直驱永磁风力发电机永磁体抗失磁能力分析
- 格式:pdf
- 大小:2.92 MB
- 文档页数:6
直驱式永磁同步风力发电机概述永磁同步发电机是一种以永磁体进行励磁的同步电机,应用于风力发电系统,称为永磁同步风力发电机。
永磁同步风力发电机一般不用齿轮箱,而将风力机主轴与低速多极同步发电机直接连接,为“直驱式”,所以称为直驱式永磁同步风力发电机,以下本章除特指外均简称为永磁同步发电机。
一、永磁同步发电机的特点1.与传统电励磁同步发电机比较同步发电机是一种应用广泛的交流电机,其显著特点是转子转速n与定子电流频率f之间具有固定不变的关系,即n=n0=60f/p,其中n为同步转速,p为极对数。
现代社会中使用的交流电能几乎全部由同步发电机产生。
永磁同步发电机是一种结构特殊的同步发电机,它与传统的电励磁同步发电机的主要区别在于:其主磁场由永磁体产生,而不是由励磁绕组产生。
与普通同步发电机相比,永磁同步发电机具有以下特点:(1)省去了励磁绕组、磁极铁芯和电刷-集电环结构,结构简单紧凑,可靠性高,免维护。
(2)不需要励磁电源,没有励磁绕组损耗,效率高。
(3)采用稀土永磁材料励磁,气隙磁密较高,功率密度高,体积小,质量轻。
(4)直轴电枢反应电抗小,因而固有电压调整率比电励磁同步发电机小。
(5)永磁磁场难以调节,因此永磁同步发电机制成后难以通过调节励磁的方法调节输出电压和无功功率(普通同步发电机可以通过调节励磁电流方便地调节输出电压和无功功率)。
(6)永磁同步发电机通常采用钕铁硼或铁氧体永磁,永磁体的温度系数较高,输出电压随环境温度的变化而变化,导致输出电压偏离额定电压,且难以调节。
(7)永磁体存在退磁的可能。
目前,永磁同步发电机的应用领域非常广泛,如航空航天用主发电机、大型火电站用副励磁机、风力发电、余热发电、移动式电源、备用电源、车用发电机等都广泛使用各种类型的永磁同步发电机,永磁同步发电机在很多应用场合有逐步代替电励磁同步发电机的趋势。
2.与非直驱式双馈风力发电机比较虽然双馈风力发电机是目前应用最广泛的机型,但随着风力发电机组单机容量的增大,双馈型风力发电系统中齿轮箱的高速传动部件故障问题日益突出,于是不用齿轮箱而将风力机主轴与低速多极同步发电机直接连接的直驱式布局应运而生。
简述永磁同步电机失磁解决方法和防备措施摘要:一、永磁同步电机失磁的定义及危害二、永磁同步电机失磁的原因1.电机本身问题2.控制系统故障3.供电系统问题4.负载变化三、永磁同步电机失磁的解决方法1.检查电机本身2.维修或更换控制系统3.优化供电系统4.调整负载四、永磁同步电机失磁的预防措施1.选购高质量电机2.定期维护电机和控制系统3.确保供电稳定4.合理分配负载正文:永磁同步电机失磁是指电机在运行过程中失去磁力,导致电机无法正常工作。
失磁现象对电机的运行性能和设备安全造成极大危害,可能导致电机过热、损坏甚至引发火灾等事故。
因此,及时解决失磁问题至关重要。
本文将对永磁同步电机失磁的解决方法和防备措施进行详细探讨。
一、永磁同步电机失磁的定义及危害永磁同步电机失磁是指电机在运行过程中,由于各种原因导致磁场强度不足或磁场失稳,使电机转子与定子之间的磁场作用减弱或消失。
失磁现象会对电机性能产生严重影响,如转速不稳定、输出功率下降、噪音增大等。
长期运行失磁电机可能导致设备损坏、安全隐患等问题。
二、永磁同步电机失磁的原因1.电机本身问题:电机生产质量不佳、磁钢性能下降、轴承磨损等原因可能导致失磁。
2.控制系统故障:控制器故障、传感器失灵、线路老化等问题可能导致电机失磁。
3.供电系统问题:电源电压不稳定、供电线路老化、谐波干扰等因素可能影响电机磁场。
4.负载变化:负载过大或过小,可能导致电机磁场不稳定,进而引发失磁。
三、永磁同步电机失磁的解决方法1.检查电机本身:检查磁钢、轴承等关键部件是否存在问题,及时更换磨损部件。
2.维修或更换控制系统:对故障的控制器和传感器进行维修或更换,确保电机控制系统正常运行。
3.优化供电系统:检查供电线路,排除老化、短路等问题,提高电源电压稳定性。
4.调整负载:合理分配负载,避免长时间过载或欠载运行电机。
四、永磁同步电机失磁的预防措施1.选购高质量电机:购买时注重电机品牌和质量,确保电机本身不存在问题。
酒泉职业技术学院毕业设计(论文)12 级风能与动力技术专业题目:1.5MW永磁直驱风力发电机组发电机的分析毕业时间:二O一五年六月学生姓名:孙其军指导教师:甄亮班级:12级风电(2)班2014 年6月20日酒泉职业技术学院2015 届各专业毕业论文(设计)成绩评定表目录摘要: (4)一、绪论 (4)(一)风能的储备 (4)(二)我国风能的利用 (5)二、发电机的介绍 (7)(一)直驱发电机的介绍 (7)(二)直驱式风力发电机原理及发电机组概述 (8)三、 1.5MW永磁直驱风力发电机结构 (9)(一)永磁直驱风力发电机结构 (9)(二)转子特点: (10)(三)风力发电机磁路结构 (11)(四)满足冷却与散热条件 (13)(五)永磁直驱风力发电机的优点 (13)四、永磁直驱风力发电机组变速恒频并网运行 (14)(一)运行控制 (14)(二)并网控制 (16)五、总结 (16)参考文献: (18)致谢 (19)1.5MW永磁直驱风力发电机组发电机的分析摘要:由于永磁风力发电机在国内的应用还并不多见,仅有一些发达国家掌握主要的技术,对永磁发电机系统特性的研究具有广泛的理论意义和实用价值。
直驱型风力发电机组在运行时,风机不接增速齿轮箱,直接与发电机耦合;发电机的定子为三相或多相绕组,转子采用永磁体或电励磁结构;定子发出非工频的电能,电压也随转速变化;系统中有整流逆变装置,发电机发出的电能是电压和频率都在变化的交流电,经整流逆变后变成恒压恒频的电能输入电网;通过调节逆变装置的控制信号可以改变系统输出的有功功率和无功功率,实时满足电网的功率需要。
在变速恒频直驱风力发电机组中,整流逆变装置的容量需要与发电机容量相等。
关键词:风力发电;直驱;永磁同步发电机。
一、绪论(一)风能的储备风能跟太阳能一样属于一种可再生资源, 具有清洁、丰富、一次性等特点, 在社会与经济的发展过程中, 它已经越来越成为一种被广泛重视的能源。
《基于永磁同步电机的直驱型风力发电系统控制策略的研究》篇一一、引言随着环境保护意识的提高和可再生能源的快速发展,风力发电已成为一种重要的清洁能源。
在风力发电系统中,直驱型风力发电系统因结构简单、维护方便等优点受到广泛关注。
而基于永磁同步电机的直驱型风力发电系统,因其高效率、高可靠性及低成本的特性,成为风力发电领域的研究热点。
本文将深入研究基于永磁同步电机的直驱型风力发电系统的控制策略,以期提高系统的性能和稳定性。
二、系统概述基于永磁同步电机的直驱型风力发电系统主要由风轮机、永磁同步发电机(PMSM)、整流器、逆变器及控制系统等部分组成。
其中,永磁同步电机作为发电机的核心部分,其性能直接影响到整个系统的运行效率。
直驱式结构省略了齿轮箱等传统机构,使得系统结构更加简单,降低了维护成本。
三、控制策略研究(一)最大功率点跟踪(MPPT)控制策略最大功率点跟踪是风力发电系统中的重要控制策略,其目的是使风力发电机在风速变化时,始终保持在最佳工作点,以获取最大功率。
针对永磁同步电机直驱型风力发电系统,MPPT控制策略主要通过调整电机的转速和输出电压,实现最大功率的输出。
(二)矢量控制策略矢量控制是一种先进的电机控制方法,它通过对电机电流的矢量进行控制,实现对电机转矩的精确控制。
在直驱型风力发电系统中,矢量控制策略可以根据风速的变化,实时调整电机的输出转矩和转速,使系统始终保持最佳工作状态。
(三)无传感器控制策略无传感器控制策略是近年来研究的热点,它通过检测电机的电压和电流信号,估算电机的转速和位置信息,从而实现对电机的精确控制。
在直驱型风力发电系统中,无传感器控制策略可以省去机械传感器,降低系统的复杂性和成本。
四、仿真与实验分析为了验证所提控制策略的有效性,本文进行了仿真和实验分析。
首先,利用仿真软件搭建了基于永磁同步电机的直驱型风力发电系统模型,并对各种控制策略进行了仿真分析。
其次,通过实验对仿真结果进行了验证。
直驱式永磁同步风力发电机组建模及其控制策略一、本文概述随着全球能源需求的持续增长和环境保护的日益紧迫,风力发电作为一种清洁、可再生的能源形式,正受到越来越多的关注。
直驱式永磁同步风力发电机(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator, DDPMSG)作为一种新型风力发电技术,以其高效率、高可靠性以及低维护成本等优点,逐渐成为风力发电领域的研究热点。
本文旨在对直驱式永磁同步风力发电机组的建模及其控制策略进行深入研究。
文章将介绍直驱式永磁同步风力发电机的基本结构和工作原理,为后续建模和控制策略的研究奠定基础。
接着,文章将详细阐述直驱式永磁同步风力发电机组的数学建模过程,包括机械部分、电气部分以及控制系统的数学模型,为后续控制策略的设计提供理论支持。
在控制策略方面,本文将重点研究直驱式永磁同步风力发电机组的最大功率点跟踪(Maximum Power Point Tracking, MPPT)控制和电网接入控制。
最大功率点跟踪控制旨在通过调整发电机组的运行参数,使风力发电机组在不同风速下都能保持最佳运行状态,从而最大化风能利用率。
电网接入控制则关注于如何确保发电机组在并网和孤岛运行模式下的稳定运行,以及如何在电网故障时实现安全可靠的解列。
本文还将探讨直驱式永磁同步风力发电机组的控制策略优化问题,以提高发电机组的运行效率和稳定性。
通过对控制策略进行优化设计,可以进一步减少风力发电机组的能量损失,提高风电场的整体经济效益。
本文将对直驱式永磁同步风力发电机组的建模及其控制策略进行总结,并展望未来的研究方向和应用前景。
通过本文的研究,可以为直驱式永磁同步风力发电机组的实际应用提供理论指导和技术支持,推动风力发电技术的持续发展和优化。
二、直驱式永磁同步风力发电机组的基本原理直驱式永磁同步风力发电机组(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator,简称DD-PMSG)是一种将风能直接转换为电能的装置,其基本原理基于风力驱动、机械传动、电磁感应和电力电子控制等多个方面。
永永磁电机综述及退磁分析1能源的重要1,1可再生能源研究现状及发展趋势能源是当今社会存在和发展的基础,随着人们生活水平的提高和社会的发展,人类对能源的需求正在逐渐增大,而能源的短缺正成为制约社会发展的重要因素。
对传统能源的开发利用不仅受到资源有限的限制,而且在能源使用的过程中还会产生温室效应和环境污染等全球性问题。
因此,通过对新型能源的开发,实现资源的持续利用和人类社会可持续发展具有重要作用。
目前可以对新型能源进行开发利用的主要有光伏发电、风力发电、潮汐能发电以及生物能和水力能发电等。
近年来,随着电力电子技术的发展,风力发电的利用及其优势开始显现,它是可再生能源中技术最成熟、发展速度最快、最具有商业发展潜力的新能源之一;光伏发电技术具有对环境影响小的优点,但是太阳能光伏电池板和逆变器的高成本限制了其在光照强度不强的地区的应用;潮汐能发电具有对地理位置要求高,发电设备需安装在海底,稳定性差等缺点,因此很难进行大规模开发利用;生物能和水能的利用同样受到地域、成本以及环境的影响,因此对生物能和水能的开发利用也较难。
1.1.1 全球可再生能源研究现状及趋势进入21世纪,世界各国都加大对风能、光伏等可再生能源的研究利用。
发展可再生能源己经成为许多国家对能源进行研究和开发的主要内容。
2006年3月,欧盟首脑会议确定到2020年风能、光伏等新型能源消费总量要占到传统能源消费总量的20%;2011年美国提出到2030年全美20%的电力供应由风力发电提供,生物燃料消费量要占汽车燃料消耗量的30%以上;印度在2009年风电装机容量已达到1100万千瓦时,装机总容量排在世界第5位;巴西通过利用甘蔗等本地资源大力发展生物能,到2008年底生物燃料总产量已达两千多万吨,并且计划到2030年底生物能年产能达到750亿升,从而将生物能的生产作为巴西经贸的主要资源。
目前,全球己有60多个国家制定了相关的法律、法规或行动计划,通过立法的强制性手段保障可再生能源战略目标的实现。
海上中速永磁风力发电机设计与分析摘要:随着经济和科技的快速发展,风能作为一种清洁、可再生能源,近几年受到了越来越多的关注,而海上风电是风力发电的重要领域。
中国海上风电项目的施工速度加快、欧洲市场进一步的成熟发展将成为海上风电主要推动力。
近几年在装机的大型海上风机功率已经达到了7-8MW,而大功率风机则意味着发电机的重量、效率、可靠性和发电成本的改变。
同时发电机作为一种成熟的工业产品,在常规的电机结构基础上进行电磁优化空间有限。
三相中速永磁风力发电机,谐波含量小,转矩脉动小,可靠性高,转矩输出高。
关键词:永磁风力发电机;电磁特性;温度特性引言近年来,我国海上风力发电取得了巨大的综合效益。
为进一步促进海上风力发电实现良好发展,要高度重视海上风力发电机设计技术,尤其是中速永磁风力电机设计,该型电机以其独特的结构优势,综合了双馈电机传动比高及直驱电机可靠性高的优势,确保发电机组实现良好运行,大幅度提高海上风力发电质量和发电效率。
1永磁中速风力发电机的设计1.1空载运行下电机齿槽转矩分析永磁电机转子转动引起气隙磁场变化,进而引起磁场能量的变化导致转子产生脉动,齿槽转矩脉动将直接影响永磁电机启动性能,因此本文基于ansoft软件对不同极槽数发电机性能进行研究,分别对132极/594槽,130极/624槽,140极/480槽和132极/432槽齿槽转矩进行对比计算。
齿槽转矩是由永磁体与定子齿间作用力的切向分量所形成。
齿槽转矩会带来振动和噪声,增大传动链疲劳效应,降低机组运行寿命。
有针对性地采用斜极和短距等综合措施,在基本不增加电机材料成本的情况下,大幅降低齿槽转矩,优化电机性能。
发电机在故障状态下的过渡过程,涉及到电机对故障的承受能力及疲劳损伤程度。
采用场路耦合时步有限元法,充分考虑机械运动、材料非线性、转子涡流对瞬态过程的影响,提高电机运行寿命设计的准确度。
1.2温度特性分析发电机的温升对于其安全可靠的运行尤为重要。