全章复习与小结(1)
- 格式:ppt
- 大小:298.50 KB
- 文档页数:18
分式的小结与复习教学设计(一)一、教材分析:分式的主要内容是与分数的有关内容对比着学习的.复习时应加强这种对比.从比较高的层次上认识分数与分式及其有关内容的内在联系和区别,以提高这一部分内容的学习质量.具体说来,1.分式的概念和分式的基本性质是学习本章的基础.这一点,如果在一开始,虽然作了说明,学生还体会不深的话,那么在学完本章各项内容之后,在小结与复习中,再一次提出这一问题,学生应该有较深刻的认识和体会.对于分式概念,主要是搞清楚分式与分数的区别以及分式何时有意义的问题.对于分式的基本性质,则主要是在分式变形和运算中能够正确灵活地运用.2.分式四则运算法则可以对比分数四则运算法则得出,这一点学生应深切体会.要使学生深刻认识到,具体的分式运算往往可以归结为整式的运算,当然还要注意分式基本性质与符号法则的运用.3.公式变形的基本思想,在今后教学及其他各科的学习中占有重要地位,公式变形往往可以归结为解有字母已知数的方程,解含有字母已知数的方程和解只含有数字已知数的方程类似,只是要注意字母允许值的范围,这一点,在现阶段不作要求.以后,随着学习的深入,结合具体问题的讨论,逐步掌握这部分内容是不难的.本章是打个初步基础,不应过高要求.二、教学建议:回顾知识内容,在做题时查漏补缺。
在复习小结时,还是应当结合典型问题的研究,提高学生分析问题、解决问题的能力.三、教学设计思想:这节课的主要任务是将全章的知识点加以复习,复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力。
因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点。
四、重点:熟练掌握分式的四则混合运算.难点:四则混合运算中的去括号及符号问题五、教学目标1、经历总结本章的知识结构及知识内容过程.进一步培养反思的学习习惯。
2、熟记分式的四则运算法则及它们之间的内在联系.熟练地进行分式的四则混合运算。
教学案(16)主备人:审核人:
小结提升(2’) 1.本节课你都有哪些收获?
2.你学到了哪些数学方法?对其他同学有哪些意见和建议?
达标检测(11’) 1.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A 站多少km处?
2. 如图,某学校(A点)与公路(直线L)的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C点),使之与该校A及车站D的距离相等,求商店与车站之间的距离.
3.如图,小明想知道学校旗杆AB的高,他发现固定在旗杆顶端的绳子垂下到地面时还多l米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能求出旗杆的高度吗?
布置作业(1’) 如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB边上一点,求证:(1)ACE BCD
△≌△;(2)222
AD DB DE
+=.
板书设计
一、问题引入
引例例题习题训练二、探究新知
归纳法则达标检测三、应用新知四、布置作业
学校检查记实
听课意见
A
D
E B
C
A
B C。
第一章小结与复习一、选择题1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣ B.0 C. D.﹣12.-2的相反数是()A.2 B.-2 C.12D.123.(4分)2015的相反数是()A.12015B.12015- C.2015 D.﹣20154.(3分)12-的相反数是()A.2 B.﹣2 C.12D.12-5.(3分)6的绝对值是()A.6 B.﹣6 C.16D.16-6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B.10℃ C.14℃ D.﹣14℃8.(4分)下列说法错误的是()A.﹣2的相反数是2B.3的倒数是1 3C .(﹣3)﹣(﹣5)=2D .﹣11,0,4这三个数中最小的数是09.(3分)如图,数轴上的A 、B 、C 、D 四点中,与数3-表示的点最接近的是( )A .点AB .点BC .点CD .点D 10.(3分)(2015•娄底)若|a ﹣1|=a ﹣1,则a 的取值范围是( ).A .a ≥1B .a ≤1C .a <1D .a >1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为 .12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).13.-3的倒数是 ,-3的绝对值是 . 14.数轴上到原点的距离等于4的数是 .15.|a|=4,b 2=4,且|a+b|=a+b , 那么a-b 的值是 .16.在数轴上点P 到原点的距离为5,点P 表示的数 .17.绝对值不大于2的所有的整数是 .18..把下列各数分别填在相应的集合内(本小题每空2分,满分6分) -11、 5%、 -2.3、61 、3.1415926、0、 34-、 39 、2014、-9 分数集: 。
整式的乘法小结与复习教案第一章:整式乘法概念回顾1.1 定义:整式乘法是将两个整式相乘,得到一个新的整式。
1.2 分类:整式乘法主要包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式三种类型。
第二章:单项式乘以单项式2.1 规律:同底数幂相乘,指数相加;不同底数幂相乘,指数分别为各自的底数指数。
2.2 例题:\(3x^2 \times 4x^3 = 12x^5\), \(2y^3 \times 5y^2 = 10y^5\) 第三章:单项式乘以多项式3.1 分配律:将单项式分别与多项式的每一项相乘,将结果相加。
3.2 例题:\(2x^2 \times (x + 2y + 3) = 2x^3 + 4x^2y + 6x^2\), \(3y \times (2x + 4y) = 6xy + 12y^2\)第四章:多项式乘以多项式4.1 交叉相乘:将第一个多项式的每一项与第二个多项式的每一项相乘,将结果相加。
4.2 例题:\((x + 2y + 3) \times (2x + 4y) = 2x^2 + 4xy + 6x + 4xy + 8y^2 + 12y\), \((2x + 3y) \times (x + y) = 2x^2 + 3xy + xy + 3y^2\)第五章:整式乘法常见错误分析5.1 忽略符号:在乘法过程中,容易忽略负号的乘法规则。
5.2 底数或指数错误:在计算指数相乘时,容易将底数或指数搞错。
5.3 分配律使用不当:在单项式乘以多项式时,分配律使用不当会导致计算错误。
总结:通过本章的学习,我们回顾了整式乘法的基本概念、计算规律和常见错误。
希望大家能够掌握整式乘法的方法,避免在实际计算中出现错误。
第六章:整式乘法的应用6.1 解方程:通过整式乘法将方程化简,从而求解未知数的值。
6.2 例题:解方程\(2x^2 5x + 2 = 0\) ,可以使用整式乘法因式分解得到\((x-2)(2x-1) = 0\),从而解得\(x_1 = 2, x_2 = 0.5\)。
人教版数学七年级上册第一章有理数《小结复习(一)》学习任务单及课后练习【学习目标】1.理清有理数这一章的知识结构;2.能熟练地运用有理数的相关概念进行解题.【课前学习任务】复习有理数全章的相关概念.【课上学习任务】学习任务一:本章知识结构梳理学习任务二:例题精讲例1、把下列各数填在相应的大括号内:正分数集合{ …};负数集合{ …};非负整数集合{ …};有理数集合{ …}.小结:以上各组数中,互为倒数的是:;互为相反数的是:;绝对值相同的是:;小结:例3、(1)比较大小(用“> ”、“< ”或“= ”连接).(2)如图所示,O 是原点,A,B,C 三点所表示的数分别为a,b,c.根据图中各点的位置,下列各数的大小比较正确的是()小结:学习任务三:本节课小结:小结复习(一)【课后练习】1.下列说法正确的是()A.正整数和正分数统称为有理数B.正整数和负整数统称有理数C.整数和分数统称为有理数D.0 不是有理数2. 绝对值等于其相反数的数一定是()A.负数B.正数 C.正数或零D.负数或零3. 若有理数a,b 在数轴上的对应点如图所示,下列说法错误的是().4.下列不等式中,正确的个数是()A. 1 个B. 2 个C. 3 个D. 4 个7. 设a 是最小的自然数,b 是最小的正整数,c 是绝对值最小的有理数,则a+b+c 等于.8. 把下列各数填在相应额大括号内:整数集合{…};非负有理数集合{…};负分数集合{…}.课后练习答案:。
《轴对称》的全章复习(1)【教学目标】:(1)理解5个基本概念:轴对称图形,线段的垂直平分线,轴对称变换,等腰三角形,等边三角形;(2)掌握5主要性质:轴对称的性质,线段的垂直平分线的性质,用坐标表示对称的性质,等腰三角形的性质,等边三角形的性质.(3)掌握3种图形的判定:线段的垂直平分线的判定,等腰三角形的判定,等边三角形的判定.【教学重点】:5个性质,3种图形的判定.【教学难点】:灵活运用轴对称的性质、等腰三角形的性质.【教学突破点】:用框架图使本章知识条理化、系统化.【教法、学法设计】:本课是这一章的小结与复习,为了进一步理解与巩固本章知识,明确所学知识来源于生活又服务于生活,尽量取材于学生感兴趣、贴近生活的问题,让学生在解决问题的过程中得到巩固,让学生的能力在处理问题中得到提高,让学生领悟自己尚存的不足与困难.【课前准备】:课件【教学过程设计】:一、概念复习:(1)轴对称图形,(2)线段的垂直平分线;等腰三角形,(5)等边三角形.练习一(概念的简单应用):.它的中线、角平分线、高线共有条..个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图(1,-2)关于y轴对称点的坐标是_____3,-2)关于x轴的对称点是,㎝,则斜边的长为 .答案:1.2.3.B4.A与B关于x轴对称,B与E关于y轴对称,点C和点E不关于x轴对称.5.B6.正多边形对称轴的条数分别为3、4、5、6、7、…、n7.8.(1)中两个三角形关于y轴对称;(2)中四边形Ⅰ沿y轴向下平移3个单位,再沿x轴向左平移5个单位得到四边形Ⅱ;(3)中三角形Ⅰ沿y轴向下平移3个单位,再沿x轴向右平移5个单位得到三角形Ⅱ;(4)中两个三角形关于x轴对称.9.C10.B11. △PCD的周长为6cm12.略。