高中数学必修2教案-4.2.1直线与圆的位置关系
- 格式:doc
- 大小:167.50 KB
- 文档页数:7
4.2.1 直线与圆的位置关系(一)教学目标1.知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.(二)过程与方法设直线l :ax + by + c = 0,圆C :x 2 + y 2 + Dx + Ey + F = 0,圆的半径为r ,圆心(,)22D E--到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当d >r 时,直线l 与圆C 相离;(2)当d =r 时,直线l 与圆C 相切;(3)当d <r 时,直线l 与圆C 相交;3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.(二)教学重点、难点重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判定直线与圆的位置关系.(三)教学过程设想..种方法吗?.分析:方法一:由直l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方.的距离 = 1.21.的步骤吗?.即圆心到所求直线l的距离为因为直线l过点M (–所以可设所求直线l的方程为+ 3 = k (x + 3),备选例题例1 已知圆的方程x2 + y2 = 2,直线y = x + b,当b为何值时,(1)圆与直线有两个公共点;(2)圆与直线只有一个公共点;(3)圆与直线没有公共点.解法1:圆心O (,0)到直线y = x + b的距离为d r4(1)当d <r ,即–2<b <2时,直线与圆相交,有两个公共点; (2)当d = r ,即b = 2±时,直线与圆相切,有一个公共点; (3)当d >r ,即b >2或b <–2时,直线与圆相离, 无公共点.解法2:联立两个方程得方程组222x y y x b⎧+=⎨=+⎩.消去y 2得2x 2 + 2bx + b 2 – 2 = 0,∆=16 – 4b 2.(1)当∆>0,即–2 <b <2时,直线与圆有两个公共点; (2)当∆=0,即2b =±时,直线与圆有一个公共点; (3)当∆<0即b >2或b <–2时,直线与圆无公共点.例2 直线m 经过点P (5,5)且和圆C :x 2 + y 2 = 25相交,截得弦长l 为m 的方程.【解析】设圆心到直线m 的距离为 d ,由于圆的半径r = 5,弦长的一半2l=所以由勾股定理,得:d 所以设直线方程为y – 5 = k (x – 5) 即kx – y + 5 – 5k = 0.=,得12k =或k = 2. 所以直线m 的方程为x – 2y + 5 = 0或2x – y – 5 = 0.例3 已知圆C :x 2 + y 2 – 2x + 4y – 4 = 0. 问是否存在斜率为1的直线l , 使l 被圆C 截得弦AB 满足:以AB 为直径的圆经过原点.【解析】假设存在且设l 为:y = x + m ,圆C 化为(x – 1)2 – (y + 2)2 = 9,圆心C (1,–2). 解方程组2(1)y x m y x =+⎧⎨+=--⎩得AB 的中点N 的坐标11(,)22m m N +--,由于以AB 为直径的圆过原点,所以|AN | = |ON |.又||AN ==||ON =所以22(3)(1)19()222m m m ++--=+解得m = 1或m = –4.所以存在直线l ,方程为x – y + 1 = 0和x – y – 4 = 0, 并可以检验,这时l 与圆是相交于两点的.。
4.2.1 直线与圆的位置关系一、教学目标:1、知识与技能:(1)理解直线与圆的位置关系的种类;(2)会利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.2、过程与方法:通过学习直线与圆的位置关系,掌握解决问题的方法――几何法、代数法。
3、情感态度与价值观:让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重、难点:重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判断直线与圆的位置关系.三、教学方法与手段:1、教学方法:讲解法、讨论法、探究法、演示法2、教学手段:多媒体、几何画板四、教学过程:1、提出问题,情境导入教师利用多媒体展示如下问题:问题1:一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为30km的圆形区域,已知小岛中心位于轮船正西70km处,港口位于小岛中心正北40km处。
如果轮船沿直线返港,那么它是否会触礁危险?设计意图:让学生感受暗礁这个实际问题中所蕴含的直线与圆的位置关系,思考解决问题的方案。
通过实际问题引入,让学生体会生活中的数学,突出研究直线与圆的位置关系的重要意义。
师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:你怎么判断轮船会不会触礁?利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。
生:暗礁所在的圆与轮船航线所在直线是否相交。
师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系。
2、回顾旧知、揭示课题——直线与圆的位置关系问题2:在初中,我们学习过直线与圆的位置关系,即直线与圆相交,有两个公共点,直线与圆相切,有一个公共点;直线与圆相离,没有公共点。
设计意图:从已有的知识经验出发,建立新旧知识之间的联系,构建学生学习的最近发展区,不断加深对问题的理解。
师生活动:引导学生回忆义务教育阶段判断直线与圆的位置关系的思想过程,可以展示下面的表格,使问题直观形象。
教师课时教案备课人授课时间课题
4.2.1 直线与圆的位置关系课标要求理解直线与圆的位置的种类
教学目标
知识目标
利用平面直角坐标系中点到直线的距离公式求圆心到直线
的距离
技能目标会用点到直线的距离来判断直线与圆的位置关系
情感态度价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培
养学生数形结合的思想
重点直线与圆的位置关系的几何图形及其判断方法.
难点用坐标法判直线与圆的位置关系
教问题与情境及教师活动学生活动
学
过
程
及
方
法 过程与方法:
1. 初中学过的平面几何中,直线与圆的位置关系有几类? 师:让学生之间进行讨论、交流,引导学生观察图形,导入新课. 生:看图,并说出自己的看法. 2.直线与圆的位置关系有哪几种呢? 师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想. 生:观察图形,利用类比的方法,归纳直线与圆的位置关系. 3.在初中,我们怎样判断直线与圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢? 师:引导学生回忆初中判断直线与圆的位置关系的思想过程. 生:回忆直线与圆的位置关系的判断过程.
4.你能说出判断直线与圆的位置关系的两种方法吗? 师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.
生:利用图形,寻找两种方法的数学思想.
教师课时教案
教 问题与情境及教师活动 学生活动 点评:由多个平面图形围成的几何体,它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和.。
直线与圆的位置关系(第1课时)【教学目标】1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想.2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通过观察图形,明确数与形的统一性和联系性.【重点难点】教学重点:直线与圆的位置关系的几何图形及其判断方法.教学难点:用坐标法判断直线与圆的位置关系.【课时安排】2课时【教学过程】导入新课(1)直线方程Ax+By+C=0(A,B不同时为零).(2)圆的标准方程(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r.(3)圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为(-,-),半径为.推进新课新知探究提出问题①初中学过的平面几何中,直线与圆的位置关系有几类?②在初中,我们怎样判断直线与圆的位置关系呢?③如何用直线与圆的方程判断它们之间的位置关系呢?④判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:①初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.②直线与圆的三种位置关系的含义是:直线与圆的位置关系公共点个数圆心到直线的距离d与半径r的关系图形相交两个d<r相切只有一个d=r相离没有d>r③方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.④直线与圆的位置关系的判断方法:几何方法步骤:1°把直线方程化为一般式,求出圆心和半径.2°利用点到直线的距离公式求圆心到直线的距离.3°作判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交.代数方法步骤:1°将直线方程与圆的方程联立成方程组.2°利用消元法,得到关于另一个元的一元二次方程.3°求出其判别式Δ的值.4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立.应用示例例1已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.解法一:由直线l与圆的方程,得消去y,得x2-3x+2=0,因为Δ=(-3)2-4×1×2=1>0,所以直线l与圆相交,有两个公共点.解法二:圆x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心C的坐标为(0,1),半径长为,圆心C到直线l 的距离d==<.所以直线l与圆相交,有两个公共点.由x2-3x+2=0,得x1=2,x2=1.把x1=2代入方程①,得y1=0;把x2=1代入方程①,得y2=3.所以直线l与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2已知圆的方程是x2+y2=2,直线y=x+b,当b为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求曲线公共点问题可转化为b为何值时,方程组有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有公共点的问题,可转化为b为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l:y=x+b和圆x2+y2=2有两个公共点、只有一个公共点、没有公共点,则方程组有两个不同解、有两个相同解、没有实数解,消去y,得2x2+2bx+b2-2=0,所以Δ=(2b)2-4×2(b2-2)=16-4b2.所以,当Δ=16-4b2>0,即-2<b<2时,圆与直线有两个公共点;当Δ=16-4b2=0,即b=±2时,圆与直线只有一个公共点;当Δ=16-4b2<0,即b>2或b<-2时,圆与直线没有公共点.解法二:圆x2+y2=2的圆心C的坐标为(0,0),半径长为2,圆心C到直线l:y=x+b的距离d=.当d>r时,即>,即|b|>2,即b>2或b<-2时,圆与直线没有公共点;当d=r时,即=,即|b|=2,即b=±2时,圆与直线只有一个公共点;当d<r时,即<,即|b|<2,即-2<b<2时,圆与直线有两个公共点.点评:由于圆的特殊性,判断圆与直线的位置关系,多采用圆心到直线的距离与半径的大小进行比较的方法,而以后我们将要学习的圆锥曲线与直线位置关系的判断,则需要利用方程组解的个数来判断.变式训练已知直线l过点P(4,0),且与圆O:x2+y2=8相交,求直线l的倾斜角α的取值范围.解法一:设直线l的方程为y=k(x-4),即kx-y-4k=0,因为直线l与圆O相交,所以圆心O到直线l的距离小于半径,即<2,化简得k2<1,所以-1<k<1,即-1<tanα<1.当0≤tanα<1时,0≤α<;当-1<tanα<0时,<α<π.所以α的取值范围是[0,)∪(,π).解法二:设直线l的方程为y=k(x-4),由,消去y得(k2+1)x2-8k2x+16k2-8=0.因为直线l与圆O相交,所以Δ=(-8k2)2-4(k2+1)(16k2-8)>0,化简得k2<1.(以下同解法一)点评:涉及直线与圆的位置关系的问题,常可运用以上两种方法.本题若改为选择题或填空题,也可利用图形直接得到答案.拓展提升圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.(1)当α=时,求AB的长;(2)当AB的长最短时,求直线AB的方程.解:(1)当α=时,直线AB的斜率为k=tan=-1,所以直线AB的方程为y-2=-(x+1),即y=-x+1. 解法一:(用弦长公式)由消去y,得2x2-2x-7=0,设A(x1,y1),B(x2,y2),则x1+x2=1,x1x2=-,所以|AB|=|x1-x2|=·=·=.解法二:(几何法)弦心距d=,半径r=2,弦长|AB|=2. (2)当AB的长最短时,OP0⊥AB,因为k OP0=-2,k AB=,直线AB的方程为y-2=(x+1),即x-2y+5=0.课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法.(2)求切线方程.作业习题4.2 A组1、2、3.。
必修二4.2.1直线与圆的位置关系●三维目标1.知识与技能(1)理解直线与圆的三种位置关系.(2)掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法.2.过程与方法(1)通过直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、动手实践、合作交流的学习方式.(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.3.情感、态度与价值观通过学生的自主探究、小组讨论合作,培养学生的团队精神和主动学习的良好习惯.●重点难点重点:掌握用几何法和解析法判断直线与圆的位置关系;能用直线与圆的方程解决一些简单的实际问题.难点:灵活地运用“数形结合”、解析法来解决直线与圆的相关问题.重难点突破:以平面几何中直线与圆的三种位置关系为切入点,通过对教材实例的探究,结合解析法解决问题的步骤,使学生的思维实现从“形”到“数”的转化,即从“方程”角度来判断直线与圆的三种位置关系,难点顺利突破.为更好的突出用解析法来解决直线与圆的相关问题的优越性,教师可适当引入案例,以帮助学生实现知识的内化.●教学建议本节课既是对直线与圆的方程应用的延续和拓展,又是后续研究圆与圆的位置关系的基础.由于直线与圆的三种位置关系学生已经非常熟悉,且从直线与圆的直观感受上,学生已懂得从圆心到直线的距离与圆的半径相比较来研究直线与圆的位置关系,故本节课的核心是“如何用‘数’的关系来判断直线与圆的位置关系”,引导学生学会从不同角度分析思考问题,为后续学习打下基础.为此,可类比直线与直线的交点坐标的求法,引导学生用解析法探求直线与圆的位置关系的思想,让学生认识到解析法解决平面几何问题的优越性;在问题解决过程中,提高学生知识水平的同时渗透了“数形结合”的思想方法,培养学生从多角度思考问题的发散性思维能力.●教学流程创设问题情境,引出问题:如何判断直线与圆的位置关系?⇒错误!⇒错误!⇒错误!⇒通过例2及其变式训练,使学生掌握圆的切线方程的求法.⇒通过例3及其变式训练,使学生掌握圆的弦长求法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读 1.理解直线和圆的三种位置关系.(重点) 2.会用圆心到直线的距离来判断直线与圆的位置关系.(重点)3.能解决直线与圆位置关系的综合问题.(易错点、难点)直线与圆的位置关系及判断【问题导思】大海上初升的红日,冉冉升起中,展现着迷人的风采,同时也体现了直线与圆的三种位置关系:相交、相切、相离.1.如果直线与圆相交,则圆心到直线的距离d同圆的半径r什么关系?【提示】d<r.2.能否利用代数的方法,即通过联立直线和圆的方程,依据方程组解的个数,判定直线和圆的位置关系?【提示】能.直线与圆的位置关系的判定方法(1)代数法:直线与圆的方程联立消去y(或x)得到关于x(或y)的一元二次方程,此方程的判别式为Δ,则直线与圆相交⇔Δ>0;直线与圆相切⇔Δ=0;直线与圆相离⇔Δ<0.(2)几何法:设圆的半径为r,圆心到直线的距离为d,则直线与圆相交⇔d<r;直线与圆相切⇔d=r;直线与圆相离⇔d>r.直线与圆位置关系的判断图4-2-1如图4-2-1所示,已知直线l :y =kx +5与圆C :(x -1)2+y 2=1.(1)当k 为何值时,直线l 与圆C 相交? (2)当k 为何值时,直线l 与圆C 相切? (3)当k 为何值时,直线l 与圆C 相离?【思路探究】 思路一:联立l 和C 的方程――→消元一元二次方程――→判断Δ的符号直线与圆的位置关系思路二:求圆心C 到直线l 的距离d ―→比较d 与l 的大小关系―→下结论【自主解答】 法一 由⎩⎪⎨⎪⎧y =kx +5,(x -1)2+y 2=1消去y ,得(x -1)2+(kx +5)2=1, 即(k 2+1)x 2+(10k -2)x +25=0,则Δ=(10k -2)2-4×25(k 2+1)=-96-40k . (1)当Δ>0,即k <-125时,直线l 与圆C 相交.(2)当Δ=0,即k =-125时,直线l 与圆C 相切.(3)当Δ<0,即k >-125时,直线l 与圆C 相离.法二 圆C 的圆心C (1,0),半径r =1,由点到直线的距离公式得圆心C 到直线l 的距离d =|k +5|1+k 2. (1)当|k +5|1+k 2<1,即k <-125时,直线l 与圆C 相交.(2)当|k+5|1+k2=1,即k=-125时,直线l与圆C相切.(3)当|k+5|1+k2>1,即k>-125时,直线l与圆C相离.直线与圆位置关系判断的三种方法:(1)几何法:由圆心到直线的距离d与圆的半径r的大小关系判断.(2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,但有一定的局限性,必须是过定点的直线系.(2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能【解析】将点P(3,0)的坐标代入圆的方程,得32+02-4×3=9-12=-3<0,∴点P(3,0)在圆内.∴过点P的直线l定与圆C相交.【答案】 A圆的切线问题(2013·济宁高一检测)若直线l过点P(2,3),且与圆(x-1)2+(y+2)2=1相切,求直线l的方程.【思路探究】判断点P与圆的位置关系―→设l的方程―→利用几何法或代数法求l的方程【自主解答】∵(2-1)2+(3+2)2>1,∴点P在圆外.法一①若直线l的斜率存在,设l:y-3=k(x-2),即kx-y+3-2k=0,因为直线l 与圆(x-1)2+(y+2)2=1相切,所以|5-k|k2+1=1,所以k=125.所以直线l的方程为y-3=125(x-2),即12x-5y-9=0.②若直线l的斜率不存在,则直线l:x=2也符合要求.所以直线l的方程为12x-5y-9=0或x=2.法二①若直线l的斜率存在,设l :y -3=k (x -2), 即y =k (x -2)+3, 与圆的方程联立消去y 得: (x -1)2+[k (x -2)+3+2]2=1,整理得(k 2+1)x 2-(4k 2-10k +2)x +4k 2-20k +25=0, ∴Δ=(4k 2-10k +2)2-4(k 2+1)(4k 2-20k +25)=0, ∴k =125.此时直线l 的方程为y -3=125(x -2),即12x -5y -9=0. ②若直线l 的斜率不存在,则直线l :x =2也符合要求. 所以直线l 的方程为12x -5y -9=0或x =2.1.本题求解采用了两种不同的方法,显然方法一较方法二简捷明了,一般地求圆的切线方程或与切线有关的问题常用方法一.2.过圆外一点引圆的切线必定有两条,当用几何法求得切线的斜率值只有一个时,另一条切线的斜率一定不存在,可由数形结合法求得.(2013·临沂高一检测)直线x+y=m与圆x2+y2=m(m>0)相切,则实数m的值为________.【解析】由题意可知,圆x2+y2=m的圆心(0,0)到直线x+y=m的距离等于半径.即|m|12+12=m.又m>0,∴m=2.【答案】 2圆的弦长问题求直线l:3x+y-6=0被圆C:x2+y 2-2y -4=0截得的弦长.【思路探究】 方程组→解出交点坐标→ 两点间距离即弦长或方程组→得x 1+x 2与x 1·x 2→弦长公式求弦长或圆心到直线的距离→构造直角三角形求弦长【自主解答】 法一 由⎩⎪⎨⎪⎧3x +y -6=0,x 2+y 2-2y -4=0,得交点A (1,3),B (2,0),∴弦AB 的长为|AB |=(2-1)2+(0-3)2=10.法二 由⎩⎪⎨⎪⎧3x +y -6=0,x 2+y 2-2y -4=0,消去y 得x 2-3x +2=0.设两交点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2), 则由根与系数的关系得x 1+x 2=3,x 1·x 2=2. ∴|AB |=(x 2-x 1)2+(y 2-y 1)2=(x 2-x 1)2+[-3x 2+6-(-3x 1+6)]2 =(1+32)(x 2-x 1)2 =10[(x 1+x 2)2-4x 1x 2] =10×(32-4×2)=10, 即弦AB 的长为10.法三 圆C :x 2+y 2-2y -4=0可化为x 2+(y -1)2=5,其圆心坐标(0,1),半径r =5,点(0,1)到直线l 的距离为d =|3×0+1-6|32+12=102,所以半弦长为|AB |2=r 2-d 2= (5)2-(102)2=102, 所以弦长|AB |=10.图1求直线与圆相交时弦长的两种方法:(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有(|AB |2)2+d 2=r 2.即|AB |=2r 2-d 2.图2(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A(x1,y1),B(x2,y2),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+1k2·|y1-y2|,其中k为直线l的斜率.(2012·重庆高考)设A、B为直线y=x与圆x2+y2=1的两个交点,则|AB|=() A.1 B.2 C.3D.2【解析】直线y=x过圆x2+y2=1的圆心C(0,0),则|AB|=2.【答案】D忽略直线斜率不存在的情况致误已知圆M:(x-1)2+(y-1)2=4,直线a过点P(2,3)且与圆M交于A,B两点,且|AB|=23,求直线a的方程.【错解】设直线a的方程为y-3=k(x-2),即kx-y+3-2k=0.如图所示,作MC⊥AB于C,在直角三角形MBC中,BC =3,MB =2,MC =MB 2-BC 2=1,由点到直线的距离公式得点M (1,1)到直线a 的距离为|k -1+3-2k |k 2+1=1,解得k =34,所以直线a 的方程为3x -4y +6=0.【错因分析】 错解忽略了直线a 的斜率不存在的情况.【防范措施】 点斜式方程并不能表示斜率不存在的情况,故在求直线方程时,若设点斜式方程,根据条件求得斜率后,应注意验证斜率不存在的情况是否满足题意.本题就是忽略了斜率不存在的特殊情况而出错的.【正解】 ①当直线a 的斜率存在时,设直线a 的方程为y -3=k (x -2),即kx -y +3-2k =0.如错解中的图所示,作MC ⊥AB 于C ,在直角三角形MBC 中, BC =3,MB =2,MC =MB 2-BC 2=1,由点到直线的距离公式得点M (1,1)到直线a 的距离为|k -1+3-2k |k 2+1=1, 解得k =34,所以直线a 的方程为3x -4y +6=0.②当直线a 的斜率不存在时,其方程为x =2, 圆心到此直线的距离也是1,所以适合题意. 综上,直线a 的方程为3x -4y +6=0或x =2.1.判断直线与圆位置关系的途径主要有两个:一是圆心到直线的距离与圆的半径进行大小比较;二是直线与圆的方程组成的方程组解的个数.两者相比较,前者较形象、直观,便于运算.2.与圆有关的弦长、切线问题常利用几何法求解,但注意验证所求直线的斜率不存在的情形,避免漏解.1.直线y=x+1与圆x2+y2=1的位置关系是()A.相切B.相交但直线不过圆心C.直线过圆心D.相离【解析】圆心到直线的距离d=11+1=22<1,又∵直线y=x+1不过圆心(0,0),∴直线与圆相交但不过圆心.【答案】 B2.直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m 等于( ) A.3或- 3 B .-3或3 3 C .-33或 3 D .-33或3 3【解析】 把圆的方程化成标准方程(x -1)2+y 2=3, 由已知得|3×1-0+m |(3)2+(-1)2=3,即|m +3|=2 3.∴m =-33或m = 3. 【答案】 C3.直线y =x 与圆(x -2)2+y 2=4交于点A ,B ,则|AB |=________.【解析】 圆心(2,0)到直线x -y =0的距离d =|2-0|2=2,又圆的半径为r =2,则(|AB |2)2+d 2=r 2.解得|AB |=2 2. 【答案】 2 24.a 为何值时,直线2x -y +1=0与圆x 2+y 2=a 2(a >0)相离、相切、相交? 【解】 由圆x 2+y 2=a 2(a >0),知圆心为O (0,0),半径为a ,O 到直线2x -y +1=0的距离为d =122+12=55. (1)若直线与圆相离,则d >r ,即55>a ,∴0<a <55. (2)若直线与圆相切,则d =r ,即a =55. (3)若直线与圆相交,则d <r ,即a >55. 综上所述,当0<a <55时,直线与圆相离;当a =55时,直线与圆相切;当a >55时,直线与圆相交.一、选择题1.(2012·辽宁高考)将圆x2+y2-2x-4y+1=0平分的直线是()A.x+y-1=0B.x+y+3=0C.x-y+1=0 D.x-y+3=0【解析】因为圆心是(1,2),所以将圆心坐标代入各选项验证知选C.【答案】 C2.(2013·长沙高一检测)以(2,-1)为圆心且与直线3x-4y+5=0相切的圆的标准方程为()A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9 D.(x+2)2+(y-1)2=9【解析】根据题意知点(2,-1)到直线3x-4y+5=0的距离与半径长相等,所以r=|6+4+5|=3,所以所求圆的标准方程为(x-2)2+(y+1)2=9.32+(-4)2【答案】 C3.(2012·湛江高二检测)直线x-ky+1=0与圆x2+y2=1的位置关系是()A.相交B.相离C.相交或相切D.相切【解析】直线x-ky+1=0过定点(-1,0),而点(-1,0)在圆上,故直线与圆相切或相交.【答案】 C4.(2012·衢州高二检测)圆x2+y2-4x=0在点P(1,3)处的切线方程为()A.x+3y-2=0 B.x-3y+2=0C.x-3y+4=0 D.x+3y-4=0【解析】 ∵12+(3)2-4×1=0,∴点P (1,3)在圆上.又圆x 2+y 2-4x =0的圆心A (2,0),又题意可知切线与直线P A 垂直. 又k P A =31-2=-3,∴所求切线的斜率k =33.由点斜式得y -3=33(x -1),即x -3y +2=0. 【答案】 B5.(思维拓展题)在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有( )A .1个B .2个C .3个D .4个【解析】 圆心为(-1,-2),半径r =22,而圆心到直线的距离d =|-1-2+1|2=2,故圆上有3个点满足题意.【答案】 C 二、填空题6.设直线2x +3y +1=0和圆x 2+y 2-2x -3=0相交于点A ,B ,则弦AB 的垂直平分线的方程是________.【解析】 将x 2+y 2-2x -3=0化为标准形式为(x -1)2+y 2=4,圆心为(1,0).直线2x +3y +1=0的斜率k =-23,∴AB 的垂直平分线的斜率为32,∴AB 的垂直平分线为y -0=32(x-1),即3x -2y -3=0.【答案】 3x -2y -3=07.(2013·开封高一检测)圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是________.【解析】 圆的方程化为标准式得(x -2)2+(y -2)2=18. 圆心(2,2)到直线x +y -14=0的距离 d =|2+2-14|2=52,直线与圆相离,从而圆上点到直线的最小距离为52-r =52-32=22,最大距离为52+32=82,故最大距离与最小距离的差是6 2.【答案】 6 28.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.【解析】 由题意知直线要与圆相交,必存在斜率,设为k ,则直线方程为y +2=k (x +1),又圆的方程可化为(x -1)2+(y -1)2=1,圆心为(1,1),半径为1,∴圆心到直线的距离d =|k -1+k -2|1+k 2=1-(22)2,解得k =1或177. 【答案】 1或177三、解答题9.已知圆x 2+y 2=2和直线y =x +b ,当b 为何值时,直线与圆 (1)相交;(2)相切;(3)相离?【解】 圆心(0,0)到直线y =x +b 的距离d =|b |2,圆的半径为r = 2. (1)当d <r ,即-2<b <2时,直线与圆相交; (2)当d =r ,即b =±2时,直线与圆相切; (3)当d >r ,即b <-2或b >2时,直线与圆相离. 10.(2013·济宁高一检测)已知圆C 的方程为:x 2+y 2=4. (1)求过点P (1,2)且与圆C 相切的直线l 的方程;(2)直线l 过点P (1,2),且与圆C 交于A ,B 两点,若|AB |=23,求直线l 的方程. 【解】 (1)显然直线l 的斜率存在,设切线方程为y -2=k (x -1),则由|2-k |k 2+1=2得k 1=0,k 2=-43,故所求的切线方程为y =2或4x +3y -10=0.(2)当直线l 垂直于x 轴时,此时直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),这两点的距离为23,满足题意;当直线l 不垂直于x 轴时,设其方程为y -2=k (x -1),即kx -y -k +2=0,设圆心到此直线的距离为d ,则23=24-d 2,∴d =1,∴1=|-k +2|k 2+1,∴k =34,此时直线方程为3x-4y +5=0.综上所述,所求直线方程为3x -4y +5=0或x =1.11.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的l 的方程.【解】 (1)证明:因为l 的方程为(x +y -4)+m (2x +y -7)=0(m ∈R ),所以⎩⎪⎨⎪⎧ 2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1,即l 恒过定点A (3,1).因为圆心为C (1,2),|AC |=5<5(半径), 所以点A 在圆C 内,从而直线l 与圆C 恒交于两点. (2)由题意可知弦长最小时,l ⊥AC . 因为k AC =-12,所以l 的斜率为2.又l 过点A (3,1),所以l 的方程为2x -y -5=0.已知实数x ,y 满足方程x 2+y 2-4x +1=0, 求:(1)yx的最大值;(2)y -x 的最小值.【思路探究】 将x 2+y 2-4x +1=0,yx ,y -x 赋予几何意义,利用数形结合来解决.【自主解答】 将实数x ,y 看作点P (x ,y )的坐标,满足x 2+y 2-4x +1=0的点P (x ,y )组成的图形是以M (2,0)为圆心,3为半径的圆,如图所示.(1)设y x =y -0x -0=k ,即y x是圆上的点P 与原点O 连线的斜率. 由图知,直线y =kx 和圆M 在第一象限相切时,k 取最大值.此时有OP ⊥PM ,|PM |=3,|OM |=2,∴∠POM =60°.此时k =tan 60°=3,∴y x 的最大值为 3. (2)设y -x =b ,则y =x +b ,b 是直线y =x +b 在y 轴上的截距.由图知,当直线y =x+b 和圆M 在第四象限相切时,b (b <0)取最小值,此时有|2+b |2=3,解得b =-6-2, ∴y -x 的最小值是-6-2.利用数形结合解决最值问题时,首先从代数演算入手,将代数表达式赋予几何意义,看成某几何量的大小,把问题转化为求此几何量的最值问题;再从几何直观出发,根据图形的几何性质,观察出最值出现的时机和位置,从而解决求代数表达式的最值问题.这是用几何方法解决代数问题的常用方法,即数形结合.常见的数形结合点是直线方程、圆的方程、过两点的斜率公式、平面内两点间距离公式、直线在y 轴上的截距等.如果实数x ,y 满足方程(x -3)2+(y -3)2=6,求y x的最大值与最小值.【解】 设P (x ,y ),则P 点的轨迹就是已知圆C :(x -3)2+(y -3)2=6.而y x的几何意义就是直线OP 的斜率, 设y x=k ,则直线OP 的方程为y =kx . 由图可知,当直线OP 与圆相切时,斜率取最值.∵点C(3,3)到直线y=kx的距离d=|3k-3|k2+1,∴当|3k-3|k2+1=6,即k=3±22时,直线OP与圆相切.∴yx的最大值与最小值分别是3+22与3-2 2.。
人教A版高中数学必修2课题:4.2.1直线与圆的位置关系【教材分析】《直线、圆的位置关系》是圆与方程这一章的重要内容。
它是学生在初中平面几何中已学过直线与圆的三种位置关系,以及在前面几节学习了直线与圆的方程的基础上,从代数角度,运用解析法进一步研究直线与圆的位置关系,它既是对圆的方程的应用和拓展,又是研究圆和圆的位置关系的基础,并且为后续研究直线和圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。
【学生学情分析】在初中,学生已经直观的讨论过直线与圆的位置关系,前阶段又学习了直线方程和圆的方程。
本节课主要以问题为载体,帮助学生复习、整理已有的知识结构,让学生利用已有的知识,探究直线与圆的位置关系的判断方法。
通过学生参与问题的解决,让学生体验有关的数学思想,培养“数形结合”的意识。
【教学目标】(一)知识与技能:理解直线与圆三种位置关系;能根据直线、圆的方程,用代数法和几何法判断直线与圆位置关系;掌握直线和圆的位置关系判定的应用,会求弦长.(二)方法与过程:通过对直线与圆的位置关系的探究活动,经历知识的建构过程,培养学生独立思考、自主探究、合作交流的学习方式;强化学生用解析法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力.(三)情感态度与价值观:让学生亲生经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣,感受“方程思想”、“数形结合”等数学思想的内涵,养成良好的思维习惯.【教学重点与难点】重点:直线与圆的位置关系的判断方法.难点:灵活的运用“数形结合”解决直线和圆相关的问题.【课型】新课【课时安排】1节课【教法、学法指导、教学手段】教法“引导-探究”教学法、“命名”教学法、“题组”教学法;学法:观察发现、自主探究、合作交流、变式学习、归纳总结、应用提高;教学手段:多媒体教学【教学准备】学生学情,课件、教学设计,学生课堂练习题;彩色粉笔,翻页笔。
间的位置关系呢?方法一:可以依据圆心到直线的距离与半径长的关系,判断直线与圆的方法二,由直线l(–问题6过点M【板书设计】有两个公共点直线和圆相交有惟一公共点直线和圆相切直线和圆相离。
4.2.1 直线与圆的位置关系(一)教学目标 1.知识与技能(1)理解直线与圆的位置的种类;(2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. (二)过程与方法设直线l :ax + by + c = 0,圆C :x 2 + y 2 + Dx + Ey + F = 0,圆的半径为r ,圆心(,)22D E --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当d >r 时,直线l 与圆C 相离; (2)当d =r 时,直线l 与圆C 相切; (3)当d <r 时,直线l 与圆C 相交; 3.情态与价值观让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.(二)教学重点、难点重点:直线与圆的位置关系的几何图形及其判断方法. 难点:用坐标法判定直线与圆的位置关系. (三)教学过程设想 教学环节 教学内容师生互动设计意图复习引1.初中学过的师;让学生之间进行启入平面几何中,直线与圆的位置关系有几类?讨论、交流,引导学生观察图形,导入新课.生:看图,并说出自己的看法.发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.概念形成2.直线与圆的位置关系有哪几种呢?三种(1)直线与圆相交,有两个公共点.(2)直线与圆相切,只有一个公共点.(3)直线与圆相离,没有公共点.师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.生:观察图形,利用类比的方法,归纳直线与圆的位置关系.得出直线与圆的位置关系的几何特征与种类.概念深化3.在初中,我们怎样判断直线与师:引导学生回忆初中判断直线与圆的位置使学生回圆的位置关系呢?如何用直线与圆的方程判断它们之间的位置关系呢?关系的思想过程.生:回忆直线与圆的位置关系的判断过程.忆初中的数学知识,培养抽象概括能力.4.你能说出判断直线与圆的位置关系的两种方法吗?方法一:利用圆心到直线的距离d.方法二:利用直线与圆的交点个数.师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.生:利用图形,寻找两种方法的数学思想.抽象判断直线与圆的位置关系的思路与方法.应用举例5.你能用两种判断直线与圆的位置关系的数学思想解决例1的问题吗?例 1 如图,师:指导学生阅读教科书上的例1.生:仔细阅读教科书上的例1,并完成教科书第140页的练习题2.例 1 解法一:由直线l与圆的方程,得体会判断直线与圆的位置关系的思想方法,关①②已知直线l:3x +y– 6 = 0和圆心为C的圆x2 + y2–2y– 4 = 0,判断直线l与圆的位置关系;如果相交,求它们交点的坐标.分析:方法一:由直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系.22360240x yx y y+-=⎧⎨+--=⎩消去y,得x2– 3x+ 2 = 0,因为△= (–3)2–4×1×2= 1>0所以,直线l与圆相交,有两个公共点.解法二:圆x2 + y2–2y–4 = 0可化为x2+(y– 1)2 =5,其圆心C的坐标为(0,1),半径长为5,点C (0,1)到直线l的距离d =22|3016|51031⨯+-=+<5.所以,直线l与圆相交,有两个公共点.由x2–3x + 2 = 0,解得x1 =2,x2 = 1.把x1=2代入方程①,得y1= 0;把x2=1代入方程①,注量与量之间的关系.使学生熟悉判断直线与圆的位置关系的基本步骤.6.通过学习教科书的例1,你能总结一下判断直线与圆的位置关系的步骤吗?例 2 已知过点M (–3,–3)的直线l被圆x2+ y2 + 4y–21 = 0所截得的弦长为45,求直线l的方程. 得y2= 0;所以,直线l与圆有两个交点,它们的坐标分别是A(2,0),B(1,3).生:阅读例1.师:分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.生:交流自己总结的步骤.师:展示解题步骤.例2 解:将圆的方程写成标准形式,得x2 + (y2 + 2)2 =25,所以,圆心的坐标是(0,–2),半径长r =5. 如图,因为直线l的距离为45,所以弦心距为22455()52-=,即圆心到所求直线l 的距离为5.因为直线l 过点M (–3,–3),所以可设所求直线l 的方程为y + 3 = k (x + 3),即k x – y + 3k –3 = 0.根据点到直线的距离公式,得到圆心到直线l 的距离d =2|233|1k k +-+.因此,2|233|51k k +-=+, 即|3k –1|=255k +,两边平方,并整理得到2k 2 –3k –2 = 0, 解得k =12,或k =2.所以,所求直线l 有两条,它们的方程分别为y + 3 =12(x + 3),或y+ 3 = 2(x+ 3).即x +2y = 0,或2x –y + 3 = 0.7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?8.通过例2的学习,你发现了什么?半弦、弦心距、半径构成勾股弦关系.师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.生:阅读教科书上的例2,并完成137页的练习题.师:引导并启发学生探索直线与圆的相交弦的求法.生:通过分析、抽象、归纳,得出相交弦长的运算方法.进一步深化“数形结合”的数学思想.明确弦长的运算方法.9.完成教科书第136页的练习题1、2、3、4.师:引导学生完成练习题.生:互相讨论、交流,完成练习题.巩固所学过的知识,进一步理解和掌握直线与圆的位置关系.归纳总结10.课堂小结:教师提出下列问题让学生思考:(1)通过直线与圆的位置关系的判断,你学到了什么?(2)判断直线与圆的位置关系有几种方法?它们的特点是什么?(3)如何求出直线与圆的相交弦长?师生共同回顾回顾、反思、总结形成知识体系课外作业布置作业:见习题4.2 第一课时学生独立完成巩固所学知识备选例题例1 已知圆的方程x2 + y2 = 2,直线y = x + b,当b为何值时,(1)圆与直线有两个公共点; (2)圆与直线只有一个公共点; (3)圆与直线没有公共点.解法1:圆心O (,0)到直线y = x + b 的距离为||2b d =,圆的半径2r =.(1)当d <r ,即–2<b <2时,直线与圆相交,有两个公共点;(2)当d = r ,即b = 2±时,直线与圆相切,有一个公共点;(3)当d >r ,即b >2或b <–2时,直线与圆相离, 无公共点. 解法2:联立两个方程得方程组222x y y x b ⎧+=⎨=+⎩.消去y 2得2x 2 + 2bx + b 2 – 2 = 0,∆=16 – 4b 2.(1)当∆>0,即–2 <b <2时,直线与圆有两个公共点; (2)当∆=0,即2b =±时,直线与圆有一个公共点; (3)当∆<0即b >2或b <–2时,直线与圆无公共点.例2 直线m 经过点P (5,5)且和圆C :x 2 + y 2 = 25相交,截得弦长l 为45,求m 的方程.【解析】设圆心到直线m 的距离为 d ,由于圆的半径r = 5,弦长的一半252l=, 所以由勾股定理,得:225(25)5d =-=,所以设直线方程为y – 5 = k (x – 5) 即kx – y + 5 – 5k = 0. 由2|55|51k k-=+ ,得12k =或k = 2.所以直线m 的方程为x – 2y + 5 = 0或2x – y – 5 = 0.例3 已知圆C :x 2 + y 2 – 2x + 4y – 4 = 0. 问是否存在斜率为1的直线l , 使l 被圆C 截得弦AB 满足:以AB 为直径的圆经过原点.【解析】假设存在且设l 为:y = x + m ,圆C 化为(x – 1)2 – (y + 2)2 = 9,圆心C (1,–2).解方程组2(1)y x m y x =+⎧⎨+=--⎩得AB 的中点N 的坐标11(,)22m m N +--,由于以AB 为直径的圆过原点,所以|AN | = |ON |. 又22(3)||||||92m AN CA CN +=-=-,2211||()()22m m ON +-=-+所以22(3)(1)19()222m m m ++--=+解得m = 1或m = –4.所以存在直线l ,方程为x – y + 1 = 0和x – y – 4 = 0, 并可以检验,这时l 与圆是相交于两点的.。
4. 2.1 直线与圆的位置关系【教学目标】1.能根据给定的直线、圆的方程,判断直线与圆的位置关系.2.通过直线与圆的位置关系的学习,体会用代数方法解决几何问题的思想.3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯.【教学重难点】教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判直线与圆的位置关系. 【教学过程】㈠情景导入、展示目标 问题:一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西80km 处,受影响的范围是半径长为30km 的圆形区域.已知港口位于台风中心正北40km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?运用平面几何知识,你能解决这个问题吗?请同学们动手试一下. ㈡检查预习、交流展示1.初中学过的平面几何中,直线与圆的位置关系有几种? 2.怎样判断直线与圆的位置关系呢? ㈢合作探究、精讲精练探究一:用直线的方程和圆的方程怎样判断它们之间的位置关系?教师:利用坐标法,需要建立直角坐标系,为使直线与圆的方程应用起来简便,在这个实际问题中如何建立直角坐标系?学生:以台风中心为原点O ,东西方向为x 轴,建立直角坐标系,其中,取10km 为单位长度.则受台风影响的圆形区域所对应的圆心为O 的圆的方程为922=+y x轮船航线所在直线 l 的方程为082=-+y x .教师:请同学们运用已有的知识,从方程的角度来研究一下直线与圆的位置关系. 让学生自主探究,互相讨论,探究知识之间的内在联系。
教师对学生在知识上进行适当的补遗,思维上的启迪,方法上点拨,鼓励学生积极、主动的探究. 由学生回答并补充,总结出以下两种解决方法: 方法一:代数法由直线与圆的方程,得:⎩⎨⎧=-+=+082922y x y x 消去y ,得0,74x 2x 2=+-因为040724(-4)2<△-=⨯⨯-= 所以,直线与圆相离,航线不受台风影响。
4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系整体设计教学分析学生在初中的学习中已了解直线与圆的位置关系,并知道可以利用直线与圆的交点的个数以及圆心与直线的距离d 与半径r 的关系判断直线与圆的位置关系,但是,在初中学习时,利用圆心与直线的距离d 与半径r 的关系判断直线与圆的位置关系的方法却以结论性的形式呈现.在高一学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d 后,比较与半径r 的关系从而作出判断.适可而止地引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质. 三维目标1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想.2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通过观察图形,明确数与形的统一性和联系性. 重点难点教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判断直线与圆的位置关系. 课时安排 2课时教学过程第1课时 导入新课思路1.平面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点有直线方程和圆的方程的建立、直线与圆的位置关系等,本节主要学习直线与圆的关系.思路2.(复习导入)(1)直线方程Ax+By+C=0(A,B 不同时为零).(2)圆的标准方程(x-a)2+(y-b)2=r 2,圆心为(a,b),半径为r.(3)圆的一般方程x 2+y 2+Dx+Ey+F=0(其中D 2+E 2-4F >0),圆心为(-2D ,-2E ),半径为21F E D 422-+.推进新课 新知探究 提出问题①初中学过的平面几何中,直线与圆的位置关系有几类? ②在初中,我们怎样判断直线与圆的位置关系呢?③如何用直线与圆的方程判断它们之间的位置关系呢?④判断直线与圆的位置关系有几种方法?它们的特点是什么?讨论结果:①初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种.直线与圆的位置关系公共点个数圆心到直线的距离d 与半径r 的关系图形相交 两个 d <r 相切 只有一个 d=r相离没有d >r二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系. ④直线与圆的位置关系的判断方法: 几何方法步骤: 1°把直线方程化为一般式,求出圆心和半径. 2°利用点到直线的距离公式求圆心到直线的距离. 3°作判断:当d >r 时,直线与圆相离;当d=r 时,直线与圆相切;当d <r 时,直线与圆相交. 代数方法步骤: 1°将直线方程与圆的方程联立成方程组. 2°利用消元法,得到关于另一个元的一元二次方程. 3°求出其判别式Δ的值. 4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立. 应用示例思路1例1 已知直线l :3x+y-6=0和圆心为C 的圆x 2+y 2-2y-4=0,判断直线l 与圆的位置关系.如果相交,求出它们的交点坐标.活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系. 解法一:由直线l 与圆的方程,得⎪⎩⎪⎨⎧=--+=-+)2(.042)1(,06322y y x y x消去y,得x 2-3x+2=0,因为Δ=(-3)2-4×1×2=1>0,所以直线l 与圆相交,有两个公共点.解法二:圆x 2+y 2-2y-4=0可化为x 2+(y-1)2=5,其圆心C 的坐标为(0,1),半径长为5,圆心C 到直线l 的距离d=2213|1603|+-+⨯=105<5.所以直线l 与圆相交,有两个公共点.由x 2-3x+2=0,得x 1=2,x 2=1.把x 1=2代入方程①,得y 1=0;把x 2=1代入方程①,得y 2=3.所以直线l 与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3).点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程组求解.例2 已知圆的方程是x 2+y 2=2,直线y=x+b,当b 为何值时,圆与直线有两个公共点,只有一个公共点没有公共点.活动:学生思考或交流,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价.我们知道,判断直线l 与圆的位置关系,就是看由它们的方程组成的方程组有无实数解,或依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系.反过来,当已知圆与直线的位置关系时,也可求字母的取值范围,所求曲线公共点问题可转化为b 为何值时,方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两组不同实数根、有两组相同实根、无实根的问题.圆与直线有两个公共点、只有一个公共点、没有公共点的问题,可转化为b 为何值时圆心到直线的距离小于半径、等于半径、大于半径的问题.解法一:若直线l :y=x+b 和圆x 2+y 2=2有两个公共点、只有一个公共点、没有公共点,则方程组⎪⎩⎪⎨⎧+==+bx y y x ,222有两个不同解、有两个相同解、没有实数解,消去y,得2x 2+2bx+b 2-2=0,所以Δ=(2b)2-4×2(b 2-2)=16-4b 2.所以,当Δ=16-4b 2>0,即-2<b <2时,圆与直线有两个公共点;当Δ=16-4b 2=0,即b=±2时,圆与直线只有一个公共点;当Δ=16-4b 2<0,即b >2或b <-2时,圆与直线没有公共点.解法二:圆x 2+y 2=2的圆心C 的坐标为(0,0),半径长为2,圆心C 到直线l:y=x+b 的距离d=2||11|0101|22b b =+-⨯+⨯-.当d >r 时,即2||b >2,即|b|>2,即b >2或b <-2时,圆与直线没有公共点;当d=r 时,即2||b =2,即|b|=2,即b=±2时,圆与直线只有一个公共点;当d <r 时,即2||b <2,即|b|<2,即-2<b <2时,圆与直线有两个公共点.点评:由于圆的特殊性,判断圆与直线的位置关系,多采用圆心到直线的距离与半径的大小进行比较的方法,而以后我们将要学习的圆锥曲线与直线位置关系的判断,则需要利用方程组解的个数来判断. 变式训练已知直线l 过点P(4,0),且与圆O :x 2+y 2=8相交,求直线l 的倾斜角α的取值范围. 解法一:设直线l 的方程为y=k(x-4),即kx-y-4k=0,因为直线l 与圆O 相交,所以圆心O 到直线l 的距离小于半径, 即1|4|2+-k k <22,化简得k 2<1,所以-1<k <1,即-1<tanα<1.当0≤tanα<1时,0≤α<4π;当-1<tanα<0时,43π<α<π.所以α的取值范围是[0,4π)∪(43π,π).解法二:设直线l 的方程为y=k(x-4),由⎪⎩⎪⎨⎧=+-=,8),4(22y x x k y ,消去y 得(k 2+1)x 2-8k 2x+16k 2-8=0. 因为直线l 与圆O 相交,所以Δ=(-8k 2)2-4(k 2+1)(16k 2-8)>0,化简得k 2<1.(以下同解法一) 点评:涉及直线与圆的位置关系的问题,常可运用以上两种方法.本题若改为选择题或填空题,也可利用图形直接得到答案.思路2例1 已知圆的方程是x 2+y 2=r 2,求经过圆上一点M(x 0,y 0)的切线方程.活动:学生思考讨论,教师提示学生解题的思路,引导学生回顾直线方程的求法,既考虑通法又考虑图形的几何性质.此切线过点(x 0,y 0),要确定其方程,只需求出其斜率k,可利用待定系数法(或直接求解).直线与圆相切的几何特征是圆心到切线的距离等于圆的半径,切线与法线垂直. 解法一:当点M 不在坐标轴上时,设切线的斜率为k,半径OM 的斜率为k 1, 因为圆的切线垂直于过切点的半径,所以k=-11k . 因为k 1=00x y 所以k=-00y x .所以经过点M 的切线方程是y-y 0=-00y x(x-x 0). 整理得x 0x+y 0y=x 02+y 02.又因为点M(x 0,y 0)在圆上,所以x 02+y 02=r 2.所以所求的切线方程是x 0x+y 0y=r 2.当点M 在坐标轴上时,可以验证上面的方程同样适用.解法二:设P(x,y)为所求切线上的任意一点,当P 与M 不重合时,△OPM 为直角三角形,OP 为斜边,所以OP 2=OM 2+MP 2,即x 2+y 2=x 02+y 02+(x-x 0)2+(y-y 0)2.整理得x 0x+y 0y=r 2.可以验证,当P 与M 重合时同样适合上式,故所求的切线方程是x 0x+y 0y=r 2. 解法三:设P(x,y)为所求切线上的任意一点,当点M 不在坐标轴上时,由OM ⊥MP 得k OM ·k MP =-1,即00x y ·xx yy --00=-1,整理得x 0x+y 0y=r 2.可以验证,当点M 在坐标轴上时,P 与M 重合,同样适合上式,故所求的切线方程是x 0x+y 0y=r 2.点评:如果已知圆上一点的坐标,我们可直接利用上述方程写出过这一点的切线方程. 变式训练求过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程.解:设x 0≠a,y 0≠b,所求切线斜率为k,则由圆的切线垂直于过切点的半径,得k=by a x k CM---=-001,所以所求方程为y-y 0=by a x ---00(x-x 0),即(y-b)(y 0-b)+(x-a)(x 0-a)=(x 0-a)2+ (y 0-b)2.又点M(x 0,y 0)在圆上,则有(x 0-a)2+(y 0-b)2=r 2.代入上式,得(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.当x 0=a,y 0=b 时仍然成立,所以过圆C:(x-a)2+(y-b)2=r 2上一点M(x 0,y 0)的圆的切线方程为(y-b)(y 0-b)+(x-a)(x 0-a)=r 2.例2 从点P(4,5)向圆(x -2)2+y 2=4引切线,求切线方程.活动:学生思考交流,提出解题的方法,回想直线方程的求法,先验证点与圆的位置关系,再利用几何性质解题.解:把点P(4,5)代入(x -2)2+y 2=4,得(4-2)2+52=29>4,所以点P 在圆(x -2)2+y 2=4外.设切线斜率为k,则切线方程为y -5=k(x -4),即kx -y +5-4k=0.又圆心坐标为(2,0),r=2.因为圆心到切线的距离等于半径,即1|4502|2+-+-k k k =2,k=2021. 所以切线方程为21x -20y +16=0.当直线的斜率不存在时还有一条切线是x=4.点评:过圆外已知点P(x,y)的圆的切线必有两条,一般可设切线斜率为k,写出点斜式方程,再利用圆心到切线的距离等于半径,写出有关k 的方程.求出k,因为有两条,所以应有两个不同的k 值,当求得的k 值只有一个时,说明有一条切线斜率不存在,即为垂直于x 轴的直线,所以补上一条切线x=x 1. 变式训练求过点M(3,1),且与圆(x-1)2+y 2=4相切的直线l 的方程. 解:设切线方程为y-1=k(x-3),即kx-y-3k+1=0, 因为圆心(1,0)到切线l 的距离等于半径2, 所以22)1(|13|-++-k k k =2,解得k=-43. 所以切线方程为y-1=-43(x-3),即3x+4y-13=0. 当过点M 的直线的斜率不存在时,其方程为x=3,圆心(1,0)到此直线的距离等于半径2,故直线x=3也符合题意.所以直线l 的方程是3x+4y-12=0或x=3.例3 (1)已知直线l :y=x+b 与曲线C :y=21x -有两个不同的公共点,求实数b 的取值范围;(2)若关于x 的不等式21x ->x+b 解集为R ,求实数b 的取值范围.图1解:(1)如图1(数形结合),方程y=x+b 表示斜率为1,在y 轴上截距为b 的直线l ; 方程y=21x -表示单位圆在x 轴上及其上方的半圆, 当直线过B 点时,它与半圆交于两点,此时b=1,直线记为l 1; 当直线与半圆相切时,b=2,直线记为l 2.直线l 要与半圆有两个不同的公共点,必须满足l 在l 1与l 2之间(包括l 1但不包括l 2), 所以1≤b <2,即所求的b 的取值范围是[1,2).(2)不等式21x ->x+b 恒成立,即半圆y=21x -在直线y=x+b 上方, 当直线l 过点(1,0)时,b=-1,所以所求的b 的取值范围是(-∞,-1). 点评:利用数形结合解题,有时非常方便直观. 知能训练本节练习2、3、4. 拓展提升圆x 2+y 2=8内有一点P 0(-1,2),AB 为过点P 0且倾斜角为α的弦. (1)当α=43π时,求AB 的长; (2)当AB 的长最短时,求直线AB 的方程. 解:(1)当α=43π时,直线AB 的斜率为k=tan 43π=-1,所以直线AB 的方程为y-2=-(x+1),即y=-x+1.解法一:(用弦长公式)由⎪⎩⎪⎨⎧=++-=,8,122y x x y 消去y,得2x 2-2x-7=0, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=1,x 1x 2=-27, 所以|AB|=2)1(1-+|x 1-x 2|=2·212214)(x x x x -+=2·)27(41-⨯-=30.解法二:(几何法)弦心距d=21,半径r=22,弦长|AB|=230218222=-=-dr . (2)当AB 的长最短时,OP 0⊥AB,因为k OP0=-2,k AB =21,直线AB 的方程为y-2=21(x+1), 即x-2y+5=0.课堂小结(1)判断直线与圆的位置关系的方法:几何法和代数法. (2)求切线方程. 作业习题4.2 A 组1、2、3.设计感想本节课是在学习了点和圆的位置关系的基础上进行的,是为后面的圆与圆的位置关系作铺垫的一节课.本节的主题是直线和圆,在解析几何中,直线与圆的关系是一个非常重要的知识点,可以对学生的思维有一个很好的锻炼,将几种重要的数学思想灌输给学生.首先,一开始的复习提问全面又突出重点,特别是“初中学习的如何判断直线和圆的位置关系?”这个问题,为学生思考提供了很好的引导.其次对于例题的选择有很高的要求,好的例题是一个好教案的重要保证.在例题的设计方面,本教案共分为三个层次来一步步的推进,让学生由浅入深,从思维容量上层层递进,对学生的思考和分析都有很好的引导作用,通过思路1的例题1、2对直线与圆的几种位置关系作了巩固,是每个学生都必须也能够掌握的.但这几题虽是基础题也并不是平淡无奇的题,它印证了判定的条件和结论在一定条件下是可以转化的.通过思路2的例题1、2,对圆的切线方程的求法进行了说明和总结.这个知识点与“直线与圆”联系起来,而且同时又渗透了数形结合的思想.让学生通过具体的练习,通过自主地思考、研究,来体会数学思想对我们解题和研究的作用.例题3的设计给学生留下了讨论的空间,不仅将与直线与圆有关的各知识点联系了起来,而且还通过各知识点之间的联系、综合应用,组织学生一起思考起来,对应用的加强更是体现了“分类活动,激发潜能”的基本要求.。