高中数学函数解题技巧方法总结高考学生
- 格式:docx
- 大小:153.60 KB
- 文档页数:9
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中函数解题技巧高中函数解题技巧引言在高中数学中,函数是一个重要的内容,解题时需要运用合适的技巧来解决各种函数问题。
本文将详细说明高中函数解题的各种技巧,帮助学生更好地应对考试。
技巧一:函数定义的掌握1.理解函数的定义:函数是一个映射关系,将自变量映射到因变量。
2.弄清楚定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。
3.利用定义域和值域求解问题:在解题过程中,需要根据函数的定义域和值域来确定自变量和因变量的取值范围,进而解决相关问题。
技巧二:函数的性质应用1.利用奇偶性判断函数的对称性:奇函数以原点对称,偶函数以y轴对称。
通过判断函数的奇偶性,可以简化一些计算和问题的分析。
2.利用导数判断函数的增减性:函数的导数代表其斜率,通过求导可以判断函数在某一区间内的增减情况,有助于解决最值和特殊点问题等。
3.利用周期性解决重复性问题:某些函数具有周期性特征,通过寻找周期性解决问题,可以简化计算和分析过程。
技巧三:函数图像的应用1.利用函数图像解读问题:观察函数的图像,可以帮助理解函数的性质和规律,进而解决相关问题。
2.利用函数图像求解交点和切点:通过观察函数图像的交点和切点,可以求解函数的零点、最大最小值和特殊点等问题。
技巧四:函数图像的变换1.利用平移变换函数图像:平移函数图像可以改变函数图像的位置,通过平移变换可以简化计算和分析过程。
2.利用伸缩变换函数图像:伸缩函数图像可以改变函数图像的尺寸,通过伸缩变换可以观察到函数的变化规律。
技巧五:函数组合和复合1.利用函数组合化简问题:将多个函数组合起来,可以简化计算和分析过程,有助于解决复杂的问题。
2.利用函数复合求解复合函数值:通过将自变量代入复合函数,可以求解复合函数的值,解决相关问题。
技巧六:方程和不等式的解法1.利用函数解方程:将方程转化为函数等式,通过解函数等式来求解方程,可以简化计算和分析过程。
2.利用函数解不等式:将不等式转化为函数不等式,通过解函数不等式来求解不等式,解决相关问题。
高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型在高考中占据了相当大的比重,因此掌握函数的相关知识和解题方法对于学生来说是非常重要的。
本文将针对高中函数题型及解题方法进行详细介绍,希望能够帮助学生们更好地理解和掌握函数的相关知识。
一、基本概念。
在学习函数的题型和解题方法之前,首先需要对函数的基本概念有一个清晰的认识。
函数是一个特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常用f(x)来表示,其中x是自变量,f(x)是因变量。
函数的定义域、值域、奇偶性、单调性等概念也是学习函数题型的重点内容。
二、常见题型及解题方法。
1. 函数的性质题。
这类题型主要考察对函数的性质的理解和掌握程度,包括奇偶性、单调性、最值等。
解题方法主要是通过对函数图像的分析和导数的运算来确定函数的性质。
2. 函数的运算题。
函数的运算题主要考察对函数的基本运算和复合函数的理解,包括函数的加减乘除、复合函数等。
解题方法主要是根据函数的定义进行运算,注意化简和合并同类项。
3. 函数方程题。
函数方程题主要考察对函数方程的解法和函数图像的性质分析。
解题方法主要是根据方程的特点进行分类讨论,通过代数和图像的方法解题。
4. 函数的应用题。
函数的应用题是高中数学中比较常见的题型,主要考察对函数的应用和解决实际问题的能力。
解题方法主要是通过建立函数模型,利用函数的性质解决实际问题。
三、解题技巧。
1. 熟练掌握函数的基本性质和运算法则,对于函数的定义域、值域、奇偶性、单调性等要有清晰的认识。
2. 多画函数的图像,通过观察函数的图像来理解函数的性质和解题方法。
3. 多做函数题的练习,掌握不同类型函数题的解题技巧和方法。
4. 注意函数题与实际问题的结合,理解函数在实际问题中的应用。
总结。
通过对高中函数题型及解题方法的介绍,希望能够帮助学生们更好地掌握函数的相关知识和解题方法。
高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,求函数的最值问题是经常出现的一类问题,对于这类问题我们可以通过求导数的方法来解决。
下面是一些关于根据导数求函数最值问题的解题技巧的总结。
1. 确定函数的定义域在解决函数的最值问题之前,我们需要确定函数的定义域。
定义域是指函数在实数范围内的取值范围。
确定定义域的同时,我们也要考虑函数是否连续以及是否存在间断点等因素。
2. 求函数的一阶导数为了求函数的最值,我们需要先求出函数的一阶导数。
对于一元函数而言,我们可以使用导数的定义或者常见的求导法则来求出一阶导数。
一阶导数能够反映函数的变化趋势以及函数的增减性质。
3. 找出导数为零的点接下来,我们需要找出函数的一阶导数为零的点,即导数为零的临界点。
这些点也称为函数的驻点。
通过求解导数为零的方程,我们可以得到函数取得极值的可能点。
4. 判断临界点的性质在找出函数的驻点之后,我们需要进一步判断这些点的性质。
根据导数的符号变化,我们可以判断驻点是极大值点还是极小值点。
通常我们可以通过求解导数的二阶导数,来判断驻点的性质。
5. 极值与最值的关系在有限闭区间上,函数的极大值和极小值统称为最值。
通过比较极值点的函数值,我们可以确定函数的最大值和最小值。
同时,我们还需要考虑函数在定义域的两端是否存在最值。
6. 综合应用求解问题除了在抽象的函数图像上求解最值问题,我们还可以将最值问题与实际问题相结合。
通过建立函数模型,并利用导数的知识来解决实际问题。
这样可以提升我们对于求解最值问题的能力和灵活性。
通过以上的技巧,我们能够更加高效地解决高中数学中根据导数求函数最值问题。
同时,在实际应用中,我们也需要不断的进行练习和思考,熟练掌握这些技巧,从而更好地应对各种求解最值问题的场景。
高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。
函数题型在高考中占据着相当大的比重,因此熟练掌握函数的相关知识和解题方法对于高中生来说至关重要。
下面我们就来系统地总结一下高中函数题型及解题方法。
一、基本函数题型。
1. 一次函数。
一次函数是高中阶段最基础的函数之一,其函数表达式为y=kx+b,其中k和b分别代表斜率和截距。
一次函数的图像是一条直线,因此在解题时需要掌握直线的性质和相关的解题技巧,如求斜率、求截距、求交点等。
2. 二次函数。
二次函数是高中阶段比较常见的函数之一,其函数表达式为y=ax^2+bx+c,其中a不等于0。
二次函数的图像是抛物线,因此在解题时需要掌握抛物线的性质和相关的解题技巧,如求顶点、求零点、求对称轴等。
3. 指数函数。
指数函数是以a(a大于0且不等于1)为底的幂函数,其函数表达式为y=a^x。
指数函数的图像是一条逐渐增长或逐渐减小的曲线,因此在解题时需要掌握指数函数的增减性、奇偶性和相关的解题技巧,如求定义域、值域、解不等式等。
4. 对数函数。
对数函数是指数函数的反函数,其函数表达式为y=loga(x)。
对数函数的图像是一条渐进于x轴的曲线,因此在解题时需要掌握对数函数的性质和相关的解题技巧,如求定义域、值域、解不等式等。
二、解题方法。
1. 分析题目。
在解函数题型的题目时,首先要仔细阅读题目,分析题目中所给的条件和要求,理清思路,确定解题的方法和步骤。
2. 列出方程。
根据题目所给的条件,可以列出相应的函数方程,如一次函数的斜率截距形式、二次函数的标准形式、指数函数的幂函数形式、对数函数的指数形式等。
3. 运用函数性质。
根据函数的性质和特点,运用相关的定理和公式,解决问题。
比如利用一次函数的斜率求交点坐标,利用二次函数的顶点求最值,利用指数函数的增减性解不等式,利用对数函数的性质求解方程等。
4. 综合运用。
有些函数题目可能需要综合运用多种函数的性质和解题方法,因此在解题时需要综合考虑,灵活运用各种方法,找到最优解。
高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,根据导数求函数的最值是一个常见的考点。
这类问题要求我们通过求函数的导数,找到函数的极大值或极小值点,从而确定函数的最值。
下面我将总结一些解题技巧,帮助高中学生和他们的父母更好地应对这类问题。
一、寻找函数的极值点在解决根据导数求函数最值问题时,首先需要找到函数的极值点。
一般来说,函数的极值点就是函数的导数等于零的点,即函数的驻点。
我们可以通过以下步骤来找到函数的极值点:1. 求函数的导数。
根据问题给出的函数,我们可以先对其求导数。
例如,对于函数f(x),我们可以求得它的导函数f'(x)。
2. 解方程f'(x) = 0。
将求得的导函数f'(x)置零,解方程求得函数的驻点。
这些驻点就是函数的极值点。
需要注意的是,有时候函数的极值点可能还存在于函数的定义域的边界处,所以我们还需要将边界处的点也考虑进去。
二、判断极值点的性质找到函数的极值点后,我们需要进一步判断这些点的性质,即确定它们是极大值点还是极小值点。
这里有两种常见的方法:1. 使用导数的符号表。
我们可以通过绘制导数的符号表来判断极值点的性质。
具体做法是,在函数的定义域上选择几个代表性的点,代入导数f'(x)的值,然后根据导数的正负确定函数在这些点附近的增减性。
如果导数从正变负,那么这个点就是极大值点;如果导数从负变正,那么这个点就是极小值点。
2. 使用二阶导数。
二阶导数可以帮助我们更准确地判断极值点的性质。
具体做法是,求得函数的二阶导数f''(x),然后将极值点代入二阶导数。
如果二阶导数大于零,那么这个点就是极小值点;如果二阶导数小于零,那么这个点就是极大值点。
三、举一反三根据导数求函数的最值问题不仅仅局限于求解极值点,还可以应用到其他类型的函数中。
下面举一个例子来说明。
例题:求函数f(x) = x^3 - 3x^2 + 2x的最大值和最小值。
高一函数题型及解题技巧高一函数是高中数学中的重要内容,包括函数的定义、性质、图像、变化规律等,在考试中也经常出现。
下面是一些高一函数题型及解题技巧的介绍。
1.函数的定义题型函数的定义题型考察的是对函数的基本概念和定义的理解。
通常会给出一个函数的表达式或定义,然后要求判断函数的性质或回答问题。
解题时要仔细分析函数的定义,注意函数值的范围、定义域和值域等因素。
2.函数的性质题型函数的性质题型考察的是对函数性质的理解和运用。
通常会给出一个函数的表达式或定义,并且要求判断函数的奇偶性、单调性、周期等性质。
解题时要根据函数的性质进行分析,可以使用导数、导数的符号变化、函数图像等方法。
3.函数的图像题型函数的图像题型考察的是对函数图像的理解和分析能力。
通常会给出一个函数的表达式或定义,然后要求画出函数的图像或分析图像的特点。
解题时可以先分析函数的性质,然后根据性质画图,注意函数的变化规律和特殊点的位置。
4.函数的变化规律题型函数的变化规律题型考察的是对函数变化规律的掌握和分析能力。
通常会给出一个函数的表达式或定义,然后要求分析函数的变化规律或进行函数的运算。
解题时要注意函数的变化趋势、特点和规律,可以使用导数、极值、最值等方法。
解题技巧:1.熟练掌握函数的基本概念和定义,理解函数的性质和特点。
2.注意观察题目中给出的已知条件和要求,对问题进行合理的分析和解答。
3.尽量画出函数的图像,根据图像进行分析和判断。
首先确定函数的性质和特点,然后根据特点进行计算或推导。
4.注意函数的定义域和值域,合理利用函数的性质进行推导和计算。
5.灵活运用导数和基本函数的性质,尤其是对于求导和导数的符号变化。
6.注意函数的极值和最值,找出极值点和最值点的位置和数值。
以上是一些高一函数题型及解题技巧的介绍,希望对你有帮助。
在学习函数的过程中,要多做练习题,熟练掌握函数的概念、性质和画图方法,提高解题能力。
50个高考数学解题技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。
高中数学函数知识点总结一、 . 函数的三因素是什么?怎样比较两个函数能否相同?(定义域、对应法例、值域)相同函数的判断方法:①表达式相同;②定义域一致( 两点一定同时具备 )二、 . 求函数的定义域有哪些常有种类?函数定义域求法:分式中的分母不为零;偶次方根下的数(或式)大于或等于零;指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。
正切函数 ytanx xR, 且 x k2 , k当以上几个方面有两个或两个以上同时出现时,先分别求出知足每一个条件的自变量的范围,再取他 们的交集,就获得函数的定义域。
三、 . 怎样求复合函数的定义域? 义域是 _____________。
复合函数定义域的求法: 已知 y f ( x) 的定义域为 m, n ,求 y f g( x) 的定义域,可由 m g( x)n 解出 x 的范围,即为 yf g (x) 的定义域。
例若函数 yf ( x) 的定义域为1,则 f (log 2 )。
,2x 的定义域为2四、函数值域的求法1、直接察看法对于一些比较简单的函数,其值域可经过察看获得。
例 求函数 y= 1的值域x2、配方法配方法是求二次函数值域最基本的方法之一。
例、求函数 y= x 2 -2x+5 ,x [-1 ,2] 的值域。
3、鉴别式法对二次函数或许分式函数(分子或分母中有一个是二次)都可通用,但这种题型有时也能够用其余方法进行化简,不用拘泥在鉴别式上边4、反函数法直接求函数的值域困难时,能够经过求其原函数的定义域来确立原函数的值域。
3x4例 求函数 y=值域。
5、函数有界性法直接求函数的值域困难时,能够利用已学过函数的有界性,来确立函数的值域。
我们所说的单一性,最常用的就是三角函数的单一性。
例 求函数 y=e x 1, y 2sin 1, y2sin1的值域。
xe1 1 sin1 cos6、函数单一性法往常和导数联合,是近来高考考的许多的一个内容 例求函数 y=2x 5log 3x 1 ( 2≤ x ≤ 10)的值域7、换元法经过简单的换元把一个函数变为简单函数,其题型特点是函数分析式含有根式或三角函数公式模型。
高考函数题型及解题方法总结
高考函数题型及解题方法总结
1、一元二次函数的求根求最值
求根:要求一元二次函数的根,可使用中国剩余定理,从根式公式中
求出函数的两个相等根;也可采用“二分法”或“牛顿迭代法”,从试值中求出函数的两个相等根。
求最值:要求一元二次函数的最值,可通过求函数的判别式delta=b^2-
4ac,并分析delta>0、delta=0和delta <0时函数在原点周围的情况,分
类判断即可求出函数的最值;也可根据函数有理切线斜率的性质,及
函数的拐点的特性,求出函数的最值。
2、多项式的分析
多项式的分析:可使用“系数比例”、“极坐标曲线”、“相关数列”等方法,从多项式本身角度分析多项式性质及多项式各分段性质;也可使用“解
析法”,将一维函数转化为一等关系,从而分析多项式的性质。
3、参数方程的解法
使用“换元法”,将参数方程中的参数化为一个变量,并采用一元混合
方程的解法去求解;也可使用“牛顿迭代法”,通过试值法得到参数方
程的解;或使用“分步解法”,将参数方程转化为一组参量方程,一步
步地求解参数方程。
4、函数图象的绘制和分析
采用“图形分析法”,结合函数图象结构特点,分析函数图象性质;也
可根据函数定义域及值域以及函数特性,使用“穷举法”绘制函数图象。
5、函数及函数图象之间的关系
要求函数及函数图象之间的关系,可利用函数导数的性质,将函数求
导得到函数的导数,或考虑到函数的有理切线斜率的性质,从而把函
数的性质及函数图象的性质联系起来;又或者根据函数有理切线的特点,从函数图象中求出函数的特性。
高中数学函数知识点总结一、. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 二、. 求函数的定义域有哪些常见类型? 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。
●正切函数x y tan = ⎪⎭⎫⎝⎛∈+≠∈Z ππk k x R x ,2,且当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。
三、. 如何求复合函数的定义域? 义域是_____________。
复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。
例 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。
四、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例 求函数y=x1的值域2、配方法配方法是求二次函数值域最基本的方法之一。
例、求函数y=2x -2x+5,x ∈[-1,2]的值域。
3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例 求函数y=6543++x x 值域。
5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
我们所说的单调性,最常用的就是三角函数的单调性。
例 求函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 11cos y θθ-=+的值域。
6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容 例求函数y=+-25x log31-x (2≤x ≤10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。
换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。
例 求函数y=x+1-x 的值域。
8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例:已知点P (x.y )在圆x 2+y 2=1上, 例求函数y=)2(2-x +)8(2+x 的值域。
例求函数y=1362+-x x+ 542++x x的值域9 、不等式法利用基本不等式a+b ≥2ab ,a+b+c ≥3abc 3(a ,b ,c ∈R +),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
例:10.倒数法 有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y=32++x x 的值域 多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
五、. 如何用定义证明函数的单调性?332(0)11113333222x =x x (应用公式a+b+c 时,注意使者的乘积变成常数)x x x x x x abc +>++≥⨯⨯=≥(取值、作差、判正负) 判断函数单调性的方法有三种: (1)定义法:根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系可以变形为求1212()()f x f x x x --的正负号或者12()()f x f x 与1的关系(2)参照图象:①若函数f(x)的图象关于点(a ,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性; (特例:奇函数)②若函数f(x)的图象关于直线x =a 对称,则函数f(x)在关于点(a ,0)的对称区间里具有相反的单调性。
(特例:偶函数) (3)利用单调函数的性质:①函数f(x)与f(x)+c(c 是常数)是同向变化的②函数f(x)与cf(x)(c 是常数),当c >0时,它们是同向变化的;当c <0时,它们是反向变化的。
③如果函数f 1(x),f 2(x)同向变化,则函数f 1(x)+f 2(x)和它们同向变化;(函数相加)④如果正值函数f 1(x),f 2(x)同向变化,则函数f 1(x)f 2(x)和它们同向变化;如果负值函数f 1(2)与f 2(x)同向变化,则函数f 1(x)f 2(x)和它们反向变化;(函数相乘) ⑤函数f(x)与1()f x 在f(x)的同号区间里反向变化。
⑥若函数u =φ(x),x[α,β]与函数y =F(u),u ∈[φ(α),φ(β)]或u ∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y =F[φ(x)]是递增的;若函数u =φ(x),x[α,β]与函数y =F(u),u ∈[φ(α),φ(β)]或u ∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y =F[φ(x)]是递减的。
(同增异减)六、.如何利用导数判断函数的单调性? 如:已知,函数a f x >0()值是( )七、 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
八.判断函数奇偶性的方法 1、定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.f(g) g(x) f[g(x)] f(x)+g (x) f(x)*g(x) 都是正数增 增 增 增 增增 减 减 / /减 增 减 / /减 减 增 减 减2、奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算)(x f -,然后根据函数的奇偶性的定义判断其奇偶性.3、复合函数奇偶性 九、. 你熟悉周期函数的定义吗? 函数,T是一个周期。
)我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t. 推导:()()0()(2)()(2)0f x f x t f x f x t f x t f x t ++=⎫=>=+⎬+++=⎭,同时可能也会遇到这种样子:f(x)=f(2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。
比如,f(x)=f(2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a 对称。
如:十. 你掌握常用的图象变换了吗?f x f x y ()()与的图象关于轴对称- 联想点(x,y ),(-x,y)f x f x x ()()与的图象关于轴对称- 联想点(x,y ),(x,-y)f x f x ()()与的图象关于原点对称--联想点(x,y ),(-x,-y)f x f x y x ()()与的图象关于直线对称-=1 联想点(x,y ),(y,x) f x f a x x a ()()与的图象关于直线对称2-= 联想点(x,y ),(2a-x,y) f x f a x a ()()()与的图象关于点,对称--20 联想点(x,y ),(2a-x,0) 注意如下“翻折”变换:十一、 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠ (k 为斜率,b 为直线与y 轴的交点)f(g ) g(x ) f[g(x)] f(x)+g (x) f(x)*g (x) 奇 奇 奇 奇 偶 奇 偶 偶 非奇非偶 奇 偶 奇 偶 非奇非偶 奇 偶偶偶 偶偶的双曲线。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
由图象记性质! (注意底数的限定!)利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件) 15. 你在基本运算上常出现错误吗? 16. 如何解抽象函数问题? (赋值法、结构变换法)(对于这种抽象函数的题目,其实简单得都可以直接用死记了 1、 代y=x ,2、 令x=0或1来求出f(0)或f(1)3、 求奇偶性,令y=—x ;求单调性:令x+y=x 1 几类常见的抽象函数1. 正比例函数型的抽象函数f (x )=kx (k ≠0)---------------f (x ±y )=f (x )±f (y ) 2. 幂函数型的抽象函数f (x )=x a ----------------f (xy )= f (x )f (y );f (y x )=)()(y f x f 3.指数函数型的抽象函数f (x )=a x------------------- f (x +y )=f (x )f (y );f (x -y )=)()(y f x f 4. 对数函数型的抽象函数f (x )=log a x (a >0且a ≠1)-----f (x ·y )=f (x )+f (y );f (yx)= f (x )-f (y )5. 三角函数型的抽象函数f (x )=t gx-------------------------- f (x +y )=)()(1)()(y f x f y f x f -+f (x )=cot x------------------------ f (x +y )=)()(1)()(y f x f y f x f +-例1已知函数f (x )对任意实数x 、y 均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)= -2求f (x )在区间[-2,1]上的值域.分析:先证明函数f (x )在R 上是增函数(注意到f (x 2)=f [(x 2-x 1)+x 1]=f (x 2-x 1)+f (x 1));再根据区间求其值域.例2已知函数f (x )对任意实数x 、y 均有f (x +y )+2=f (x )+f (y ),且当x >0时,f (x )>2,f (3)= 5,求不等式 f (a 2-2a -2)<3的解.分析:先证明函数f (x )在R 上是增函数(仿例1);再求出f (1)=3;最后脱去函数符号.例3已知函数f (x )对任意实数x 、y 都有f (xy )=f (x )f (y ),且f (-1)=1,f (27)=9,当0≤x <1时,f (x )∈[0,1]. (1)判断f (x )的奇偶性;(2)判断f (x )在[0,+∞]上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围. 分析:(1)令y =-1; (2)利用f (x 1)=f (21x x ·x 2)=f (21x x)f (x 2); (3)0≤a ≤2.例4设函数f (x )的定义域是(-∞,+∞),满足条件:存在x 1≠x 2,使得f (x 1)≠f (x 2);对任何x 和y ,f (x +y )=f (x )f (y )成立.求: (1)f (0);(2)对任意值x ,判断f (x )值的符号.分析:(1)令x= y =0;(2)令y =x ≠0.例5是否存在函数f (x ),使下列三个条件:①f (x )>0,x ∈N ;②f (a +b )= f (a )f (b ),a 、b ∈N ;③f (2)=4.同时成立?若存在,求出f (x )的解析式,若不存在,说明理由.分析:先猜出f (x )=2x ;再用数学归纳法证明.例6设f (x )是定义在(0,+∞)上的单调增函数,满足f (x ·y )=f (x )+f (y ),f (3)=1,求: (1) f (1);(2) 若f (x )+f (x -8)≤2,求x 的取值范围. 分析:(1)利用3=1×3;(2)利用函数的单调性和已知关系式.例7设函数y = f (x )的反函数是y =g (x ).如果f (a b )=f (a )+f (b ),那么g (a +b )=g (a )·g (b )是否正确,试说明理由.分析:设f (a )=m ,f (b )=n ,则g (m )=a ,g (n )=b , 进而m +n =f (a )+f (b )= f (a b )=f [g (m )g (n )]….例8已知函数f (x )的定义域关于原点对称,且满足以下三个条件: ①x 1、x 2是定义域中的数时,有f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+;② f (a )= -1(a >0,a 是定义域中的一个数); ③ 当0<x <2a 时,f (x )<0. 试问: (1) f (x )的奇偶性如何?说明理由; (2) 在(0,4a )上,f (x )的单调性如何?说明理由.分析:(1)利用f [-(x 1-x 2)]= -f [(x 1-x 2)],判定f (x )是奇函数; (3) 先证明f (x )在(0,2a )上是增函数,再证明其在(2a ,4a )上也是增函数.对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.例9已知函数f (x )(x ≠0)满足f (xy )=f (x )+f (y ), (1) 求证:f (1)=f (-1)=0; (2) 求证:f (x )为偶函数;(3) 若f (x )在(0,+∞)上是增函数,解不等式f (x )+f (x -21)≤0.分析:函数模型为:f (x )=lo g a |x |(a >0) (1) 先令x =y =1,再令x =y = -1; (2) 令y = -1; (3) 由f (x )为偶函数,则f (x )=f (|x |).例10已知函数f (x )对一切实数x 、y 满足f (0)≠0,f (x +y )=f (x )·f (y ),且当x <0时,f (x )>1,求证: (1) 当x >0时,0<f (x )<1; (2) f (x )在x ∈R 上是减函数.分析:(1)先令x =y =0得f (0)=1,再令y =-x ; (3) 受指数函数单调性的启发: 由f (x +y )=f (x )f (y )可得f (x -y )=)()(y f x f , 进而由x 1<x 2,有)()(21x f x f =f (x 1-x 2)>1. 练习题:1.已知:f (x +y )=f (x )+f (y )对任意实数x 、y 都成立,则( ) (A )f (0)=0 (B )f (0)=1 (C )f (0)=0或1 (D )以上都不对2. 若对任意实数x 、y 总有f (xy )=f (x )+f (y ),则下列各式中错误的是( )(A )f (1)=0 (B )f (x 1)= f (x )(C )f (yx)= f (x )-f (y ) (D )f (x n )=nf (x )(n ∈N ) 3.已知函数f (x )对一切实数x 、y 满足:f (0)≠0,f (x +y )=f (x )f (y ),且当x <0时,f (x )>1,则当x >0时,f (x )的取值范围是( ) (A )(1,+∞) (B )(-∞,1) (C )(0,1) (D )(-1,+∞)4.函数f (x )定义域关于原点对称,且对定义域内不同的x 1、x 2都有f (x 1-x 2)=)()(1)()(2121x f x f x f x f +-,则f (x )为( )(A )奇函数非偶函数 (B )偶函数非奇函数 (C )既是奇函数又是偶函数 (D )非奇非偶函数5.已知不恒为零的函数f (x )对任意实数x 、y 满足f (x +y )+f (x -y )=2[f (x )+f (y )],则函数f (x )是( )(A )奇函数非偶函数 (B )偶函数非奇函数 (C )既是奇函数又是偶函数 (D )非奇非偶函数函数典型考题1.若函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是 ( )A. 1B. 2C. 3D. 4 2.已知函数()f x 是定义域在R 上的偶函数,且在区间(,0)-∞上单调递减,求满足22(23)(45)f x x f x x ++>---的x 的集合..3.若f (x )是偶函数,它在[)0,+∞上是减函数,且f (lg x )>f (1),则x 的取值范围是( )A. (110,1) B. (0,110)(1,+∞) C. (110,10) D. (0,1)(10,+∞)4.若a 、b 是任意实数,且a >b ,则 ( )A. a 2>b 2B. a b <1C. ()lg a b - >0D.12a ⎛⎫ ⎪⎝⎭<12b⎛⎫⎪⎝⎭5.设a,b,c 都是正数,且346a b c ==,则下列正确的是 ( )(A) 111c a b =+ (B) 221C a b =+ (C) 122C a b =+ (D) 212c a b =+6.对于函数()()21f x ax bx b =++-(0a ≠).(Ⅰ)当1,2a b ==-时,求函数()f x 的零点;(Ⅱ)若对任意实数b ,函数()f x 恒有两个相异的零点,求实数a 的取值范围. 6. 二次函数2y ax bx c =++中,0a c ⋅<,则函数的零点个数是( ) A 0个 B 1个 C 2个 D 无法确定8.若函数()b ax x x f --=2的两个零点是2和3,则函数()12--=ax bx x g 的零点是( )A .1- 和2-B .1 和2C .21和31 D .21-和31- 9.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是()f x =0(x ∈R ),其中正确命题的个数是( )A 4B 3C 2D 110.已知函数f(x 2-3)=lg 622-x x ,(1)f(x)的定义域; (2)判断f(x)的奇偶性;(3)求f(x)的反函数; (4)若f[)(x φ]=lgx,求)3(φ的值。