和偶函数定义4. 设D 为对称于原点的数集,f 为定义在D 上的函数.若对每一个x D ∈有(1)()()f x f x -=-,则称f 为D 上的奇函数;(2)()()f x f x -=,则称f 为D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心对称),偶函数的图象关于y 轴对称;(2)奇偶性的前提是定义域对称,因此(),[0,1]f x x x =∈没有必要讨论奇偶性.(3)从奇偶性角度对函数分类:⎧⎪⎪⎨⎪⎪≡⎩奇函数:y=sinx 偶函数:y=sgnx非奇非偶函数:y=sinx+cosx 既奇又偶函数:y 0; (4)由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数 1、定义设f 为定义在数集D 上的函数,若存在0σ>,使得对一切x D ∈有()()f x f x σ±=,则称f 为周期函数,σ称为f 的一个周期. 2、几点说明:(1)若σ是f 的周期,则()n n N σ+∈也是f 的周期,所以周期若存在,则不唯一.如sin ,2,4,y x σππ==.因此有如下“基本周期”的说法,即若在周期函数f 的所有周期中有一个最小的周期,则称此最小周期为f 的“基本周期”,简称“周期”.如sin y x =,周期为2π;(2)任给一个函数不一定存在周期,既使存在周期也不一定有基本周期,如:1)1y x =+,不是周期函数;2)y C =(C为常数),任何正数都是它的周期.第二章数列极限引 言为了掌握变量的变化规律,往往需要从它的变化过程来判断它的变化趋势.例如有这么一个变量,它开始是1,然后为1111,,,,,234n如此,一直无尽地变下去,虽然无尽止,但它的变化有一个趋势,这个趋势就是在它的变化过程中越来越接近于零.我们就说,这个变量的极限为0.。
数学分析总结复习提纲数学分析(一)总结复习提纲用词说明:本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容,冠以“会、了解、知道”等词的内容为较低要求内容。
一、内容概述第一章函数、极限与连续§1函数1. 实数集的性质,2. 区间与邻域的概念及其表示,3. 函数的概念与几个特殊函数,4. 函数的奇偶性、周期性、单调性和有界性,4. 复合函数的概念与运算,5. 反函数的定义与性质,6. 初等函数的概念与基本初等函数的性质。
§2 数列极限1. 数列极限的定义以及用定义证明极限,2. 收敛数列的性质,3. 子列的概念以及收敛数列与其子列之间的关系。
§3 函数极限1. ∞x时函数的极限,2. 0x→x→时函数的极限,3. 函数极限的性质,4. 函数极限与数列极限的关系。
§4 无穷小与无穷大1. 无穷小的概念以及函数极限与无穷小的性质,2. 无穷大的概念以及无穷小与无穷大的关系。
§5 极限运算法则1. 无穷小的性质,2. 极限四则运算法则,3. 复合函数的极限运算法则,4. 加逼准则。
§6 单调有界原理与两个重要极限1. 单调有界原理,2. 几个常见不等式,3. 两个重要极限公式。
§7 无穷小的比较1. 无穷小量阶的比较概念,2. 等价无穷小的性质。
§8 函数的连续性与间断点1.函数的连续性概念,2. 函数的间断点及其分类。
§9 连续函数的运算与初等函数的连续性1. 连续函数的四则运算,2. 反函数的连续性,3. 复合函数的连续性,4. 初等函数的连续性。
§10 闭区间上连续函数的性质1. 有界性与最大值最小值定理,2. 零点定理与介值定理。
第二章导数与微分§1 导数的概念1.导数概念的引进,2. 导数的定义,3. 导数的几何意义,4. 函数的连续性与可导性的关系。
§2 函数的求导法则1.导数的四则运算法则,2. 反函数的求导公式,3. 复合函数的求导法则,4. 基本求导公式与求导法则。
数学分析大一教材知识点数学分析是数学的一个重要分支,也是大学数学课程中的一门必修课。
对于大一学生来说,掌握数学分析的基本知识点是非常关键的。
本文将详细介绍大一数学分析教材中的一些重要知识点,帮助大家更好地理解和应用这些知识。
一、极限与连续1. 数列极限数列极限是数学分析中的基础概念之一,它是指当自变量趋于无穷大时,函数的极限。
大家需要掌握数列极限的定义、性质和计算方法。
同时,还需要熟悉常见数列的极限,如等差数列、等比数列等。
2. 函数极限函数极限是指当自变量趋于某一点时,函数的极限。
我们需要理解函数极限的定义和性质,了解常见函数的极限计算方法,并学会利用极限的性质解决实际问题。
3. 连续性连续性是函数的一个重要性质,它是指函数在定义域内的任意点都存在极限,并且与函数的值相等。
我们需要掌握连续性的定义和性质,学会判断函数的连续性,并理解介值定理和零点定理等与连续性相关的概念。
二、导数与微分1. 导数的定义和性质导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率。
我们需要熟悉导数的定义和性质,如导数存在的充要条件、导数的四则运算、导数与函数图像的关系等。
2. 基本求导法则在求导过程中,我们可以运用一些基本法则来简化计算。
这些基本法则包括常数法则、幂函数求导法则、指数函数求导法则、三角函数求导法则、对数函数求导法则等。
掌握这些基本法则,能够大大提高求导的效率。
3. 高阶导数和导数应用导数可以进行高阶求导,即对导数再求导。
我们需要了解高阶导数的定义和性质,并在实际问题中应用导数解决最值问题、曲线绘制、函数图像的性态分析等。
三、积分与定积分1. 不定积分不定积分是积分的一种形式,表示求函数的一个原函数。
我们需要了解不定积分的定义和性质,学会基本积分公式和常见函数的积分计算方法。
2. 定积分定积分是对函数在某一区间上的积分,表示函数在该区间上的累积效果。
我们需要掌握定积分的定义和性质,学会利用定积分计算曲线下面积、求解曲线长度、求解物体质量等实际问题。
数学分析复习资料数学分析是大学数学中的一门非常重要的课程,对于数学专业的学生来说尤其如此。
然而,学习数学分析需要付出大量的时间和精力,而且往往是难以理解的。
为了帮助学生更好地准备数学分析的考试,我们将探讨一些复习数学分析的资料和技巧。
1. 阅读课本和笔记首先,我们应该熟悉自己的课本和笔记。
重新阅读整本课本和笔记是非常有帮助的,因为它能帮助我们回顾教授所讲述的基础知识和关键概念。
阅读后,可以进行思维导图等笔记整理方式,理清其思路和逻辑。
同时,最好将内容分章节和分类,便于形成完整的知识图谱体系。
2. 科学运用练习题练习题是数学分析课程中的核心。
我们应该尽可能多地练习每一章的练习题,以便在考试时更好地理解和应用课程中的概念。
我们可以寻找网络或各种书籍上的题目或假设一些练习试题练习。
有预备概念题型,例题,练习题,思考题,闯关考核等。
注意分难度和知识点进行分类练习。
关键是要做并理解其中的主要思想和解题技巧。
3. 寻找优秀的视频学习网络上有大量的数学分析学习视频,寻找具有启发性的讲解视频对于理解概念和掌握方法非常有帮助。
优秀的视频讲解尤其强调要点,用简单的语言和真实生活中的例子解释数学分析。
我们应该寻找最好的来源并花费足够的时间来消化它们。
4. 借鉴其他人的笔记或教学视频除了自己的笔记以外,我们可以寻找其他人的笔记或者教学视频。
这些可以是同学,教授和网上的其他学生。
我们可以不断讨论、交流问题,加深理解,并且自己的笔记也可以分享出去,相互之间切磋,互相促进。
5. 批判性思考最后,我们应该始终保持批判性思考,尤其是在做练习题和解题过程中。
我们应该思考每个步骤的含义和其它可能的方法,以便更好地理解和掌握数学分析。
总之,数学分析课程是一门高难度、复杂度高的课程。
因此准备和复习至关重要。
阅读课本和笔记、科学运用练习题,寻找优秀的视频学习、借鉴他人笔记或教学视频,以及批判性思考等方法可以帮助我们更好地复习数学分析。
最后,我们应该保持积极、耐心的态度,相信自己,坚持到底。
数学分析(一)复习要点
第一章函数、极限与连续
1、区间与邻域。
2、基本初等函数的性质。
3、求函数的定义域。
4、函数的复合运算。
5、数列与函数极限的精确定义,用定义证明简单极限。
6、单调有界原理、加逼准则及其相关证明。
7、几个常用不等式与两个重要极限公式。
8、无穷小的概念与性质,无穷小阶的比较。
9、等价无穷小替换定理及常用等价无穷小公式。
10、函数连续的概念。
11、间断点的概念、分类及判别。
12、闭区间上连续函数的最值性质与零点定理。
第二章导数与微分
1、导数与微分的定义、几何意义。
2、函数的可导性、可微性及连续性的关系,“微商”的含义。
3、基本初等函数的求导公式与微分公式。
4、导数的四则运算法则与复合函数的求导法则。
5、隐函数的求导方法、对数求导法、参数方程确定函数的求导公式。
6、高阶导数的概念与二、三阶导数的计算。
第三章微分学基本定理及其应用
1、微分中值定理及其相关命题的证明。
2、求不定式极限的洛必达法则及其与等价无穷小替换定理的综合运用。
3、函数的单调性、凹凸性的判别,极值与拐点的求法(必要条件和充分条件)。
4、闭区间上连续函数的最值、以及实际问题中简单最值的求法。
5、曲线渐近线的求法。
6、不等式的证明(利用函数的单调性、凹凸性,拉格朗日中值定理及泰勒公式等)。
7、方程根的讨论。
第四章不定积分
1、原函数与不定积分的概念,积分运算与微分运算的互逆性。
2、基本积分公式(22个)。
3、求不定积分的“凑微分法”(第一类换元法)。
4、求不定积分的第二类换元法。
5、求不定积分的分部积分法,LIATE选择法,被积函数为一个函数时如何分部积分。
6、利用“凑微分法”求简单有理函数的不定积分。
7、利用第二类换元法求简单无理函数的不定积分。