高二数学下册期中水平测试题7
- 格式:doc
- 大小:120.00 KB
- 文档页数:3
咸祥中学2021-2021学年高二数学下学期期中试题单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明本试题卷分选择题和非选择题两局部.满分是150分,考试时间是是120分钟.选择题局部〔一共72分〕一、选择题:本大题一一共18小题,每一小题4分,一共72分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.集合{}1,0,1M =-,{}0,1,3N =,那么MN =〔 〕.A {}0,1 .B {}1,0,3- .C {}1,0,1,3- .D {}1,0,1-2.直线经过点()0,2和点()3,0,那么它的斜率为〔 〕.A 23 .B 32 .C 23- .D 32- 3.一条弦的长度等于圆的半径,那么这条弦所对的圆心角的弧度数是〔 〕.A 3π .B 6π.C 1 .D π 4.假设等比数列{}n a 中,55a =,那么28a a ⋅等于〔 〕.A 5 .B 10 .C 25 .D 504的大小关系是〔 〕.A 4> .B 4 .C 4= .D 不能比拟大小6.函数24x y a-=+〔0a >且1a ≠〕的图象必经过点〔 〕.A ()0,1 .B ()1,1 .C ()2,4 .D ()2,57.ABC ∆中,4a =,5b =,45A ︒=,那么此三角形的解有〔 〕.A 一解 .B 两解 .C 一解或者两解 .D 无解8.以下命题中成立的是〔 〕.A 直线l 平行于平面α内的无数条直线,那么l ∥α; .B 假设直线a 在平面α外,那么a ∥α; .C 假设直线a ∥b ,直线b α⊂,那么a ∥α;.D 假设直线a ∥b ,直线b α⊂,那么直线a 就平行于平面α内的无数条直线.9.两个圆221:2220C x y x y +++-=与圆222:4240C x y x y +---=的公切线有且仅有〔 〕.A 1条 .B 2条 .C 3条 .D 4条10.sin14cos16sin 76cos74︒︒︒︒+的值是〔 〕.A .B 12 .C .D 12- 11.平面向量a 与b 的夹角为60︒,()2,0a =,1b =,那么a b +=〔 〕.A .B .C 4 .D 1212.古希腊人常用小石头在沙滩上摆成各种形状来研究数.比方:图110631 14916图2他们研究过图1中的1,3,6,10,…,由于这些数可以表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.以下数中既是三角形数又是正方形数的是〔 〕.A 25 .B 36 .C 81 .D 9113.椭圆的一个焦点为()1,0F ,离心率13e =,那么椭圆的HY 方程为〔 〕.A 22123x y += .B 22132x y += .C 22198x y += .D 22189x y += 14. 设x R ∈,那么“0x <〞是“2x ≠〞的〔 〕.A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分又不必要条件15. 一个几何体的三视图如下图,那么该几何体的外表积为〔 〕.A 18+ .B 20.C 20+.D 18+(第15题图)1112俯视图侧视图正视图216. 双曲线22221y x a b-=〔0a >,0b >〕,A ,B 是双曲线的两个顶点,P 是双曲线上的一点,且与点B 在双曲线的同一支上,P 关于y 轴的对称点是Q ,假设直线AP ,BQ 的斜率分别是1k ,2k ,且1243k k ⋅=-,那么双曲线的离心率是〔 〕 .A .B 94 .C 32.D17.函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩函数()()2g x b f x =--,其中b R ∈.假设函数()()y f x g x =-恰有4个零点,那么b 的取值范围是〔 〕.A 7,4⎛⎫+∞ ⎪⎝⎭ .B 7,4⎛⎫-∞ ⎪⎝⎭ .C 70,4⎛⎫ ⎪⎝⎭ .D 7,24⎛⎫⎪⎝⎭18. 在三棱锥P ABC -中,90ABC ︒∠=,3BC AB =, P 在平面ABC 的射影O 为BC 的中点,D 是AC 上的动点,M ,N 是PC 的两个三等分点,COD θ∠=〔0θπ<<〕,记二面角N OD C --,M BD C --的平面角分别为α,β.假设αβ≤,那么θ的最大值为〔 〕.A 56π .B 34π .C 23π .D 2π非选择题局部〔一共78分〕二、填空题:本大题一一共4小题,每空5分,一共25分。
2023-2024学年四川省成都市高二下册期中考试数学(理)试题一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}{}220,0,1A xx x B =-≤=∣,则A B ⋂=()A.[]0,1B.{}0,1 C.[]0,2D.{}0,1,22.复数3i1iz +=+在复平面内表示的点的坐标为()A.()2,1- B.()1,1- C.()1,2 D.()2,23.函数()3,0ln ,0x e x f x x x +⎧≤=⎨>⎩,则()1f f ⎡⎤-=⎣⎦()A.-1B.0C.ln2D.24.在极坐标系中,圆2cos ρθ=-的圆心的极坐标是()A.1,2π⎛⎫ ⎪⎝⎭B.1,2π⎛⎫- ⎪⎝⎭ C.()1,0 D.()1,π5.下列函数中,在定义域内既是奇函数又是增函数的是()A.()323f x x x=+ B.()5tan f x x=C.()8f x x=-D.()f x x =+6.执行如图所示的程序框图,输出的结果是()A.13B.14C.15D.177.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有()A.8种B.14种C.12种D.9种8.收集一只棉铃虫的产卵数y 与温度x 的几组数据后发现两个变量有相关关系,按不同的曲线来拟合y 与x 之间的回归方程,并算出了对应的决定系数2如下表:则这组数据模型的回归方程的最好选择应是()A.ˆ19.8463.7yx =- B.0.273.84ˆx ye -=C.2ˆ0.367202yx =- D.ˆy =9.若443243210(1)x a x a x a x a x a -=++++,则4321a a a a -+-=()A.-1B.1C.15D.1610.函数2ln x x y x=的图象大致是()A. B.C.D.11.函数()3224f x x x x =--+,当[]3,3x ∈-时,有()214f x m m -恒成立,则实数m 的取值范围是()A.()3,11- B.()3,11 C.[]2,7D.[]3,1112.已知函数()22(1)sin 1x xf x x ++=+,其导函数记为()f x ',则()()()()2022202220222022f f f f ++--'-'=()A.-3B.3C.2D.-2二、填空题(本大题共4小题,共20.0分)13.复数()i 12i z =+的共轭复数为__________.14.10(1)x -的展开式的第6项系数是__________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是__________.16.已知,a b 为实数,不等式ln ax b x +≥恒成立,则ba的最小值为__________.三、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.(本小题10.0分)在平面直角坐标系xOy 中,曲线22:1C x y +=所对应的图形经过伸缩变换2x x y =⎧⎪⎨=⎪'⎩'得到图形C '.(1)写出曲线C '的平面直角坐标方程;(2)点P 在曲线C '上,求点P到直线60l y +-=的距离的最小值及此时点P 的坐标.18.(本小题12.0分)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1.(1)求,a b 的值;(2)当[]1,1x ∈-时,求()f x 的最大值.19.(本小题12.0分)随着2022年北京冬季奥运会的如火如茶地进行.2022年北京冬季奥运会吉祥物“冰墩墩”受到人们的青睐,现某特许商品专卖店每天均进货一次,卖一个吉祥物“冰墩墩”可获利50元,若供大于求,则每天剩余的吉祥物“冰墩墩”需交保管费10元/个;若供不应求,则可从其他商店调剂供应,此时调剂的每一个吉祥物“冰墩墩”该店仅获利20元.该店调查上届冬季奥运会吉祥物每天(共计20天)的需求量(单位:个),统计数据得到下表:每天需求量162163164165166频数24653以上述20天吉祥物的需求量的频率作为各需求量发生的概率.记X 表示每天吉祥物“冰墩墩”的需求量.(1)求X 的分布列;(2)若该店某一天购进164个吉祥物“冰墩墩”,则当天的平均利润为多少元.20.(本小题12.0分)光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:年份2011年2012年2013年2014年2015年2016年2017年2018年年份代码x12345678新增光伏装机量y 兆瓦0.40.8 1.6 3.1 5.17.19.712.2某位同学分别用两种模型:①2ˆybx a =+,②ˆy dx c =+进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于ˆi i y y-)经过计算得()()()()()888211172.8,42,686.8iiii i i i i x x y y x x t ty y ===--=-=--=∑∑∑,()8213570ii tt =-=∑,其中8211,8i ii i t x t t ===∑.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.(2)根据(1)的判断结果及表中数据建立y 关于x 的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)附:回归直线的斜率和截距的最小二乘估计公式分别为.()()()121ˆˆˆ,niii ni i x x y y bay bx x x ==---==--∑∑21.(本小题12.0分)已知函数()11x f x eax a -=-+-.(1)讨论函数()f x 的单调性;(2)①若()0f x ≥恒成立,求实数a 的取值集合;②证明.()ln 20xe x -+>22.(本小题10.0分)在极坐标系中,点P 的极坐标是()1,π,曲线C 的极坐标方程为22cos 80ρρθ--=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率为-1的直线l 经过点P .(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)若直线l 和曲线C 相交于两点,A B ,求PA PB PBPA+的值.答案和解析1.【正确答案】B解:集合{}{}{}22002,0,1A xx x x x B =-≤=≤≤=∣∣,则{}0,1A B ⋂=.2.【正确答案】A解.()()()()223i 1i 3i 33i i i 42i 2i 1i 1i 1i 1i 2z +-+-+--=====-++--则复数3i1iz +=+在复平面内表示的点的坐标为()2,1-.3.【正确答案】D解:根据题意,函数()3,0,ln ,0,x e x f x x x +⎧≤=⎨>⎩,则()210f e -=>,则()21ln 2ln 2f f e e ⎡⎤-===⎣⎦,4.【正确答案】D解:圆2cos ρθ=-即22cos ρρθ=-,即2220x y x ++=,即22(1)1x y ++=,表示以()1,0-为圆心,半径等于1的圆.而点()1,0-的极坐标为()1,π,5.【正确答案】A解:函数()323f x x x =+是奇函数,且在定义域内是增函数,A 正确;函数()5tan f x x =在定义域内不具有单调性,B 错误;函数()8f x x=-在定义域内不具有单调性,C 错误;函数()f x x =+[)0,∞+,不具有奇偶性,D 错误;综上,应选A .6.【正确答案】C解:模拟程序的运行,可得1a =执行循环体,3a =不满足条件10a >,执行循环体,7a =不满足条件10a >,执行循环体,15a =满足条件10a >,退出循环,输出a 的值为15.故选.C 7.【正确答案】B【分析】采用采用间接法,任意选有4615C =种,都是男生有1种,进而可得结果.【详解】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.故本题选B .8.【正确答案】B由决定系数2R 来刻画回归效果,2R 的值越大越接近1,说明模型的拟合效果最好.故选.B 9.【正确答案】C【分析】利用赋值法结合条件即得.【详解】因为443243210(1)x a x a x a x a x a -=++++,令0x =得,01a =,令1x =-得,443210(2)16a a a a a -+-+=-=,所以,432116115a a a a -+-=-=.故选:C.10.【正确答案】D解:当0x >时,ln ,1ln y x x y x ==+',即10x e <<时,函数y 单调递减,当1x e>,函数y 单调递增,又因为函数y 为偶函数,故排除ABC ,故选.D 11.【正确答案】D解:因为()3224f x x x x =--+,所以()2344f x x x =--+',令()0f x '=得23x =或2x =-,可知函数()f x 在[)3,2--上单调递减,在22,3⎛⎫- ⎪⎝⎭上单调递增,在2,33⎛⎤ ⎥⎝⎦上单调递减,而()()()24033,28,,333327f f f f ⎛⎫-=--=-==-⎪⎝⎭,所以函数()f x 在[]3,3-上的最小值为-33,因为当[]3,3x ∈-时,()214f x m m ≥-恒成立,只需2min 14()m m f x -≤,即21433m m -≤-,即214330m m -+≤,解得311m ≤≤.故选D .12.【正确答案】C【分析】利用求导法则求出()f x ',即可知道()()f x f x '='-,再利用()()2f x f x +-=,即可求解.【详解】由已知得()()2222(1)sin (1)sin 11x x x xf x x x -+----==++,则()()2222(1)sin (1)sin 211x x x xf x f x x x ++--+-=+=++,()()()()222221cos 12(1)sin 1x x x x x x f x x'⎡⎤⎡⎤+++-++⎣⎦⎣⎦=+()()()2222cos 12sin 1x x x xx ++-=+则()()()()2222cos 12sin 1x x x xf x x++--=+',即()()f x f x '='-,则()()()()2022202220222022f f f f ++-''--()()()()20222022202220222f f f f =+-+'-'-=,故选:C.13.【正确答案】2i --解:复数()i 12i 2i z =+=-+,其共轭复数为2i --.14.【正确答案】-252【分析】应用二项式定理写出第6项系数.【详解】由101011010C (1)(1)C rrr r r rr T xx --+=-=-,所以,第6项为5r =,则5555610(1)252T C x x =-=-,故第6项系数是-252.故-25215.【正确答案】乙解:假设甲会,那么甲、乙说的都是真话,与题意不符,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意不符,所以丙不会.综上可得:会中国象棋的是乙,16.【正确答案】-1【分析】先由ln ax b x +≥恒成立得出ln 1b a ≥--,进而ln 1b a a a--≥,构造函数()ln 1(0)a g a a a--=>求解.【详解】设()ln (0)f x x ax b x =-->,则不等式ln ax b x +≥恒成立等价于max ()0f x ≤成立,显然当0a ≤时不符合题意.当0a >时,()11(0)ax f x a x x x-=-=>',∴当10x a <<时,()0f x >,当1x a >时,()0f x '<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+⎪⎝⎭上单调递减,max 1()ln 1f x f a b a ⎛⎫∴==--- ⎪⎝⎭.由max ()0f x ≤得ln 1ln 1,b a b a a a --≥--∴≥.令()ln 1(0)a g a a a --=>,则()2ln ag a a=',当01a <<时,()()0,g a g a '<在()0,1上单调递减,当1a >时,()()0,g a g a '>在()1,∞+上单调递增,()min ()11g a g ∴==-,1ba ∴≥-,则min1b a ⎛⎫=- ⎪⎝⎭,此时1,1a b ==-.故-1.17.【正确答案】解:(1)由2x x y =⎧⎪⎨=⎪'⎩'得到2x x y ⎧=⎪⎪⎨'⎪=⎪⎩,代入到221x y +=中,得22()()143x y +=.即22143x y +=为曲线C '的直角坐标方程;(2)设()2cos P θθ,则点P到直线60l y +-=的距离为d ==其中255tan 2sin 55ϕϕϕ⎛=== ⎝⎭,当()sin 1θϕ+=时,即()22k k Z πθϕπ+=+∈,于是()sin sin 2cos 25k k Z πθπϕϕ⎛⎫=+-==∈ ⎪⎝⎭,同理25cos sin 5θϕ==,此时6152d =,即距离最小值为6152,此时点4515,55P ⎛ ⎝⎭.18.【正确答案】解:(1)已知函数()322f x x ax bx a =+++在1x =-处取得极大值1,()234f x x ax b =+'+ ,且函数()f x 在1x =-处有极值1,()()13401120f a b f a b a ⎧-=-+=⎪∴⎨-=-+-+='⎪⎩,解得1;1a b =⎧⎨=⎩又当1a b ==时,()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',()f x ∴在(),1∞--和1,3∞⎛⎫-+ ⎪⎝⎭上单调递增,在11,3⎛⎫-- ⎪⎝⎭单调递减,故()f x 在1x =-处取得极大值,满足题意;综上,1a b ==;(2)当1,1a b ==时,()3221f x x x x =+++,则()()21341313f x x x x x ⎛⎫=++=++ ⎪⎝⎭',当x 变化时,()f x '与()f x 的变化情况如下表:x -111,3⎛⎫-- ⎪⎝⎭13-1,13⎛⎫- ⎪⎝⎭1()f x '-0+()f x 1单调递减极小值2327单调递增5所以[]1,1x ∈-时,()f x 的最大值为5.19.【正确答案】解:(1)X 可取162,163,164,165,166,()()()214163162,163,16420102052010P X P X P X =========,()()513165,16620420P X P X =====,所以分布列为:X162163164165166P 1101531014320(2)设Y 表示每天的利润,当162X =时,162502108080Y =⨯-⨯=,当163X =时,16350108140Y =⨯-=,当164X =时,164508200Y =⨯=,当165X =时,16450208220Y =⨯+=,当166X =时,164502208240Y =⨯+⨯=,所以平均利润为1131380808140820082208240818710510420⨯+⨯+⨯+⨯+⨯=(元).20.【正确答案】解:(1)选择模型①,理由如下:根据残差图可以看出,模型①残差对应点分布在以横轴为对称轴,宽度小于1的水平带状区域内,模型①的各项残差的绝对值要远远小于模型②的各项残差的绝对值,所以模型①的拟合效果相对较好.(2)由(1)知,y 关于x 的回归方程为2ˆˆˆy bx a =+,令2t x =,则ˆˆˆy bt a =+.由所给数据可得8111(1491625364964)25.588i i t t ===⨯+++++++=∑,8111(0.40.8 1.6 3.1 5.17.19.712.2)588i i y y ===⨯+++++++=∑,则()()()81821686.8ˆ0.193570i i i i i t t y y b t t ==--==≈-∑∑,ˆˆ50.1925.50.16ay bt =-≈-⨯≈.所以y 关于x 的回归方程为2ˆ0.190.16yx =+.预测该地区2020年新增光伏装机量为2ˆ0.19100.1619.16y=⨯+=(兆瓦).21.【正确答案】解:(1)因为()11x f x e ax a -=-+-,所以()1x f x e a -=-',①当0a ≤时,()0f x '>,函数()f x 在区间R 上单调递增;②当0a >时,令()0,ln 1f x x a >>+',令()0,ln 1f x x a <<+',所以()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增.(2)①由(1)可得当0a ≤,函数()f x 在区间R 上单调递增,又()0110f e a a =-+-=,所以1x <,则()0f x <,与条件矛盾,当0a >时,()f x 在(),ln 1a ∞-+上单调递减,在()ln 1,a ∞++上单调递增,所以()()ln 1f x f a ≥+,由已知()ln 10f a +≥,所以aln 10a a --≥,设()ln 1g x x x x =--,则()1ln 1ln g x x x =--=-',所以当()0,1x ∈时,()0g x '>,函数()ln 1g x x x x =--单调递增,()1,x ∞∈+时,()0g x '<,函数()ln 1g x x x x =--单调递减,又()11ln110g =--=,所以不等式ln 10a a a --≥的解集为{}1.②证明:设()()1ln 2h x x x =+-+,则()11122x h x x x +=-=++',当()2,1x ∈--时,()0h x '<,函数()()1ln 2h x x x =+-+单调递减,()1,x ∞∈-+时,()0g x '>,函数()()1ln 2h x x x =+-+单调递增,又()10ln10h -=-=,所以()1ln 20x x +-+≥,当且仅当1x =-时取等号,由(1)1x e x ≥+,当且仅当0x =时取等号,所以()ln 20xe x -+>.22.【正确答案】解:(1)点P 的直角坐标是()1,0-,直线l 的倾斜角是34π,∴直线l 的参数方程为21222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩,(t 为参数),由直角坐标与极坐标互化公式得曲线C 的直角坐标方程为22(1)9x y -+=.(2)将1222x t y t ⎧=--⎪⎪⎨⎪=⎪⎩代入22(1)9x y -+=,得250t +-=,设,A B 对应参数分别为12,t t,则12125t t t t +==-,根据直线参数方程t 的几何意义得:()()2222221212121212||2251855PA PB t t t t PAPBt t PB PA PA PB t t t t ++--⨯-++=====⋅⋅⋅-.。
高二下学期数学期中考试试卷时量:120分钟 总分:150分一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设全集R I =,集合}1|{},3,log |{A 3-==>==x y x B x x y y ,则( )A .B A ⊆ B .A B A =⋃C .φ=⋂B AD .φ≠⋂)(B C A I 2.已知i 是虚数单位,复数z 满足i z i 2)1(=-,则z 的虚部是( ) A .1 B .i C .-1 D .-i3. 函数x x f 3log )(=的图象与函数()sin g x x π=的图象的交点个数是( ) A .2 B .3 C .4 D .54. 若向量,a b 的夹角为32π,且1||,2||==b a ,则向量b a 2+与向量a 的夹角为( ) A .6π B .3π C. 23π D .56π5. 已知0a >,0b >,若不等式313ma b a b+≥+恒成立,则m 的最大值为( )A .9B .12C .18D .246.已知21)4tan(=-πα,且0<<-απ,则αα2sin 22sin +等于( )A .B .25-C .25D .5127.已知直三棱柱ABC ﹣A 1B 1C 1,AB ⊥BC ,AB=BC=AA 1=2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为( )A .π48B .π32C .π12D .π8 8. 已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记)3(log 5.0f a =,),2(),5(log 2m f c f b ==则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<9.直线02=++y x 分别与轴轴,y x 交于B A ,两点,点P 在圆2)2(22=+-y x 上,则ABP ∆面积的取值范围是( )A .]6,2[B .]8,4[ C. ]23,2[ D .]23,22[ 10. 执行如图所示的程序框图,则输出的k 值为( ) A .4B .5C .7D .911.已知函数)(x f 是定义在R 上的偶函数,设函数)(x f 的导数为)(x f ',若对任意的0>x 都有0)()(2>'+x f x x f 成立,则( )A .)3(9)2(4f f <-B . )3(9)2(4f f >-C .)2(3)3(2->f fD .)2(2)3(3-<-f f12.设双曲线)0,0(12222>>=-b a by a x C ,:的左、右焦点分别为1F 、2F 。
2023-2024学年四川省成都市高二下册期中数学试卷一、选择题(本大题共15小题,每小题4分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请把答案填在答题卷指定的位置上)1.(4分)下面命题中,正确命题的个数为()①桌面是平面;②一个平面长3米,宽2米;③用平行四边形表示平面,只能画出平面的一部分;④空间图形是由空间的点、线、面构成的;A.1B.2C.3D.42.(4分)如果OA∥O1A,OB∥O1B,那么∠AOB与∠A1O1B1()A.相等B.互补C.相等或互补D.以上均不对3.(4分)空间两个角α,β的两边分别对应平行,且α=60°,则β为()A.60°B.120°C.30°D.60°或120°4.(4分)下面说法错误的是()A.如果一条直线上的两点在一个平面内,那么这条直线在此平面内B.过不在一条直线上的三点,有且只有一个平面C.如果两个不重合的平面有且只有一个公共点,那么它们有且只有一条过该点的公共直线D.经过一条直线和一点,有且只有一个平面5.(4分)在正方体ABCD﹣A1B1C1D1中,与平面ACC1A1平行的棱共有()A.2条B.3条C.4条D.6条6.(4分)棱柱的侧面一定是()A.菱形B.矩形C.正方形D.平行四边形7.(4分)两直线不平行是这两直线是异面直线的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.即不充分也不必要条件8.(4分)分别在两相交平面内的两条直线的位置关系是()A.异面B.平行C.相交D.可能共面,也可能异面9.(4分)已知直线a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线10.(4分)已知球的半径为6cm,则它的体积为()A.36πcm3B.144πcm3C.288πcm3D.864πcm3 11.(4分)下列命题一定正确的是()A.三点确定一个平面B.依次收尾相接的四条线段必共面C.直线与直线外一点确定一个平面D.两条直线确定一个平面12.(4分)已知平面α∥β,a是直线,则“a⊥α”是“a⊥β”()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件13.(4分)已知斜线段长是它在平面α上的射影长的2倍,则斜线和平面所成的角为()A.30°B.45°C.60°D.90°14.(4分)在正方体ABCD﹣A1B1C1D1中,棱长为1,则异面直线DD1与AB之间的距离为()A.B.1C.D.15.(4分)如图所示,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中错误的是()A.AC⊥SBB.二面角S﹣AB﹣D与二面角S﹣BC﹣D相等C.AB∥平面SCDD.平面SAB⊥平面SBC二、填空题:(本答题共5个小题,每小题4分,共20分)16.(4分)若正方体的对角线长为a,那么正方体的表面积为.17.(4分)已知正四棱锥的高为3,底面边长为,则该棱锥的体积为.18.(4分)用长和宽分别为3π和π的矩形硬纸板卷成圆柱的侧面,则圆柱的底面半径是.19.(4分)将半径为1和2的两个铅球,熔成一个大的铅球,那么,这个大铅球的表面积是.20.(4分)已知一个圆锥的高为3,侧面展开图是半圆,则它的侧面积是.三、解答题:(本大题共7小题,满分70分。
2021年高二数学下学期期中联考试题(VII)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、已知复数满足 (为虚数单位),则A. B.的实部为1 C.的虚部为 D.的共轭复数为2.从某中学随机选取5名高二男生,其身高和体重的数据如下表所示,由表可得回归直线方程,据此模型预报身高为172的男生的体重大约为A.65.8 kg B.66.3 kg3. 抛物线的准线方程是A. B.4. 设命题,,则是成立的A. 充分不必要条件B.C. 充要条件D.5.A. -1 B. C.6. 某完全中学有高中生人,初中生人.A. B. C. D.7. 某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,若对两块地抽取树苗的高度的平均数x甲,x乙和中位数y甲,y乙进行比较,则下面结论正确的是A.x甲>x乙,y甲>y乙B.x甲<x乙,y甲<y乙C.x甲<x乙,y甲>y乙D.x甲>x乙,y甲<y乙8. 下列说法正确的是A.若样本的均值,则样本的均值为10B.相关系数,则对应回归直线方程中的C.用辗转相除法可得225与135的最大公约数为15D.把四进制数化为二进制数是9. 如图所示,一游泳者自游泳池边AB上的D点,沿DC方向游了10米后到C处,,在C处任意选择一个方向,则他沿选择的方向继续游不超过米就能够回到游泳池边AB的概率是A. B. C. D.10. 下面给出了四个类比推理, 结论正确的是①若则;类比推出:若为三个向量则 .②在正三角形中,若是边的中点,是三角形的重心,则;类比推出:在棱长都相等的四面体中,若的中心为,四面体内部一点到四面体各面的距离都相等,则.③为实数,若则;类比推出:为复数,若则 .④若是等差数列,对于,则也是等差数列;类比推出:若是各项都为正数的等比数列,,则也是等比数列.A.① ② B.② ③ C.② ④ D. ③ ④11. 是△的顶点,且,则顶点的轨迹方程是A. B.C. D.12. 已知函数=()的两个极值点分别在区间(,1)和(1,2)内,则的取值范围是A. B. C. D.第Ⅱ卷非选择题(90分)二、填空题:本大题共4小题,每小题5分,共20分。
莆田华侨中学2022-2023学年下学期期中考试高二数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列导数运算正确的是()A.B.()121x x-'=11ln 222x x '⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦C. D. ()cos sin x x '=()1ln 1x x x'+=+【答案】D 【解析】【分析】利用求导公式和法则逐个分析判断即可【详解】因为,,,, ()121x x -'=-11ln 222x x'⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()cos sin x x '=-()1ln 1x x x '+=+所以选项A ,B ,C 均不正确,选项D 正确, 故选:D.2. 如图,在四面体中,是的中点,设,,,则( )OABC G BC OA a = OB b = OC c == AGA.B.C.D.1122a b c -- 1122a b c -++12a b c -++12a b c -- 【答案】B 【解析】【分析】根据三角形法则先求得向量、,进而求得. AB ACAG 【详解】解:,AC OC OA c a =-=-, AB OB OA b a =-=- .()()111122222AG AC AB a b c a b c ∴=+=-++=-++ 故选:B .3. 函数的单调递增区间是( )()2ln f x x x =-A. 和B.C. D.(),0∞-()0,2()2,+∞(),2-∞()0,2【答案】B 【解析】【分析】求出导函数,由确定增区间.()f x '()0f x '>【详解】,的定义域为, 22()1x f x x x'-=-=()f x (0,)+∞由,得, ()0f x '>2x >∴的单调递增区间为. ()f x ()2,+∞故选:B .4. 如图,用、、三类不同的元件连接成一个系统.当正常工作且、至少有一个正常工作K 1A 2A K 1A 2A 时,系统正常工作.已知、、正常工作的概率依次为、、,则系统不能正常工作的K 1A 2A 0.90.70.7概率为( )A. B. C. D.0.8640.1560.1810.819【答案】C 【解析】【分析】利用独立事件的概率乘法公式计算出该系统正常工作的概率,再利用对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,该系统正常工作的概率为,()20.9110.70.819⎡⎤⨯--=⎣⎦因此,该系统不能正常工作的概率为.10.8190.181-=故选:C.5. 向量,,,,1,,,0,,若,,共面,则等于( ) (1a = x 2)(0b = 2)(1c = 0)a b cx A. B. 1C. 2D. 01-【答案】B 【解析】【分析】根据向量共面关系,建立等式即可得解.a mb nc =+ 【详解】向量,,,,1,,,0,,,,共面,(1a = x 2)(0b = 2)(1c = 0)a b c ,,,,,,,,∴a mb nc =+0m ≠0n ≠(1∴x 2)(n =m 2)m ,解得,. ∴122nx m m =⎧⎪=⎨⎪=⎩1x m ==1x ∴=故选:B .6. “”是“函数在区间(1,2)上单调递减”的( )5a >()3f x x ax =-A. 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】C 【解析】【分析】根据函数的单调性与导数的关系和必要不充分条件的判断即可求解. 【详解】若在区间(1,2)上单调递减,()3f x x ax =-所以在区间(1,2)上恒成立, 2()30f x x a '=-≤所以在区间(1,2)上恒成立, 23x a ≤所以,()2max3xa ≤所以,23212a ≥⨯=所以“”是“”的必要不充分条件,5a >12a ≥所以“”是函数在区间(1,2)上单调递减”的必要不充分条件,5a >()3f x x ax =-故选:C .7. 如图,圆柱的轴截面为矩形,点,分别在上、下底面圆上,,ABCD M N 2NB AN = 2CMMD =,,,则异面直线与所成角的余弦值为( )2AB =3BC =AM CNA.B.C.D.【答案】D 【解析】【分析】利用圆柱的性质、异面直线所成的角即可求解.【详解】方法一 如图(1),在上取点,使,连接,,,,. AB E 2AE EB=NE AN NB BE EA 易知四边形为矩形,则,且. ANBE NB AE ∥NB AE =连接,.因为,且,MN CM MN BC ∥MN BC =所以四边形为平行四边形,所以,且. MNBC CM NB ∥CM NB =连接,则,且,CE AE CM ∥AECM =所以四边形为平行四边形,则, AECM AM CE ∥所以或其补角是异面直线与所成的角. NCE ∠AM CN 在中,,,所以.Rt BNC △3CB=BN =CN ==在中,,,所以,Rt BCE 3CB =1BE =CE==2NE AB==所以.cos NCE ∠==故选:D .方法二 如图(2),在上取点,使,连接,,,. AB E 2AE EB=AN NB BE EA 易知四边形为矩形,,.ANBE 1AN =NB =MN 由已知条件,得为圆柱的一条母线.MN 以为坐标原点,分别以直线,,为轴、轴、轴建立如图(2)的空间直角坐标系N NB NA NM x y z ,Nxyz则,,,,()0,0,0N ()0,1,0A ()0,0,3M)C所以,,则, ()0,1,3AM =-)NC =cos ,AM NC ==所以异面直线与. AM CN 故选:D .8. 已知定义在上的函数的导函数为,且对于任意的,都有0,2π⎛⎫ ⎪⎝⎭()f x ()f x '0,2x π⎛⎫∈ ⎪⎝⎭,则下列结论正确的是( )()()sin cosf x x f x x '<A.B. 43ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()13f f π⎛⎫> ⎪⎝⎭C.D.64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】【分析】构造函数,利用导数判断函数的单调性,再利用函数的单调性处理即可. 【详解】设则,因为对于任意的,都有()(),sin f x g x x=()()()2sin cos sin f x x f x x g x x'-'=0,2x π⎛⎫∈ ⎪⎝⎭,所以,所以在上单调递减,所以()()sin cos f x x f x x '<()0g x '<()g x 0,2π⎛⎫⎪⎝⎭,即,所以,所以643g g g πππ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭643sin sin sin643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>64312f f f πππ⎛⎫⎛⎫⎛⎫ ⎪⎝⎭>>又故无法比,64f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()sin 1sin1,33f fππ⎛⎫> ⎪⎝⎭较与,故B ,C ,D 错误. 3f π⎛⎫⎪⎝⎭()1f 故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件 “第一次出现2点”,“第二次A =B =的点数小于5点”,“两次点数之和为奇数”,“两次点数之和为9”,则下列说法正确的有( ) C =D =A. 与不互斥且相互独立 B. 与互斥且不相互独立 A B A D C. 与互斥且不相互独立 D. 与不互斥且相互独立B D AC 【答案】ABD 【解析】【分析】根据事件的互斥与独立的定义对选项一一验证即可.【详解】对于A :连续抛掷一枚质地均匀的骰子两次,第一次与第二次的结果互不影响,即与相互A B 独立;第一次出现2点,第二次的点数小于5点可以同时发生,与不互斥;故A 正确;A B 对于B :连续抛掷一枚质地均匀的骰子两次,第一次的结果会影响两次点数之和,即与不相互独A D 立;第一次出现2点,则两次点数之和最大为8,即与不能同时发生,即与互斥,故B 正确; A D A D 对于C :连续抛掷一枚质地均匀的骰子两次,第二次的结果会影响两次点数之和,即与不相互独立; B D 若第一次的点数为5,第二次的点数4点,则两次点数之和为9,即与可以同时发生,即与不互B D B D 斥,故C 错误;对于D :连续抛掷一枚质地均匀的骰子两次,第一次的结果不会影响两次点数之和的奇偶,即与相A C 互独立;若第一次的点数为2,第二次的点数3点,则两次点数之和为5是奇数,即与可以同时发生,即A C A 与不互斥,故D 正确. C 故选:ABD.10. 以下命题正确的是( ).A. 直线l 的方向向量,直线m 的方向向量,则 ()112a ,,=-()1,2,1b = l m ⊥B. 直线l 的方向向量,平面的法向量,则或()0,1,1a =- α()1,1,1n =--l α∥l ⊂αC. 两个不同平面,的法向量分别为,,则αβ()12,1,0n =- ()24,2,0n =-αβ⊥D. 平面经过三点,,,向量是平面的法向量,则α()1,0,1A -()0,1,0B ()1,2,0C -()1,,n u t =α,1u =0=t 【答案】BD 【解析】【分析】对于A ,利用直线的方向向量是否垂直即可求解;对于B ,利用直线的方向向量与平面的法向量是否垂直即可求解;对于C ,利用平面的法向量是否平行即可求解;对于D ,根据法向量得到方程组,求出和的关系即可求解.u t 【详解】对于A ,因为直线的方向向量,直线的方向向量,l ()1,1,2a =- m ()1,2,1b =所以,所以与不垂直,故直线与直线不垂直,故A 错误;()11122110a b ⋅=⨯+-⨯+⨯=≠ a bl m 对于B ,因为直线的方向向量,平面的法向量,l ()0,1,1a =- α()1,1,1n =--所以,所以,故或,故B 正确;()()()0111110a n =⨯+⨯-+-+-=⋅ a n ⊥//l αl ⊂α对于C ,因为两个不同平面的法向量分别为,,αβ()()122,1,0,4,2,0n n =-=-所以,即,所以,故C 错误;212n n =- 12//n n//αβ对于D ,因为,所以, ()()()1,0,1,0,1,0,1,2,0A B C --()()1,1,1,1,1,0AB BC =-=-又向量是平面的法向量,则,即,解得,故D 正确. ()1,,=r n u t α00n AB n BC ⎧⋅=⎪⎨⋅=⎪⎩1010u t u -++=⎧⎨-+=⎩1,0u t ==故选:BD.11. 如图所示几何体,是由正方形沿直线旋转得到,是圆弧的中点,是圆弧ABCD AB 90︒G CEH 上的动点,则( ) DFA. 存在点,使得 H //EH BDB. 存在点,使得 H EH BG ⊥C. 存在点,使得平面H //EH BDG D. 存在点,使得直线与平面的夹角为 H EH BDG 45︒【答案】BC 【解析】【分析】先将图形补全为一个正方体,对四个选项一一验证: ADMF BCNE -对于A 、B :利用正方体的性质直接判断;对于C 、D :以A 为原点,为x 、y 、z 轴正方向建立空间直角坐标系,利用向量法求解. ,,AD AF AB【详解】由题意可将图形补全为一个正方体,如图示: ADMF BCNE -对于A :因为面,而是圆弧上的动点,所以不成立.故A 错误; //BD EFMN H DF//EH BD 对于B :因为正方体中, 面,ADMF BCNE -EF ⊥BCNE 所以.EF BG ⊥所以当重合时,有.故B 正确;,F H EH BG ⊥对于C :以A 为原点,为x 、y 、z 轴正方向建立空间直角坐标系.设,,,AD AF AB2BC =则()0,0,0,A ()2,0,0,D ()0,2,2,E ()0,2,0,F ()0,0,2,B ()2,0,2,C )2,G,()()22,,0,4,0,0H m n m n m n +=>>所以.())2,0,2,,BD BG =-=(),2,2EH m n =--设为平面的一个法向量,则, (),,e x y z =BDG 202000BD e x z BG e z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩不妨设,则.1x =()1,1,1e =-假设平面,则,所以.//EH BDG 220e EH m n ⋅=-+-=m n =因为,所以是圆弧的中点,符合题意.故C 正确; 224,0,0m n m n +=>>m n ==H DF对于D :由B 的分析可知:当重合时,直线与平面的夹角最大.,F H EH BDG 此时.()0,0,2EH =-所以与平面所成的角的正弦值为EH BDG cos ,e EH e EH e EH⋅==<⨯ 所以与平面所成的角的最大值小于45°.故D 错误. EH BDG 故选: BC12. 若两曲线与存在公切线,则正实数a 的取值可以是( ) 21y x =-ln 1y a x =-A. 1 B. e C. e 2 D. 3e【答案】AB 【解析】【分析】设两个切点分别为,,可得两函数的切线方程,从而可得()11,A x y ()22,B x y ,令,利用导数求出,可得的取值范围,从()2224ln 1a x x =-⋅-22()44ln (0)g x x x x x =->max ()g x a 而得答案.【详解】解:设两曲线与的两个切点分别为,, 21y x =-ln 1y a x =-()11,A x y ()22,B x y 由可得;由可得, 21y x =-2y x '=ln 1y a x =-a y x'=则过两切点的切线方程分别为,, 2111(1)2()y x x x x --=-()()222ln 1ay a x x x x --=-化简得,. 21121y x x x =--22ln 1ay x a x a x =+--因为两条切线为同一条,所以,122212ln a x x a x a x ⎧=⎪⎨⎪-=-⎩解得.()2224ln 1a x x =-⋅-令,,22()44ln (0)g x x x x x =->()4(12ln )g x x x =-'令,得,()0g x '=x =当时,;当;0x <<()0g x '>x >()0g x '<所以在上单调递增,在上单调递减, ()gx )+∞则, max ()2e g x g ==所以. (0,2]a ∈e 故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13. 函数在处有极值,则常数a =______. ()ln f x x ax =-1x =【答案】1 【解析】【分析】根据极值定义可得,求导并将代入计算即可求得 ()10f '=1x =1a =【详解】由可得, ()ln f x x ax =-()1f x a x'=-又在处有极值,所以可得, ()f x 1x =()10f '=即,所以.经检验满足题意, ()1011f a ='-=1a =故答案为:114. 一个数学兴趣小组共有2名男生3名女生,从中随机选出2名参加交流会,在已知选出的2名中有1名是男生的条件下,另1名是女生的概率为______. 【答案】67【解析】【分析】首先求出男女生各1名的概率,再应用对立事件概率求法求至少有1名男生的概率,最后应用条件概率公式求概率.【详解】若A 表示“2名中至少有1名男生”,B 表示“2名中有1名女生”, 所以2名中有1名是男生的条件下,另1名是女生的概率为, ()(|)()P AB P B A P A =而,,故. 112325C C 3()C 5P AB ==2325C 7()1C 10P A =-=6(|)7P B A =故答案为:6715. 在如图所示的三棱锥中,平面,,,,为-P ABC PA ⊥ABC 90ACB ∠=︒8CA =6PA =D AB 中点,为内的动点(含边界),且.当在上时,________;点的轨迹E PAC △PC DE ⊥E AC AE =E 的长度为________.【答案】 ①. ②.4125【解析】【分析】由题意建立空间直角坐标系可得当在上时,满足,求得的长;当为E AC PC DE ⊥AE E 内的动点(含边界)时,再取中点,,再过作,可证平面,得到PAC △AC F F FG PC ⊥PC ⊥DFG 的轨迹,求解三角形可得点的轨迹的长度.E E 【详解】因为平面,平面,所以,又,所PA ⊥ABC ,AC BC ⊂ABC ,PA AC PA BC ⊥⊥90ACB ∠=︒以,ACBC ⊥又平面,所以平面,过,如图建立空间直角坐标,,PA AC A PA AC ⋂=⊂PAC BC ⊥PAC //Ax BC 系,则,设,所以,则()()()0,0,0,0,8,0,0,0,6A C P BC a =(),8,0B a ,4,02a D ⎛⎫⎪⎝⎭①当在上时,设,因为,所以E AC ()0,,0E c PC DE ⊥,故,则()0,8,6,4,00832002a PC DE c c ⎛⎫⋅=-⋅--=+-+= ⎪⎝⎭ 4c =()0,4,0E 所以;4AE=②为内的动点(含边界)时,如图,取中点,过作,垂足为E PAC △ACF F FG PC ⊥G由①可得,又,平面,所以平面,因为PC DF ⊥FG PC ⊥,,DF FG F DF FG ⋂=⊂DFG PC ⊥DFG 平面,所以FG ⊂PAC PC FG ⊥即在线段上运动时,, E FG PC DE ⊥点的轨迹为线段.∴E FG 则. 12sin 425PA FG FC PCA PC =⋅∠=⨯==故答案为:;. 412516. 已知函数,若恰有两个零点,则的取值范围为__________.2ln ,0()1,0x kx x f x kx x x ->⎧=⎨-+≤⎩()f x k 【答案】 ()1,00,e ⎛⎫-∞ ⎪⎝⎭【解析】【分析】利用分离参数法得,,,,从而转化为直线与函数图象交ln x k x =0x >21x k x-=0x <y k =点个数问题,利用数形结合的思想即可得到答案. 【详解】当时,令,则, 0x >()ln 0f x x kx =-=ln xk x=令,,, ()ln x h x x=0x >()221ln 1ln x xx x h x x x ⋅--'==令,即,解得,此时单调递增, ()0h x '>1ln 0x ->0e x <<()h x 令,即,解得,此时单调递减, ()0h x '<1ln 0x -<e x >()h x 故在时,取得最大值,且当趋近于0时,趋近于负无穷, ()h x e x =()1e eh =x ()h x 当趋近于正无穷时,趋近于0,且大于0,x ()h x 当时,,当时,,故此时不是零点,所以,0x ≤()21f x kx x =-+0x =()01f =0x ≠令,,()201f x kx x =-+=22211111124x k x x x x -⎛⎫==-=--- ⎪⎝⎭令,, ()211x x xϕ=-0x <根据符合函数单调性可知,此时函数单调递减,当趋近于负无穷时,趋近于0,且小于0, x ()x ϕ当趋近于0时,趋近于负无穷, x ()x ϕ在同一坐标系中作出与如下图所示,()h x ()x ϕ题目转化为与函数与在图像上有两交点,y k =()h x ()x ϕ故由图得.()1,00,e k ⎛⎫∈-∞⋃ ⎪⎝⎭故答案为:.()1,00,e ⎛⎫-∞ ⎪⎝⎭四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17. 已知,,.()1,3,4A ()1,5,4B -()1,2,1C -(1)求;,AB BC(2)求在上的投影向量.AC BC【答案】(1)2π3(2) ()0,2,2--【解析】【分析】(1)由向量夹角余弦公式,分别计算向量数量积和向量的模,再根据夹角范围,确定夹角的值. (2)根据投影向量定义分别计算两个向量的数量积和模,再求出向量的同方向单位向量,计算即可得到BC投影向量. 【小问1详解】解:因为,,()2,2,0AB =- ()0,3,3BC =--所以,,,6AB BC⋅=-AB =BC = 所以. 1cos ,2AB BC AB BC AB BC ⋅===-⋅因为,0,πAB BC ≤≤所以.2π,3AB BC = 【小问2详解】因为,, ()2,1,3AC =--- ()0,3,3BC =--所以.cos ,AC BC ==因为, 0,BC BC ⎛= ⎝所以在上的投影向量为AC BC.()cos ,0=0,2,2BC AC AC BC BC ⎛= ⎝⋅--18. 如图,四棱锥的底面是矩形,PD ⊥底面ABCD ,,,M 为BC P ABCD -2PD DC ==AD =的中点.(1)求D 到平面APM 的距离;(2)求平面ABCD 与平面APM 所成角的余弦值. 【答案】(1 (2 【解析】【分析】(1)根据点面距离的法向量求法即可求解;(2)根据面面夹角的法向量求法即可求解. 【小问1详解】因为四棱锥的底面是矩形,PD ⊥底面ABCD ,P ABCD -所以可以建立以D 为坐标原点,DA 方向为x 轴,DC 方向为y 轴,DP 方向为z 轴,如图所示的空间直角坐标系,又,,M 为BC 的中点, 2PD DC ==AD =所以,,,,(0,0,0)DA 2,0)M (0,0,2)P 所以,,2)PA =-2,2)PM =-DA = 设平面的法向量为,PAM (,,)n x y z =所以, ()()()),,220,,2,2220nPA x y z z n PM x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=+-=⎪⎩取,解得,, 1x=z=y =所以,n =所以D 到平面APM.==【小问2详解】易知,平面ABCD 的一个法向量为,(0,0,2)DP =. ()0,0,2·cos ,m n ⎛===平面ABCD 与平面APM . 19. 已知函数,.()sin cos f x x x x =+()0,2πx ∈(1)求函数在处的切线方程; ()f x πx =(2)求函数的极值. ()f x 【答案】(1)2ππ10x y +-+=(2)的极大值为;的极小值为. ()f x π2()f x 3π2-【解析】【分析】(1)根据导数的几何意义即可求解;(2)根据导数与极值的关系即可求解. 【小问1详解】因为,()sin cos f x x x x =+所以, ()sin cos (sin )f x x x x x =+-'+所以, ()cos f x x x '=所以, (π)πcos ππf '==-而,()ππsin πcos π1f =+=-所以函数f (x )在处的切线方程为:, πx =(1)π(π)y x --=--即, 2ππ10x y +-+=【小问2详解】因为,()sin cos f x x x x =+所以, ()sin cos (sin )f x x x x x =+-'+所以, ()cos f x x x '=令, ()cos 0f x x x '==解得或, 0x =ππ,2x k k =+∈Z 又因为, ()0,2πx ∈所以或,1π2x =3π2x =x 10,π2⎛⎫ ⎪⎝⎭ 12π 13π,π22⎛⎫ ⎪⎝⎭3π23π,2π2⎛⎫ ⎪⎝⎭()f x '+-+()f x ↗极大值 ↘极小值↗函数的极大值为;()f x 1πππππsin cos 22222f ⎛⎫=+=⎪⎝⎭函数的极小值为.()f x 33π3π3π3ππsin cos 22222f ⎛⎫=+=-⎪⎝⎭20. 某同学买了7个盲盒,每个盲盒中都有一个礼物,有4个装小兔和3个装小狗. (1)依次不放回地从中取出2个盲盒,求第1次、第2次取到的都是小兔盲盒的概率; (2)依次不放回地从中取出2个盲盒,求第2次取到的是小狗盲盒的概率.【答案】(1)27(2)37【解析】【分析】(1)设事件“第次取到的是小兔盲盒”,,求出,,再根据条件概=i A i 1,2i =()1P A ()21P A A 率的概率公式计算可得;(2)设事件“第次取到的是小狗盲盒”,,求出,,,再根据全i B =i 1,2i =()1P B ()21P B B ()21P B A 概率的概率公式计算可得. 【小问1详解】设事件“第次取到的是小兔盲盒”,.=i A i 1,2i =∵,,()14117C 4C 7P A ==()132116C 1C 2P A A ==∴, ()()()12121412727P A A P A P A A ==⨯=即第次、第次取到的都是小兔盲盒的概率为.1227【小问2详解】设事件“第次取到的是小狗盲盒”,.i B =i 1,2i =∵,,,()13117C 3C 7P B ==()122116C 1C 3P B B ==()132116C 1C 2P B A ==∴由全概率公式,可知第次取到的是小狗盲盒的概率为2()()()()()2121121P B P B P B B P A P B A =⨯+⨯ 31417372=⨯+⨯. 37=21. 在三棱柱中,平面平面,侧面为菱形,,111ABC A B C -11A B BA ⊥ABC 11A B BA 1π3ABB ∠=,,E 是的中点.1A B AC ⊥2AB AC ==AC(1)求证:平面;1A B ⊥1AB C (2)点P 在线段上(异于点,),与平面所成角为,求的值.1A E 1A E AP 1A BE π41EP EA 【答案】(1)证明见解析(2)125EP EA =【解析】【分析】(1)根据线面垂直的判定定理证明; (2)利用空间向量的坐标运算表示线面夹角即可求解. 【小问1详解】因为四边形为菱形,所以,11A B BA 11A B AB ⊥又因为,,平面,, 1A B AC ⊥1AB AC ⊂1AB C 1AB AC A = 所以平面. 1A B ⊥1AB C 【小问2详解】取的中点O ,连接,四边形为菱形,且, AB 1B O 11A B BA 1π3ABB ∠=所以.1B O AB ⊥因为平面平面,平面平面,11A B BA ⊥ABC 11A B BA ⋂ABC AB =平面,1B O ⊂11A B BA 所以平面,所以,又因为,与相交, 1B O ⊥ABC 1B O AC ⊥1A B AC ⊥1B O 1A B 所以平面.取中点D ,连结, AC ⊥11A B BA BC OD 以O 为原点,,,为空间基底建立直角坐标系.OB OD 1OB则,,,,()1,0,0B ()1,0,0A-(1A -()1,1,0E -所以,.(1BA =-()2,1,0BE =- 设平面的一个法向量为,1A BE (),,n x y z =所以,令,则,,13020n BA x n BE x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩1x=z =2y =所以.(1,n =设,可得点,. 1EP EA λ=()1,1P λλ---(),1AP λλ=-- 由题意πsin cos ,4AP n AP n AP n ⋅===解得或(舍),即. 2=5λ0λ=125EP EA =22. 已知函数,.()ln 1f x x mx =-+()()e 2xg x x =-(1)若的最大值是1,求的值;()f x m (2)若对其定义域内任意,恒成立,求的取值范围. x ()()f x g x ≤m 【答案】(1) 1em =(2) [)1,+∞【解析】【分析】(1)先求定义域,再求导,分与两种情况,分类讨论得到当,时,0m ≤0m >0m >1x m=取得最大值,列出方程,求出的值;()f x m (2)转化为在上恒成立问题,构造,二次求导,利用1ln 2e x x m x +-≥-()0,∞+()1ln e xx x xϕ+=-隐零点求出,取对数后,利用同构得到,求出在处取得最大值,0020e n 0l x x x +=01e x x =()x ϕ0x x =列出不等式,求出的取值范围. m 【小问1详解】的定义域为,. ()f x ()0,∞+()11mx f x m x x-'=-=若,,在定义域内单调递增,无最大值;0m ≤()0f x ¢>()f x若,令,解得:,令,解得:, 0m >()0f x ¢>10,x m ⎛⎫∈ ⎪⎝⎭()0f x '<1,x m ⎛⎫∈+∞ ⎪⎝⎭故时,单调递增,时,单调递减. 10,x m ⎛⎫∈ ⎪⎝⎭()f x 1,x m ⎛⎫∈+∞ ⎪⎝⎭()f x 时,取得极大值,也是最大值,故,1x m∴=()f x 11ln 1f m m ⎛⎫== ⎪⎝⎭;1em ∴=【小问2详解】原式恒成立,即在上恒成立,()ln 1e 2xx mx x -+≤-()0,∞+即在上恒成立. 1ln 2e xx m x+-≥-()0,∞+设,则. ()1ln e x x x x ϕ+=-()22e ln x x xx xϕ+'=-设,则, ()2e ln xh x x x =+()()212e 0xh x x x x'=++>在上单调递增,且,.()h x ∴()0,∞+112e e 211e 1e 10e eh -⎛⎫=⋅-=-< ⎪⎝⎭()1e 0h =>有唯一零点,且,()h x ∴01,1x e ⎛⎫∈ ⎪⎝⎭020e n 0l xx x +=即. 000ln ex x x x -=两边同时取对数,得,易知是增函数,()()0000ln ln ln ln x x x x +=-+-ln y x x =+,即. 00ln x x ∴=-01ex x =因为,所以当时,, ()()2h x x x ϕ'=-()00,x x ∈()()20h x x xϕ'=->当时,, ()0,x x ∈+∞()()20h x x xϕ'=-<故在上单调递增,在上单调递减,在处取得极大值,也是最大值,()x ϕ()00,x ()0,x +∞()x ϕ0x x =, ()()0000000e 11ln 11x x x x x x x x ϕϕ+-∴≤=-=-=-, 21m ∴-≥-,1m ∴≥故的取值范围是.m [)1,+∞【点睛】隐零点的处理思路:第一步:用零点存在性定理判定导函数零点的存在性,其中难点是通过合理赋值,敏锐捕捉零点存在的区间,有时还需结合函数单调性明确零点的个数;第二步:虚设零点并确定取值范围,抓住零点方程实施代换,如指数与对数互换,超越函数与简单函数的替换,利用同构思想等解决,需要注意的是,代换可能不止一次.。
高二下学期期中考试数学试卷-附带参考答案和解析本试卷共5页 22小题 满分150分.考试用时120分钟.考生注意事项:1.试卷分第Ⅰ卷和第Ⅰ卷 第Ⅰ卷用2B 铅笔涂在答题卡上 第Ⅰ卷用黑色钢笔 签字笔在答题卡上作答2.质量监测时间120分钟 全卷满分150分.一、选择题:本大题共8小题 每小题5分 共40分 每小题只有一项是符合题目要求的.1.已知集合(){}2log 20A x x =∈-≤N {A x y =∈N ,则A B ⋃=( )A .{}0,1,2B .{}1,2C .{}0,1D .{}1【答案】C【分析】根据对数的单调性 一元二次不等式的解法 结合并集的定义进行求解即可. 【详解】由(){}2log 20021121x x x A -≤⇒<-≤⇒≤<⇒=由{}210110,1x x B -≥⇒-≤≤⇒=所以A B ⋃={}0,1 故选:C2.复数z 满足()1i i z += i 为虚数单位,则下列说法正确的是( ) A .1z = B .z 在复平面内对应的点位于第二象限 C .z 的实部为12D .z 的虚部为1i 2【答案】C【分析】根据复数的除法运算求出复数z 即可求得其模以及实部和虚部 以及对应的点所在象限 一一判断各选项 即得答案.【详解】因为()1i i z += 故i i (1i)11i 1i (1i)(1i)22z ⋅-===+++-则z ==A 错误 z 在复平面内对应的点为11(,)22位于第一象限 B 错误z 的实部为12C 正确z 的虚部为12D 错误故选:C .3.在ABC 中 点D 是线段AB 上靠近B 的四等分点 点E 是线段CD 上靠近D 的三等分点,则AE =( )A .2133CA CB -+ B .1526CA CB -C .1233CA CB -+D 5162CA CB -+.【答案】D【分析】方法一:利用平面向量基本定理得到答案方法二:设ABC 是等腰直角三角形 且4CA CB == 建立空间直角坐标系 写出点的坐标 设m A CA nCB E =+ 从而得到方程组 求出答案.【详解】方法一:如图 由题意得23CE CD = 34AD AB =故()22123333AE AC CE AC CD AC AD AC AC AD =+=+=+-=+()111151323262AC AB CA CB CA CA CB =+=-+-=-+方法二:不妨设ABC 是等腰直角三角形 且4CA CB == 以C 为坐标原点建立平面直角坐标系 如图所示 则()()()()20,0,0,4,4,0,3,1,2,3C A B D E ⎛⎫ ⎪⎝⎭则()()0,4,4,0CA CB == 设m A CA nCB E =+故()()102,0,44,03m n ⎛⎫-=+ ⎪⎝⎭所以1042,43n m ==- 解得51,62m n =-=故5162CA C A B E -=+.故选:D .4.函数()()()2sin 0,ππf x x ωϕωϕ=+>-<<的部分图像如图所示,则ω ϕ的值分别是( )A .2 π6- B .2 π3-C .2π3D .4 5π6-【答案】B【分析】根据三角函数图像与性质求ω ϕ的值即可. 【详解】设()f x 的周期为T则由图像知35π9π3πππ4123124T T ⎛⎫=--==⇒= ⎪⎝⎭所以2π2Tω==,则()()2sin 2f x x ϕ=+ 因为()f x 在5π12x =处取得最大值 所以5π2π2π,Z 122k k ϕ⨯+=+∈ 得π2π,Z 3k k ϕ=-+∈因为ππϕ-<< 所以π0,3k ϕ==-.故选:B5.在数列{}n a 中的相邻两项n a 与()*1n a n +∈N 之间插入一个首项为1n a n- 公差为1n -的等差数列的前n 项记构成的新数列为{}n b 若21n a n =+,则{}n b 前65项的和为( ) A .252-B .-13C .272-D .-14【答案】A【分析】根据题意 得到数列{}n b 中n a 及其后面n 项的和为n S ()()1112n n n n S n a n+=+-⨯求解. 【详解】解:数列{}n b 为:1122233331121,1,,,1,,,,1,,,233n n a a a a a a a a a a a n-------1231,,,,1,,n n n n n n a a a a a n nn+-----设n a 及其后面n 项的和为n S ,则()()()1111123222n n n n n S n a n n ++=+-⨯=-=- 所以数列{}n S 是以1为首项 公差为12-的等差数列.所以{}n b 前65项的和为1210710125222S S S ⎛⎫- ⎪⎝⎭+++==-故选:A.6.冬季是流感高发期 其中甲型流感病毒传染性非常强.基本再生数0R 与世代间隔T 是流行病学基本参考数据.某市疾控中心数据库统计分析 可以用函数模型()2rtW t =来描述累计感染甲型流感病毒的人数()W t 随时间t Z t ∈(单位:天)的变化规律 其中指数增长率r 与基本再生数0R 和世代间隔T 之间的关系近似满足01R rT =+ 根据已有数据估计出04R =时 12T =.据此回答 累计感染甲型流感病毒的人数增加至()0W 的3倍至少需要(参考数据:lg 20.301≈ lg30.477≈)( )A .6天B .7天C .8天D .9天【答案】B【分析】先求得r 然后根据“()0W 的3倍”列方程 化简求得需要的时间. 【详解】依题意 01R rT =+ 且04R =时 12T =即14112,4r r =+⨯= 所以()142tW t = ()10W =令()1423tW t == 两边取以10为底的对数得14lg 340.477lg 2lg 3, 6.34lg 20.301t t ⨯==≈≈ 所以至少需要7天. 故选:B7.如图 在长方形ABCD 中 2AB = 1BC = E 为DC 的中点 F 为线段EC (端点除外)上的动点.现将AFD △沿AF 折起 使平面ABD ⊥平面ABC 在平面ABD 内过点D 作DK AB ⊥ K 为垂足.设AK t ,则t 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .51,4⎛⎫ ⎪⎝⎭【答案】C【分析】设DF x = 求得x 关于t 的表达式 根据x 的取值范围求得t 的取值范围. 【详解】如图 在平面ADF 内过点D 作DH AF ⊥垂足为H 连接HK .过点F 作//FP BC 交AB 于点P .设FAB θ∠= AE AC == 所以cos θ∈⎝⎭.设DF x =,则12x <<.因为平面ABD ⊥平面ABC 平面ABD ⋂平面ABC AB =DK AB ⊥ DK ⊂平面ABD 所以DK ⊥平面ABC又AF ⊂平面ABC 所以DK AF ⊥. 又因为DHAF ⊥DKDH D = DK DH ⊂平面DKH 所以AF ⊥平面DKH 所以AF HK ⊥ 即AH HK ⊥.在Rt ADF 中 AF DH因为ADF △和APF 都是直角三角形 PF AD = 所以Rt Rt ADF FPA ≌△△ AP DF x ==.因为AHD ADF ∽△△,1AH DH AH AH AD DF ===所以cos AH AP AK AF θ=== 得1x t=. 因为12x << 所以112t<< 所以112t <<.故选:C【点睛】方法点睛:线面垂直 面面垂直转化的过程中 要从线面垂直得到面面垂直 需要“经过一个平面的垂线” 要从面面垂直得到线面垂直,则需要“在一个平面内 垂直于交线” 在答题过程中 要注意使用正确的符号语言.8.在直角坐标系xOy 内 圆22:(2)(2)1C x y -+-= 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣ B.44⎡--⎣C.22⎡--⎣D.2⎡-⎣【答案】A【分析】由题意首先得出旋转后的直线为1:0l x y m 然后由直线与圆的位置关系列出不等式即可求解. 【详解】连接OP 设POx θ∠=(即以x 轴正方向为始边 OP 为终边的角)由题意对于直线:0l x y m ++=上任意一点(),P x y存在R a θ=∈ 使得()cos ,sin P a a θθ 则直线:0l x y m ++=绕原点O 顺时针旋转90后 点()cos ,sin P a a θθ对应点为1ππcos ,sin 22P a a θθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 即()1sin ,cos Pa a θθ- 因为()cos ,sin P a a θθ在直线:0l x y m ++=上 所以满足cos sin 0a a m θθ++= 设11sin ,cos x a y a θθ==- 所以110y x m -++= 即()1sin ,cos P a a θθ-所在直线方程为1:0l xy m而圆22:(2)(2)1C x y -+-=的圆心 半径分别为()2,2,1r = 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点所以圆心()2,2C 到直线1:0l x y m 的距离1d r =≤= 解得m ≤故选:A.【点睛】关键点睛:关键是求出旋转后的直线 从而即可顺利得解.二 多选题9.某校举行演讲比赛 6位评委对甲 乙两位选手的评分如下: 甲:7.5 7.5 7.8 7.8 8.0 8.0 乙:7.5 7.8 7.8 7.8 8.0 8.0 则下列说法正确的是( )A .评委对甲评分的平均数低于对乙评分的平均数B .评委对甲评分的方差小于对乙评分的方差C .评委对甲评分的40%分位数为7.8D .评委对乙评分的众数为7.8 【答案】ACD【分析】由平均数 方差 百分位数 众数的概念及求法分别求解判断即可. 【详解】选项A 评委对甲评分的平均数7.57.57.87.88.08.017.87.8630x +++++==-<甲评委对乙评分的平均数7.57.87.87.88.08.017.87.8660x +++++==+>乙所以x x <甲乙 故A 正确选项B 由A 知 两组数据平均数均约为7.8且纵向看 甲组数据与乙组数据仅一组数据7.5,7.8不同 其余数据相同 又甲组数据7.5与平均数的差明显大于乙组数据7.8与平均数的差 且差距较大 故与平均数比较 甲组数据波动程度明显大些即评委对甲评分的方差大于对乙评分的方差 故B 错误 选项C 由640% 2.4⨯=不是整数则评委对甲评分的40%分位数为从小到大第3个数据 即:7.8 故C 正确 选项D 评委对乙评分中最多的数据 即众数为7.8 故D 正确.故选:ACD.10.下列说法正确的是( )A .“α为第一象限角”是“2α为第一象限角或第三象限角”的充分不必要条件 B .“π2π6k α=+ Z k ∈”是“1sin 2α=”的充要条件C .设ππ,Z 4M k k αα⎧⎫==±∈⎨⎬⎩⎭ π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭,则“M θ∈”是“N θ∈”的充分不必要条件D .“sin 0θ>”是“θtan 02>”的必要不充分条件 【答案】AC【分析】对于A 利用象限角 求得角α的范围 可判定充分性 取π3α= 验证必要性即可 对于B 考查1sin 2α=时 α的取值范围 可判定必要性不成立 对于C 根据集合M N 的关系即可判定 对于D 根据条件求得α的取值范围即可判断. 【详解】对于A,因为α为第一象限角 所以π2π2π,Z 2k k k α<<+∈ 则πππ,Z 4k k k α<<+∈, 当k 为偶数时 α为第一象限角 当k 为奇数时 α为第三象限角 所以充分性成立 当π3α=时 α为第一象限角,则2π23α= 为第二象限角 即必要性不成立 故A 正确 对于B 当π2π6k α=+ Z k ∈时 1sin 2α=成立,则充分性成立当1sin 2α=时 π2π6k α=+或5π2π6k α=+ Z k ∈, 故必要性不成立,则B 错误对于C ()41πππ,Z ,Z 44k M k k k αααα⎧⎫⎧⎫⎪⎪==±∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭而π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭则MN 故则“M θ∈”是“N θ∈”的充分不必要条件 故C 正确对于D,当sin 0θ>时 2π2ππ,Z k k k θ<<+∈, 则πππ,Z 22k k k θ<<+∈ 则θtan 02> 故充分性成立 当θtan02>时 πππ,Z 22k k k θ<<+∈则2π2ππ,Z k k k θ<<+∈ 则sin 0θ>成立 所以“sin 0θ>”是“θtan 02>”的充要条件 故D 错误 故选:AC.11.椭圆C 的标准方程为22121,,82x y F F +=为椭圆的左 右焦点 点()2,1P .12PF F △的内切圆圆心为(),I I I x y 与1212,,PF PF F F 分别相切于点,,D E H ,则( )A .126PF F S =△ B .13x C .1233y = D .226PD PE ==【答案】BCD【分析】根据椭圆中焦点三角形的性质求解12PF F S再结合三角形内切圆的几何性质逐项判断即可得结论.【详解】椭圆C :22182x y +=,则22,2,826a b c ===-= 所以()()126,0,6,0F F又()2,1P 所以点P 再椭圆上 连接12,,,,,ID IE IH IP IF IF则121211122PF F p SF F y =⋅=⨯ 故A 不正确由椭圆的定义可得122PF PF a +==又12PF F △的内切圆圆心为(),I I I x y 所以内切圆半径I r y = 由于121212PF F IF F IF PIF PSSSS=++()(121212121111122222I I I I I F F y PF y PF y y F F PF PF y =⨯⨯+⨯⨯+⨯⨯=⋅++=⋅故3I r y === 故C 正确又1122,,PD PE DF F H EF HF ===所以12121212PF PF PD DF PE EF PD F H PE HF PD PE F F +=+++=+++=++=则2PD = 所以PD PE == 故D 正确又2PF == 所以222HF EF PF PE ==-又H I x x = I x = 即1x 故B 正确. 故选:BCD.12.已知函数()()e xf x a x =+ ()()lng x x a x =+,则下列说法正确的是( )A .若函数()y f x =存在两个极值,则实数a 的取值范围为21,e ⎛⎫-∞ ⎪⎝⎭B .当1a =时 函数()y g x =在(0,)+∞上单调递增C .当1a =时 若存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立,则实数m 的最小值为0D .当1a =时 若()()12(0)f x g x t t ==>,则()121ln x x t +⋅的最小值为1e【答案】BC【分析】对A 选项:由极值点的性质结合导数讨论单调性即可得 对B 选项:结合导数讨论单调性即可得 对C 选项:结合()f x 单调性 可转化为当1x ≥时 有()1ln m x x ≥+成立 求出()1ln x x +最小值即可得 对D 选项:采用同构法可确定12e xx = 再将多变量化为单变量后结合导数讨论单调性即可得.【详解】对A 选项:()()()e e 1e x x xf x x a x a +=+'=++若函数()y f x =存在两个极值,则函数()f x '必有两个变号零点令()()1e 0x f x x a =++=',则()1e xa x =-+令()()1e xh x x =-+,则()()2e xh x x +'=-则当2x >-时 ()0h x '< 当<2x -时 ()0h x '> 故()h x 在(),2∞--上单调递增 在()2,∞-+上单调递减故()()()221221e e h x h -≤-=--+=又当1x >-时 ()()1e 0xh x x =-+<恒成立当x →-∞时 ()0h x →故当210,e a ⎛⎫∈ ⎪⎝⎭函数()f x '有两个变号零点即若函数()y f x =存在两个极值,则实数a 的取值范围为210,e⎛⎫ ⎪⎝⎭故A 错误对B 选项:当1a =时 ()(1)ln g x x x =+ ()11ln ln 1x g x x x x x='+=+++ 令()()x g x μ=',则()22111x x x x xμ'-=-= 则当()0,1x ∈时 ()0x μ'< 当()1,x ∞∈+时 ()0x μ'> 故()x μ在()0,1上单调递减 在()1,∞+上单调递增故()()120g x g '='≥> 故函数()y g x =在(0,)+∞上单调递增 故B 正确对C 选项:当1a =时 ()()e 1xf x x =+()()()e e 11e 1x x x f x x x =++=++'令()()m x f x =',则()()2e xm x x +'=则当<2x -时 ()0m x '< 当2x >-时 ()0m x '> 故()m x 在(),2∞--上单调递减 在()2,∞-+上单调递增故()()2212e 110e f x f -≥-=-+=-'>' 故()f x 在R 上单调递增则存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立等价于存在1x ≥ 使不等式()2ln mx x x x ≥+成立则当1x ≥时 有()1ln m x x ≥+成立由当1a =时 ()(1)ln g x x x =+ 且()y g x =在(0,)+∞上单调递增 故()11ln10m ≥+= 即实数m 的最小值为0 故C 正确对D 选项:当1a =时 由B C 可知 ()f x ()g x 均为定义域上的增函数 由()00f = ()10g = 故有1>0x 21x >由()()12f x g x =,则()()1122e 11ln xx x x +=+即()()()111122e 1e 1ln e 1ln x x x x x x +=+=+ 故12e xx =又()()111e 10xf x t x ==+> 故()121ln ln x x t t t +⋅=令()ln n x x x =,则()1ln n x x x ='+ 令()()1ln p x n x x x==+'则()22111x p x x x x='-=- 则当()0,1x ∈时 ()0p x '< 当()1,x ∞∈+时 ()0p x '> 故()p x 在()0,1上单调递减 在()1,∞+上单调递增 即()()10n x n ''≥= 故()n x 在()0,∞+上单调递增 故()n x 无最小值 即()121ln x x t +⋅无最小值 故D 错误. 故选:BC.【点睛】思路点睛:本题考查导数在研究函数中的综合应用问题 其中D 选项中涉及到多变量问题的求解 求解此类问题的基本思路是根据已知中的等量关系 将多变量转化为单变量的问题 从而将其转化为函数最值问题的求解. 三 填空题13.()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为 .(用数字作答)【答案】40-【分析】由二项式定理得到()62x y -的通项公式 结合2xy+得到34,T T 得到42x y 的系数. 【详解】()62x y -的通项公式为()()66166C 2C 2rrr r r r r r T x y x y --+=-=-令2r =得 ()22424236C 260T x y x y =-= 此时4242602120x y x y ⋅=令3r =得 ()33333346C 2160T x y x y =-=- 此时3342160160xx y x y y-⋅=- 故42x y 的系数为12016040-=- 故答案为:40-14.设数列{}n a 满足12a = 26a = 且2122n n n a a a ++-+= 若[]x 表示不超过x 的最大整数,则122021202120212021a a a ⎡⎤+++=⎢⎥⎣⎦. 【答案】2020【分析】根据题意 得到()()2112n n n n a a a a +++---= 得到{}1n n a a +-为等差数列 求得其通项公式 结合累加法 得到(1)n a n n =+ 求得2021112021()1n a n n =-+ 再利用裂项求和 求得12202120212021202120212021(2020,2021)2022a a a +++=⨯∈ 即可求解. 【详解】因为2122n n n a a a ++-+= 可得()()2112n n n n a a a a +++---= 又因为12a = 26a = 可得214a a -=所以数列{}1n n a a +-是首项为4 公差为2的等差数列 所以14(1)222n n n a n a +-=+-⨯=+ 当2n ≥时 112211()()()n n n n n a a a a a a a a ---=-+-++-+(1)22(1)2222(1)2n n n n n n +=+-++⨯+=⨯=+ 且当1n =时 12a =也成立 所以()1n a n n =+ 所以202111120212021()(1)1n a n n n n =⨯=-++ 所以122021202120212021111112021[(1)()()]22320212022a a a +++=-+-++- 120212021(1)2021(2020,2021)20222022=-=⨯∈所以1220212021202120212020a a a ⎡⎤+++=⎢⎥⎣⎦. 故答案为:2020.15.已知椭圆 22221(0)x y C a b a b+=>>:的左右焦点为12,F F .直线y kx =与椭圆C 相交于,P Q 两点 若112PF QF = 且12π3PFQ ∠= ,则椭圆C 的离心率为. 【分析】由椭圆的对称性可得四边形12PFQF 为平行四边形 再根据椭圆的定义求出12,PF PF 再在12PF F △中 利用余弦定理求出,a c 的关系即可得解.【详解】由椭圆的对称性可得四边形12PFQF 为平行四边形,则21PF QF =由12π3PFQ ∠= 得12π3F PF ∠= 因为112PF QF = 所以122PF PF = 又122PF PF a += 所以1242,33a aPF PF == 在12PF F △中 由余弦定理得222121212122cos F F PF PF PF PF F PF =+-∠ 即2222164421442993323a a a a ac =+-⨯⨯⨯=所以c a =即椭圆的离心率c e a ==16.已知A M N 是棱长为1的正方体表面上不同的三点,则·AM AN 的取值范围是 . 【答案】1,32⎡⎤-⎢⎥⎣⎦【分析】根据正方体的性质可得·3cos ,a AM AN AM AN =≤结合夹角的定义可得3a ≤ 可得其最大值 根据数量积的运算可知24≥-MN a 可得其最小值.【详解】正方体表面上任意两点间距不超过体对角线长度d 则,AM AN d ≤ 故·3cos ,a AM AN AM AN =≤ 而[]cos ,1,1AM AN ∈- 故3a ≤如图建立空间直角坐标系 取()0,0,0A ,M N 重合为()1,1,1时 则()()1,1,11,1,13a =⋅= 取得最大值3由对称性 设A 在下底面 (),,AM x y z = (),,AN a b c =由A 在下底面知0,0,0z c zc ≥≥≥ 当且仅当,M N 也在下底面时取等 此时,,A M N 共面时 设MN 中点为E ,则EM EN =-()()()()()2222··4MN a AM AN AE EM AE EN AE EN EN==++=-≥-=-当且仅当,A E 重合时取等又因为2MN ≤ 可得2142-≥-≥a MN 例如11,,022A ⎛⎫ ⎪⎝⎭ ()()1,0,0,0,1,0M N ,则11111·,,0,,022222a AM AN ⎛⎫⎛⎫==--=- ⎪⎪⎝⎭⎝⎭所以·AM AN 的取值范围是1,32⎡⎤-⎢⎥⎣⎦. 故答案为:1,32⎡⎤-⎢⎥⎣⎦.四 解答题(共70分)17.(本题10分)如图 在ABC 中 6AB AC == 点D 是边BC 上一点且,cos AD AB CAD ∠⊥=2AE EB =(1)求BCE 的面积 (2)求线段AD 的长. 【答案】(1)(2)=AD【分析】(1)根据13BCE ABC S S =△△求解即可(2)解法1:在ABC 中根据余弦定理求出BC 结合等腰三角形的性质求cos B 在ABD △中勾股定理求AD 即可 解法2:由A BCABDACDSSS=+求得AD .【详解】(1)12,3BCEABCAE EB SS =∴=而11πsin 66sin 222ABCSAB AC BAC CAD ⎛⎫=⋅⋅∠=⨯⨯⨯∠+ ⎪⎝⎭ 18cos 18CAD =∠== 1423BCEABCSS ∴==(2)解法1:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠= π1cos cos sin 23CAB CAD CAD ⎛⎫∴∠=∠+=-∠=- ⎪⎝⎭在ABC 中 22212cos 3636266963BC AB AC AB AC CAB ⎛⎫=+-⋅⋅∠=+-⨯⨯⨯-= ⎪⎝⎭BC ∴=∴在等腰ABC 中12cos BCB BA ==∴Rt ABD △中6cos ,BA BBD BD BD===∴=AD ∴==解法2:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠== 由A BCABDACDSSS=+得1166sin 22AD AD CAD =⨯⨯+⨯⨯⋅∠,即()11166223AD AD =⨯⋅+⋅⋅⋅解得=AD18.(本题12分)已知数列{}n a 的前n 项和为n S 11a = 且满足()()11112n n n S nS n n ++=-+.(1)求数列{}n a 的通项公式(2)设()23cos πn a n n b a n =+⋅ 求数列{}n b 的前n 项和n T .【答案】(1)n a n =(2)()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数【分析】(1)利用构造法和等差数列的定义与通项公式可得()12n n n S +=结合1n n n a S S -=-即可求解(2)由(1)知()()213nnn b n =-+- 利用分组求和法计算即可求解. 【详解】(1)根据题意 ()()11112n n n S nS n n ++=-+ 所以1112n n S S n n +-=+由于1111S a ==,则n S n ⎧⎫⎨⎬⎩⎭是以首项为1 公差为12的等差数列所以()111122n S n n n +=+-⨯= 所以()12n n n S += 当2n ≥时 1(1)(1)22n n n n n n na S S n -+-=-=-=. 验证1n =时11a =满足通项公式 故数列{}n a 的通项公式为n a n =.(2)由(1)知()()()223cos π13n n na n nb a n n =+⋅=-+-.设()21nn -的前n 项和为n A ,则当n 为偶数时 ()22222212341n A n n =-+-+-⋅⋅⋅--+()()()()()()2121434311n n n n ⎡⎤⎡⎤=-++-++⋅⋅⋅+--+-⎣⎦⎣⎦ ()()1123412n n n n +=++++⋅⋅⋅+-+=. 当n 为奇数时 ()()2211122n n n n n n A A n n --+=-=-=-设()3n-的前n 项和为n B ,则()()()131333134nn nB +⎡⎤-⋅-----⎣⎦==+. 因为=+n n n T A B 所以()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数 19.(本题12分)如图 在四棱锥P ABCD -中 PAD 为等边三角形 AD CD ⊥ //AD BC 且22AD BC ==CD =PB = E 为AD 中点.(1)求证:平面PAD ⊥平面ABCD(2)若线段PC 上存在点Q 使得二面角Q BE C --的大小为60︒ 求CQCP的值. 【答案】(1)证明见解析 (2)12【分析】(1)首先连接PE 根据线面垂直的判定定理证明PE ⊥平面ABCD 再利用面面垂直的判定定理证明平面PAD ⊥平面ABCD . (2)设()01CQ CP λλ=≤≤,再利用向量法求二面角Q BE C --的平面角 再列方程得到12λ= 即得CQCP 的值.【详解】(1)证明:连接PEPAD 是边长为2的等边三角形 E 是AD 的中点PE AD ⊥∴PE =//DE BC DE BC = AD CD ⊥ ∴四边形BCDE 是矩形BE CD ∴==222PE BE PB ∴+= PE BE ∴⊥又AD BE E = AD BE ⊂平面ABCDPE ∴⊥平面ABCD又PE ⊂平面PAD∴平面PAD ⊥平面ABCD .(2)以E 为原点 以EA EB EP 为坐标轴建立空间直角坐标系 如图所示:则(00P()C -()0B ()0,0,0E ()0EB ∴=, ()100BC =-,,(1CP = 设()01CQCPλλ=≤≤则()1BQ BC CQ BC CP λλ=+=+=- 设平面QBE 的法向量为(),,m x y z =则00m EB m BQ ⎧⋅=⎪⎨⋅=⎪⎩即()010x y z λ⎧=⎪⎨-=⎪⎩,,令1z = 得()301m λλ=-,,又PE ⊥平面ABCD()001n ∴=,,为平面BEC 的一个法向量cos 3m n m n m nλ⋅∴==,二面角Q BE C --的大小为60︒12= 解得12λ=. 12CQ CP ∴=. 20.(本题12分)2023年秋末冬初 呼和浩特市发生了流感疾病. 为了彻底击败病毒 人们更加讲究卫生讲究环保. 某学校开展组织学生参加线上环保知识竞赛活动 现从中抽取200名学生 记录他们的首轮竞赛成绩并作出如图所示的频率直方图 根据图形 请回答下列问题:(1)若从成绩低于60分的同学中按分层抽样方法抽取5人成绩 求5人中成绩低于50分的人数 (2)以样本估计总体 利用组中值估计该校学生首轮竞赛成绩的平均数(3)首轮竞赛成绩位列前10%的学生入围第二轮的复赛 请根据图中信息 估计入围复赛的成绩(记为K ). 【答案】(1)2人 (2)71 (3)88K ≥【分析】(1)利用分层抽样的定义求解即可 (2)利用平均数公式求解即可(3)根据题意设入围复赛的成绩的临界值为[)80,90K ∈,则()900.0250.050.1K -⨯+= 求出K 的值即可. 【详解】(1)成绩在[)40,50的人数为0.011020020⨯⨯=(人) 成绩在[)50,60的人数为0.0151020030⨯⨯=(人) 则按分层抽样方法从成绩低于60分的同学中抽取5人成绩低于50分的人数为20522030⨯=+(人). 故5人中成绩低于50分的人数为2人(2)由()0.010.0150.0150.0250.005101a +++++⨯= 得0.030a = 则平均数450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=故该校学生首轮竞赛成绩的平均数约为71分(3)根据频率分布直方图可知:[]90,100的频率为0.005100.05⨯= [)80,90的频率为0.025100.25⨯=所以入围复赛的成绩一定在[)80,90可知入围复赛的成绩的临界值为[)80,90K ∈则()900.0250.050.1K -⨯+= 解得88K =故估计入围复赛的成绩为88K ≥分.21.(本题12分)已知椭圆2222:1(0)x y C a b a b +=>> 斜率为2的直线l 与x 轴交于点M l 与C 交于A B 两点 D 是A 关于y 轴的对称点.当M 与原点O 重合时 ABD △面积为169. (1)求C 的方程(2)当M 异于O 点时 记直线BD 与y 轴交于点N 求OMN 周长的最小值.【答案】(1)22142x y += (2)2【分析】(1)设出各点坐标 表示出面积后 结合面积与离心率计算即可得(2)要求OMN 的周长,则需把各边长一一算出 即需把M x N y 算出 设出直线方程与椭圆方程联立得与横坐标有关韦达定理 借助韦达定理表示出M x N y 可得OMN 各边边长 结合基本不等式即可求得最值.【详解】(1)当M 与原点O 重合时 可设()00,A x y ,则有()00,B x y -- ()00,D x y -且002y x = 即有AD BD ⊥, 则()()00001116229ABD S AD BD x x y y =⋅=++=即201649x = 又00x > 故023x =,则043y = 即有22416199a b +=即c a =则22222a c b c ==+ 故222a b = 即有224161189b b += 解得22b = 故24a = 即C 的方程为22142x y +=(2)设直线l 方程为2y x t =+ 令0y = 有2t x =- 即2M t x =- 设点()11,A x y ()22,B x y ,则()11,D x y - 联立直线与椭圆方程:222142y x t x y =+⎧⎪⎨+=⎪⎩ 消去y 有2298240x tx t ++-= ()222Δ64362414480t t t =--=->即t -<有1289t x x -+= 212249t x x -= BD l 为()122212y y y x x y x x -=-+-- 令0x = 故21222122122221122121212N x y x y x y x y x y x y x y x y y y x x x x x x -+-+++=+==--++ 由2y x t =+ 故()()2112211212121212224x x t x x t x y x y x x t x x x x x x ++++==++++ 其中2121224198429t x x t t x x t -==-+-+ 即12442N t y t t t ⎛⎫=-++= ⎪⎝⎭则22OMN N M t C y x t =+=+2≥=当且仅当2t =±时等号成立故OMN周长的最小值为2+【点睛】本题考查了椭圆的方程 在求解直线与椭圆的位置关系问题时 常用方法是设而不求 借助韦达定理等手段 将多变量问题转变为单变量问题 再用基本不等式或函数方式求取范围或最值.22.(本题12分)已知函数21()ln 2f x x x ax =+-. (1)当12a =时 求在曲线()y f x =上的点(1,(1))f 处的切线方程 (2)讨论函数()f x 的单调性(3)若()f x 有两个极值点1x 2x 证明:()()121222f x f x a x x -<--. 【答案】(1)3230x y --=(2)详见解析(3)详见解析.【分析】(1)根据导数的几何意义求出(2)求出导函数()1(0)f x x a x x '=+-> 在定义域()0,∞+内分类讨论解含参不等式即可求出 (3)由题意得2a > 12x x a += 121=x x 而()()1212f x f x x x --1212ln ln 12x x a x x -=-- 只需证明1212ln ln 2x x x x -<- 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭ 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立即可. 【详解】(1)由题可知 当12a =时 211()ln 22f x x x x =+- ()112f x x x ∴=+-' ∴(1)0f = 3(1)2f '= ∴切点为(1,0) 切线的斜率为32 ∴切线方程为:30(1)2y x -=- 即3230x y --=(2)对函数()f x 求导可得 ()1(0)f x x a x x '=+->. 当2a ≤时 ()120f x x a a x=+-≥-≥'.则()f x 在(0,)+∞上单调递增. 当2a >时 ()2110x ax f x x a x x -+=+-=='.则1x =2x = 令()0f x '>,则10x x << 或2x x >.()0f x '<,则12x x x <<综上:当2a ≤时 ()f x 在(0,)+∞上单调递增当2a >时 ()f x在⎛ ⎝⎭和∞⎫+⎪⎪⎝⎭上单调递增 ()f x在⎝⎭上单调递减. (3)()f x 有两个极值1x 2x1x ∴ 2x 是方程210x ax -+=的两个不等实根则2a > 12x x a += 121=x x()()2211122212121211ln ln 22x x ax x x ax f x f x x x x x ⎛⎫+--+- ⎪-⎝⎭=-- ()()()121212*********ln ln ln ln 122x x x x x x a x x x x a a x x x x -+-+---==+--- 1212ln ln 12x x a x x -=--. 要证:()()121222f x f x a x x -<--.即证:1212ln ln 2x x x x -<-. 不妨设1210x x >>> 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭. 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立. 令1()ln f x x x x =-+ (1)x >.则()22211110x x f x x x x -+=--=-<'. 从而()f x 在(1,)+∞上单调递减 故()(1)0f x f <=.所以()()121222f x f x a x x -<--.【点睛】本题考查了切线方程问题考查函数的单调性问题考查导数的应用以及分类讨论思想训练了构造函数法证明不等式的成立属难题.。
高二数学下学期期中考试试卷含答案高二下学期数学期中考试试卷(含答案)时量:120分钟满分:150分一、选择题(共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.已知全集 $U=R$,集合 $M=\{x|x<1\}$,$N=\{y|y=2x,x\in R\}$,则集合 $\complement_U (M\cup N)$ =()A。
$(-\infty。
-1]\cup [2,+\infty)$B。
$(-1,+\infty)$C。
$(-\infty,1]$D。
$(-\infty,2)$2.曲线 $f(x)=2x-x^2+1$ 在 $x=1$ 处的切线方程为()A。
$5x-y-3=0$B。
$5x-y+3=0$C。
$3x-y-1=0$D。
$3x-y+1=0$3.已知函数 $f(x)=\sin(\omegax+\frac{\pi}{3})(\omega>0,0<\frac{\pi}{3}<\omega<\frac{\pi}{2 })$ 的图象与直线 $y=1$ 的交点中相邻两点之间的距离为$2\pi$,且函数 $f(x)$ 的图象经过点 $(\frac{\pi}{6},0)$,则函数 $f(x)$ 的图象的一条对称轴方程可以为()A。
$x=\frac{\pi}{6}$B。
$x=\frac{\pi}{4}$C。
$x=\frac{\pi}{3}$D。
$x=\frac{\pi}{2}$4.函数 $f(x)=\frac{e^x-1}{x(x-3)}$ 的图象大致是()A.图略]B.图略]C.图略]D.图略]5.在 $\triangle ABC$ 中,角 $A,B,C$ 的对边分别为$a,b,c$,$C=120^\circ$,若 $b(1-\cos A)=a(1-\cos B)$,则$A=$()A。
$90^\circ$B。
$60^\circ$C。
$45^\circ$D。
A .无极大值点()g x C .在上单调递增()g x ()0,∞+8.已知集合{N U x =∈后利用分类加法原理可求得结果.【详解】若报考三所高校的人数为3:1:1,则不同的报考方法有种.1333C A 18=若报考三所高校的人数为2:2:1,则不同的报考方法有种.233318C A =故这五名学生不同的报考方法共有36种. 故选:D 6.A【分析】由于,利用二项式定理将其展开,由于246被3整除,从而()202320232452461=-可求出结果.【详解】.()()()()20231202320232202312022202302023202320232452461C 2461C 2461C 2461=-=-+-+⋅⋅⋅+-因为246被3整除,所以被3除的余数为. 2023245132-+=故选:A 7.D【分析】由导函数的图象结合函数,可得出的单调性和极值可()f x '()()2g x f x x =-()g x 判断ACD ;的零点个数不能准确判断,可判断B. ()g x 【详解】如图,绘制函数的图象,2y x =可知当时,,所以函数在上单调递减. ()1,x ∈+∞()()20g x f x x ''=-<()g x ()1,+∞由图可知,,,00x ∃<()00g x '=当时,,单调递减, ()0,x x ∈-∞()()20g x f x x ''=-<()g x 当时,,单调递增,()0,1x x ∈()0g x '>()g x 故是函数的极大值点,的零点个数不能准确判断. 1x =()g x ()g x 故选:D.8.Ca b cÎ【分析】设,,种情况讨论求解即可.a b cÎ【详解】设,,a c所以,同为奇数或同为偶数.220x ax a +-=由,可知有两个非零实根, 222450a a a ∆=+=>220x ax a +-=故有3个零点,A 正确.()f x 由,得.因为, ()0f x '=22320x ax a +-=222412160a a a ∆=+=>所以恰有2个零点,且在这两个零点周围的符号发生改变, ()f x '()f x '所以有2个极值点,B 正确.()f x 因为是二次函数,所以不可能是增函数,C 不正确.()2232f x x ax a =+-'()f x '若为增函数,则恒成立,则,解得,D 正确. ()f x ()0f x '≥224120a a +≤0a =故选:ABD 11.ACD【分析】令,求得,可判定A 正确;化简二项式为0x =064a =,求得其展开式为,结()()3322432222(4)xx x x x ++-+=+481234644812(4)x x x x +=+++合选项B 、C 、D ,逐项判定,即可求解.【详解】由,()()3322212012122222x x x x a a x a x a x ++-+=++++ 令,可得,所以A 正确;0x =3302264a =⨯=又由()()()()333322222224322222222(2)(2)(4)x x x x x x x x x x x ⎡⎤⎡⎤++-+=++⋅-+=+-=+⎣⎦⎣⎦,根据二项展开式可得:,43034012412242304333481233(4)C 4()C 4()C 4()C 4()644812x x x x x x x x +=⋅⋅+⋅⋅+⋅⋅+=+++⋅⋅由,可得,所以B 不正确; 2580,0,12a a a ===25812a a a ++=由,可得,所以C 正确;3690,0,0a a a ===3690a a a ++=由,可得,所以D 正确. 04812,48,12,641a a a a ====04812125a a a a +++=故选:ACD. 12.ABC【分析】先对不等式变形得,发现是与双变量之间的关系,然0m n k -+<k n m <-k ,n m。
北京市2023~2024学年第二学期高二数学期中测试(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1页至第2页;第Ⅱ卷第2页至第6页,答题纸第1页至第3页.共150分,考试时间120分钟.请在答题纸上侧密封线内书写班级、姓名、准考证号.考试结束后,将本试卷的答题纸交回.第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.)1.函数1()f x x =在3x =处的瞬时变化率为()A.3- B.9- C.13-D.19-【答案】D 【解析】【分析】根据给定条件,求出函数()f x 在3x =处的导数值即得.【详解】由1()f x x =,求导得21()f x x'=-,所以1(3)9f '=-.故选:D2.设函数()y f x =的导函数图象如图所示,则()f x 的解析式可能是()A.()exf x = B.()ln f x x=C.()e xf x x =⋅ D.()ln f x x x=⋅【答案】D 【解析】【分析】由图象可得导函数的定义域及单调性,再逐项求导并判断得解.【详解】观察图象知,函数()y f x =的导函数定义域为(0,)+∞,且在(0,)+∞上单调递增,有一个正零点,对于A ,()e x f x '=,其定义域为R ,无零点,不符合题意,A 不是;对于B ,()ln f x x =定义域为(0,)+∞,求导得1()f x x'=,函数()f x '在(0,)+∞上单调递减,不符合题意,B 不是;对于C ,()(1)e x f x x '=+定义域为R ,而零点为1-,不符合题意,C 不是;对于D ,函数()ln f x x x =⋅定义域为(0,)+∞,()1ln f x x '=+在(0,)+∞上单调递增,有唯一零点1ex =,符合题意,D 是.故选:D3.设ξ的分布列如表所示,又设25ηξ=+,则()E η等于()ξ1234P16161313A.76B.176C.173D.323【答案】D 【解析】【分析】根据分布列求出()E ξ,再根据期望的性质计算可得.【详解】解:依题意可得111117()123466336E ξ=⨯+⨯+⨯+⨯=,所以1732()(25)2()52563E E E ηξξ=+=+=⨯+=.故选:D .4.已知函数()sin cos f x x x =+,()f x '为()f x 的导函数,则()A.()()2sin f x f x x '+=B.()()2cos f x f x x '+=C.()()2sin f x f x x -'-=D.()()2cos f x f x x-'-=【答案】B 【解析】【分析】根据基本初等函数的求导公式结合导数的加法运算法则即可得出答案.【详解】解:因为()sin cos f x x x =+,所以()cos sin f x x x '=-,所以()()2cos f x f x x '+=,()()2sin f x f x x '-=.故选:B.5.从1,2,3,4,5中不放回地抽取2个数,则在第1次抽到偶数的条件下,第2次抽到奇数的概率是()A.25B.12C.35D.34【答案】D 【解析】【分析】设事件i A 为“第i 次抽到偶数”,i =1,2,则所求概率为()()()12211n A A P A A n A =∣【详解】设事件i A 为“第i 次抽到偶数”,i =1,2,则事件“在第1次抽到偶数的条件下,第2次抽到奇数”的概率为:()()()1122321124111C C 3C C 4n A A P A A n A ===∣.故选:D.6.某校高二年级计划举办篮球比赛,采用抽签的方式把全年级10个班分为甲、乙两组,每组5个班,则高二(1)班、高二(2)班恰好都在甲组的概率是()A.14B.29C.49D.12【答案】B 【解析】【分析】利用概率的古典概型计算公式结合组合的应用即可求得结果.【详解】易知将10个班分为甲、乙两组共有510C 种分组方式,其中高二(1)班、高二(2)班恰好都在甲组的情况共有38C 种,所以高二(1)班、高二(2)班恰好都在甲组的概率是38510C 2C 9P ==.故选:B7.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A.0.648B.0.432C.0.36D.0.312【解析】【详解】试题分析:该同学通过测试的概率为,故选A .考点:次独立重复试验.8.设函数()324f xax bx x =++的极小值为-8,其导函数()y f x ='的图象过点(-2,0),如图所示,则()f x =()A.32243x x x --+ B.3224x x x --+C.34x x -+ D.3224x x x-++【答案】B 【解析】【分析】由题设2()324f x ax bx '=++,根据所过的点可得31b a =+,结合图象求出极小值点并代入()f x 求参数,即可得解析式,注意验证所得参数是否符合题设.【详解】由题设,2()324f x ax bx '=++,则(2)12440f a b '-=-+=,故31b a =+,所以2()32(31)4(32)(2)f x ax a x ax x '=+++=++,令()0f x '=,可得2x =-或23x a=-,由图知:a<0且2x =-处有极小值,所以8488a b -+-=-,即1a =-,2b =-,经验证满足题设,故32()24f x x x x =--+.故选:B9.一道考题有4个答案,要求学生将其中的一个正确答案选择出来.某考生知道正确答案的概率为13,而乱猜时,4个答案都有机会被他选择,则他答对正确答案的概率是()A.13B.512C.12D.712【答案】C【分析】依题意分两种情况对答对正确答案进行讨论,再利用全概率公式计算可得结论.【详解】根据题意可设“知道正确答案”为事件A ,“他答对正确答案”为事件B ;易知()()13P AB P A ==;而()()()()6141123P AB P A P B =-=⨯=;因此他答对正确答案的概率是()()()216131P B P AB P AB =+=+=.故选:C10.设P 为曲线e x y =上一点,Q 为曲线ln y x =上一点,则|PQ |的最小值为()A.2B.1C.D.2【答案】C 【解析】【分析】由导数求出两曲线的切线【详解】e x y =,e x y '=,0x =时,1y '=,1y =,所以1y x =+是e x y =图象的一条切线,切点为(0,1),ln y x =,1y x'=,1x =时,1y '=,0y =,所以1y x =-是ln y x =的图象的一条切线,切点为(1,0),10101k -==--,这两条切线平行,两切点连线恰好与切线垂直,|PQ |的最小值即为两切点间的距离.所以min PQ =,故选:C .第Ⅱ卷(非选择题共110分)二、填空题(本大题共5小题,每小题5分,共25分.)11.设函数()ln xf x x=,则(1)f '=___.【答案】1【解析】【分析】求出函数的导函数,代入计算可得;【详解】解:因为()ln x f x x =,所以()21ln x f x x -'=,所以()21ln1111f -'==;故答案为:112.某不透明纸箱中共有8个小球,其中2个白球,6个红球,它们除颜色外均相同.一次性从纸箱中摸出4个小球,摸出红球个数为X ,则()E X =______.【答案】3【解析】【分析】根据给定条件,可得X 服从超几何分布,再利用超几何分布的期望公式计算即得.【详解】依题意,摸出红球个数X 服从超几何分布,63,484p n ===,所以()3==E X np .故答案为:313.已知随机变量X 的分布列如下:X012Pp0.6若() 1.2E X =,则p =______;当p =______时,()D X 最大.【答案】①.0.1##110②.0.2##15【解析】【分析】根据给定条件,利用分布列的性质,期望公式计算得p 值;利用方差与期望的关系建立关于p 的函数,探讨函数的最大值即可.【详解】由() 1.2E X =,得010.62(0.4) 1.2p p ⨯+⨯+⨯-=,因此0.1p =;依题意,() 1.42E X p =-,2222()010.62(0.4) 2.24E X p p p =⨯+⨯+⨯-=-,因此()()()()()()2222 2.24 1.4240.20.4D X E X E Xp p p =-=---=--+,则当0.2p =时,()D X 取得最大值.故答案为:0.1;0.214.李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型231m x =-+.若要使这次促销活动获利最多,则广告费用x 应投入_______万元.【答案】3【解析】【分析】设李明获得的利润为()f x 万元,求出()f x 关于x 的表达式,利用基本不等式可求得()f x 的最小值及其对应的x 的值.【详解】设李明获得的利润为()f x 万元,则0x ≥,则()()2161688324251252111f x m x x x x x x x ⎛⎫⎡⎤=-=--=--=-+≤- ⎪⎢⎥+++⎝⎭⎣⎦25817=-=,当且仅当1611x x +=+,因为0x ≥,即当3x =时,等号成立.故答案为:3.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.函数()e ln kxf x x =⋅(k 为常数)的图象可能为______.(选出所有可能的选项)①②③④【答案】①②③【解析】【分析】求导可得()1e ln kxf x k x x ⎛⎫=+⎪⎝⎭',并构造函数()1ln g x k x x=+,对参数k 的取值进行分类讨论并得出函数()g x 的最值,进而求得函数()f x 的单调性,即可求得结论.【详解】易知函数()e ln kxf x x =⋅的定义域为()0,∞+,则()1e ln kxf x k x x ⎛⎫=+⎪⎝⎭',令()1ln g x k x x =+,可得()2211k kx g x x x x='-=-;显然当0k =时,()ln f x x =,没有对应函数图象;因此0k ≠,当0k <时,易知()210kx g x x -'=<在()0,∞+恒成立,可知()1ln g x k x x=+在()0,∞+上单调递减,易知()110g =>,即()10f '>;当x 趋近于+∞时,()1ln g x k x x=+趋近于-∞;即存在()01,x ∞∈+,使得()00g x =,也即()00f x '=;所以当()00,x x ∈时,()00f x '>,此时()f x 单调递增,当()0,x x ∞∈+时,()00f x '<,此时()f x 单调递减,又易知()10f =,且1x >时()0f x >,1x <时()0f x <,此时图象可能为③;当0k >时,令()210kx g x x -'==,解得1x k=;当10,x k ⎛⎫∈ ⎪⎝⎭时,()0g x '<,此时()g x 在10,k ⎛⎫⎪⎝⎭上单调递减;当1,x k ∞⎛⎫∈+⎪⎝⎭时,()0g x '>,此时()g x 在1,k ∞⎛⎫+ ⎪⎝⎭上单调递增;即()()min 11ln 1ln g x g k k k k k k ⎛⎫==+=-⎪⎝⎭,若0e k <≤时,()()min 1ln 0g x k k =-≥,即()1e ln 0kxf x k x x ⎛⎫=+≥ ⎪⎝⎭'恒成立,此时函数()f x 单调递增,且()10f =,此时图象可能为①;若e k >时,()()min 1ln 0g x k k =-<,即存在两个实数根12,x x ,且()12,0,1x x ∈满足()1ln 0g x k x x=+=,不妨取()120,1x x <∈,因此可得当()10,x x ∈时,()0g x '>,此时()g x 在()10,x 上单调递增;当()12,x x x ∈时,()0g x '<,此时()g x 在()12,x x 上单调递减;当()2,x x ∞∈+时,()0g x '>,此时()g x 在()2,x ∞+上单调递增;且()10f =,因此图象可能为②.由于()0f x =时,1x =,函数不可能有2个零点,故④不可能,故答案为:①②③【点睛】关键点点睛:本题关键在于对函数()f x 求导,构造函数并对参数k 的取值进行分类讨论,进而得出函数单调性即可得出结论.三、解答题:(本大题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.)16.已知函数32()324f x x x x=+-(1)求()f x 的图象在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间.【答案】(1)1550x y ++=;(2)单调递增区间是(,4),(2,)-∞-+∞,单调递减区间是(4,2)-.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程即得.(2)由(1)的导函数,解导函数大于0,小于0的不等式即可.【小问1详解】函数32()324f x x x x =+-,求导得2()3624f x x x '=+-,则(1)15f '=-,而(1)20f =-,所以()f x 的图象在点(1,(1))f 处的切线方程为2015(1)y x +=--,即1550x y ++=.【小问2详解】函数32()324f x x x x =+-的定义域为R ,由(1)得)()34((2)f x x x +'=-,由()0f x '>,得<4x -或2x >,由()0f x '<,得42x -<<,所以函数()f x 的单调递增区间是(,4),(2,)-∞-+∞,单调递减区间是(4,2)-.17.某地区组织所有高一学生参加了“科技的力量”主题知识竟答活动,根据答题得分情况评选出一二三等奖若干,为了解不同性别学生的获奖情况,从该地区随机抽取了500名参加活动的高一学生,获奖情况统计结果如下:性别人数获奖人数一等奖二等奖三等奖男生200101515女生300252540假设所有学生的获奖情况相互独立.(1)分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;(2)用频率估计概率,从该地区高一男生中随机抽取1名,从该地区高一女生中随机抽取1名,以X 表示这2名学生中获奖的人数,求X 的分布列和数学期望EX ;(3)用频率估计概率,从该地区高一学生中随机抽取1名,设抽到的学生获奖的概率为0p ;从该地区高一男生中随机抽取1名,设抽到的学生获奖的概率为1p ;从该地区高一女生中随机抽取1名,设抽到的学生获奖的概率为2p ,试比较0p 与122p p +的大小.(结论不要求证明)【答案】(1)1240(2)分布列见解析,期望12EX =(3)1202p p p +>【解析】【分析】(1)直接计算概率11102511200300C C ()C C P A =;(2)X 的所有可能取值为0,1,2,求出高一男生获奖概率和高一女生获奖概率,再计算概率得到分布列,最后计算期望即可;(3)计算出01350p =,12124p p +=,比较大小即可.【小问1详解】设事件A 为“分别从上述200名男生和300名女生中各随机抽取1名,抽到的2名学生都获一等奖”,则11102511200300C C 1()C C 240P A ==,【小问2详解】随机变量X 的所有可能取值为0,1,2.记事件B 为“从该地区高一男生中随机抽取1名,该学生获奖”,事件C 为“从该地区高一女生中随机抽取1名,该学生获奖”.由题设知,事件B ,C 相互独立,且()P B 估计为1015151,()2005P C ++=估计为252540330010++=.所以1328(0)()()()1151050P X P BC P B P C ⎛⎫⎛⎫====-⨯-= ⎪ ⎪⎝⎭⎝⎭,131319(1)()()()()()1151051050P X P BC BC P B P C P B P C ⎛⎫⎛⎫==⋃=+=⨯-+-⨯=⎪ ⎪⎝⎭⎝⎭,133(2)()()()51050P X P BC P B P C ====⨯=.所以X 的分布列为X012P28501950350故X 的数学期望()2819310125050502E X =⨯+⨯+⨯=【小问3详解】1202p p p +>,理由:根据频率估计概率得04090135250050200p +===,由(2)知115p =,2310p =,故1213150510224200p p ++===,则1202p p p +>.18.为了解甲、乙两厂的产品质量,从甲、乙两厂生产的产品中分别抽取了几件测量产品中的微量元素x 的含量(单位:毫克).规定微量元素x 的含量满足:160170x ≤<(单位:毫克)为优质品.甲企业的样本频率分布直方图和乙企业的样本频数分布表如下:含量频数[)150,1551[)155,1602[)160,1654[)165,1702[]170,1751(1)从乙厂抽取的产品中随机抽取2件,求抽取的2件产品中优质品数ξ的分布列及其数学期望;(2)从甲乙两厂的产品中各随机抽取2件,求其中优质品数之和为2的概率;(3)在(2)的条件下,写出甲乙两厂的优质品数之和η的数学期望.(结论不要求证明)【答案】(1)分布列见解析,65(2)37100;(3)115.【解析】【分析】(1)求出ξ的可能值及对应的概率,列出分布列并求出数学期望.(2)利用频率估计概率,求出甲乙厂产品中优质品率,再分别求出抽出的2件产品中优质品数的概率,进而求出优质品数和为2的概率.(3)由(2)的信息求出η的分布列及数学期望.【小问1详解】乙厂抽取的10件产品中优质品数有6件,ξ的可能取值为0,1,2,11224664222101010C C C C 281(0),(1),(0)C 15C 15C 3P P P ξξξ=========,所以ξ的分布列为:ξ012P21581513数学期望为2816()012151535E ξ=⨯+⨯+⨯=.【小问2详解】记甲乙两厂的优质品数分别为,X Y ,由样本频率估计:甲厂产品中优质品率为12,乙厂产品中优质品率为35,21221111111(0)(1),(1)C (1),(2)()2422224P X P X P X ==-===⋅⋅-====,()212234331239(0)(1),(1)C (1,2(5255525525P Y P Y P Y ==-===⋅⋅-====,(2)(0,2)(1,1)(2,0)P X Y P X Y P X Y P X Y +====+==+==191121437425225425100=⨯+⨯+⨯=,所以优质品数之和为2的概率为37100.【小问3详解】由(2)知,η的可能值为0,1,2,3,4,14111214137(0),(1),(2)425254252255100P P P ηηη==⨯===⨯+⨯===,191123199(3),(4)22542510425100P P ηη==⨯+⨯===⨯=,所以η的数学期望11373911()01234255100101005E η=⨯+⨯+⨯+⨯+⨯=.19.已知函数()1e xaxf x +=(1)当13a =-时,求()f x 的极值;判断此时()f x 是否有最值,如果有请写出最值(结论不要求证明)(2)若()f x 是单调函数,求a 的取值范围.【答案】(1)()f x 的极小值为413e -,无极大值;最小值为413e-,无最大值;(2){}0【解析】【分析】(1)求函数()f x 求导,代入13a =-得出函数()f x 在定义域内的单调性可得()f x 在4x =处取得极小值()4143e f =-,也是最小值;(2)对参数a 的取值范围进行分类讨论,得出不同情况下的单调性,满足()f x 是单调函数即可得出结论.【小问1详解】易知()f x 的定义域为R ,由()1exaxf x +=可得()()()2e 1e 1e e x xxxa ax a axf x -+--==',当13a =-时,()111433e 3ex xxx f x --+-==',令()0f x '=可得4x =;因此当(),4x ∞∈-时,()0f x '<,此时()f x 在(),4∞-上单调递减,当()4,x ∞∈+时,()0f x '>,此时()f x 在()4,∞+上单调递增,因此可得()f x 在4x =处取得极小值()4143ef =-;所以()f x 的极小值为413e -,无极大值;根据极值与最值得关系可得,此时()f x 在4x =处也取得最小值413e -,无最大值;【小问2详解】由(1)可知,()1e xa axf x '--=,显然当0a =时,()10ex f x '-=<恒成立,此时()f x 为R 上单调递减函数,满足题意;当0a ≠时,令()10e x a axf x --'==,解得1a x a-=;由一次函数1ax y a -=+-的性质可知,当0a >时,1ax y a -=+-为单调递减,若1,a x a ∞-⎛⎫∈- ⎪⎝⎭,()0f x '>,此时()f x 为1,a a ∞-⎛⎫- ⎪⎝⎭上单调递增函数;若1,a x a ∞-⎛⎫∈+⎪⎝⎭,()0f x '<,此时()f x 为1,a a ∞-⎛⎫+ ⎪⎝⎭上单调递减函数;显然此时()f x 不是单调函数,不满足题意;当a<0时,1ax y a -=+-为单调递增,若1,a x a ∞-⎛⎫∈- ⎪⎝⎭,()0f x '<,此时()f x 为1,a a ∞-⎛⎫- ⎪⎝⎭上单调递减函数;若1,a x a ∞-⎛⎫∈+⎪⎝⎭,()0f x '>,此时()f x 为1,a a ∞-⎛⎫+ ⎪⎝⎭上单调递增函数;显然此时()f x 不是单调函数,不满足题意;综上可知,0a =;即a 的取值范围为{}0.20.已知函数()(m )e ,x f x x m R =-∈,.(1)若2m =,求()f x 在区间[1,2]-上的最大值和最小值;(2)设()()=g x x f x ,求证:()g x 恰有2个极值点;(3)若[2,1]x ∀∈-,不等式e 2x k x ≥+恒成立,求k 的最小值.【答案】(1)()()max min e,0f x f x ==.(2)证明见解析(3)min ek =【解析】【分析】(1)求得()(1)e x f x x '=-,令()0f x '=,可得1x =,求得函数的单调区间,结合极值的概念与计算,即可求解;(2)求得2()[(2)]e x g x x m x m '=----,结合0∆>,得到方程2(2)0x m x m ---=有两个不同的根,结合极值点的定义,即可求解;(3)根据题意转化为[2,1]x ∀∈-,不等式2e x x k +≥恒成立,设2()xx h x +=e,利用导数求得函数()h x 的单调性与最大值,即可求解.【小问1详解】解:由函数()(2)e x f x x =-,可得()(1)e x f x x '=-,令()0f x '=,可得1x =,则()(),,x f x f x '的关系,如图下表:x1-(1,1)-1(1,2)2()f x '+0-()f x 3(1)ef -=极大值(1)ef =(2)0f =综上可得,函数max min ()(1),()(2)0f x f e f x f ====.【小问2详解】解:由函数2()()()x g x xf x mx x e ==-,可得22()(2)e [(2)]e x x g x mx x m x x m x m '=-+-=----,因为22(2)440m m m ∆=-+=+>,所以方程2(2)0x m x m ---=有两个不同的根,设为12,x x 且12x x <,则有x1()x -∞,1x 12()x x ,2x 2(,)x ∞+()g x '-0+0-()g x极小值极大值综上可得,函数()g x 恰有2个极值点.【小问3详解】解:因为e 0x >,所以[2,1]x ∀∈-,不等式2e xx k +≥恒成立,设2()xx h x +=e,可得2(2)(1)()x x x x e x e x h x e e -+--'==,所以()(),,x h x h x '的关系,如图下表:x 2-(2,1)--1-(1,1)-1()h x '+0-()h x (2)0h -= 极大值(1)eh -=3(1)eh =所以max ()(1)e k h x h ≥=-=,所以实数k 的最小值为e .【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.21.对任意正整数n ,记集合(){}121212,,,,,,,n nnn A a a a a a aa a a n =⋅⋅⋅⋅⋅⋅∈++⋅⋅⋅+=N ,(){}121212,,,,,,,2n n n n B b b b b b b b b b n =⋅⋅⋅⋅⋅⋅∈++⋅⋅⋅+=N .()12,,,n n a a a A α=⋅⋅⋅∈,()12,,,n n b b b B β=⋅⋅⋅∈,若对任意{}1,2,,i n ∈⋅⋅⋅都有i i a b ≤,则记αβ<.(1)写出集合2A 和2B ;(2)证明:对任意n A α∈,存在n B β∈,使得αβ<;(3)设集合(){},,,n nnS A B αβαβαβ=∈∈<.求证:nS中的元素个数是完全平方数.【答案】(1)()()(){}22,0,0,2,1,1A =,()()()()(){}24,0,3,1,2,2,1,3,0,4B =(2)证明见解析(3)证明见解析【解析】【分析】(1)根据集合n A 与n B 的定义,写出集合2A 和2B 即可;(2)任取()12,,,n n a a a A α=⋅⋅⋅∈,令()121,1,,1n a a a β=++⋅⋅⋅+,只需证明n B β∈,即可证明结论成立;(3)通过集合n A 、n B 、n S 的定义,说明满足条件的解对()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅与方程12n x x x n ++⋅⋅⋅+=的两解组成对()()()1212,,,,,,,n n a a a z z z ⋅⋅⋅⋅⋅⋅是一一对应的关系.进而证明n S 中的元素个数是完全平方数.【小问1详解】()()(){}22,0,0,2,1,1A =,()()()()(){}24,0,3,1,2,2,1,3,0,4B =【小问2详解】任取()12,,,n n a a a A α=⋅⋅⋅∈,令()121,1,,1n a a a β=++⋅⋅⋅+,则αβ<,同时1i a +∈N ,{}1,2,,i n ∈⋅⋅⋅且()1112n niii i a n an ==+=+=∑∑,则n B β∈,所以对任意n A α∈,存在n B β∈,使得αβ<;【小问3详解】设方程:12n x x x n ++⋅⋅⋅+=①,122n y y y n ++⋅⋅⋅+=②()12,,,n a a a ⋅⋅⋅是方程①的解,()12,,,n b b b ⋅⋅⋅是方程②的解;若()12,,,n a a a α=⋅⋅⋅,()12,,,n b b b β=⋅⋅⋅,αβ<,即()()()1212,,,,,,,nna a ab b b ⋅⋅⋅ 是一个满足条件的解对,令i i i z b a =-(1i =,2,…,n ),则122n z z z n n n ++⋅⋅⋅+=-=,则(1z ,2z ,…,n z )是方程①的解,即当()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅是满足条件的解对时,()()()1212,,,,,,,nna a a z z z ⋅⋅⋅⋅⋅⋅是方程①的一对解对;反之()()()1212,,,,,,,nna a a z z z ⋅⋅⋅⋅⋅⋅是方程①的解时,令i i i b a z =+,则()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅是满足条件的解对.即满足条件的解对()()()1212,,,,,,,nna a ab b b ⋅⋅⋅⋅⋅⋅与方程①的两解组成对()()()1212,,,,,,,nna a a z z z ⋅⋅⋅⋅⋅⋅是一一对应的关系.所以满足条件解对个数2m m m ⨯=,即n S 中的元素个数是完全平方数.。
北京市第六十六中学2010—2011学年第二学期期中检测
高二数学文科试卷
一、选择题(每题4分,共40分)
1. 亚运比赛中男女篮冠军争夺均是中韩对决,中国男篮胜出的概率是0.7,中国女篮胜出的概率是0.6,两场比赛是相互独立的,那么中国男女篮双双夺魁的概率是( )
A .0.42
B .0.65
C .0.68
D .0.45
2.计算2011i =( )
(A )1
(B )1- (C )i (D )i - 3.复数i b a z )1()1(22+-+=),(R b a ∈对应的点位于( )
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
8.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )
A 21x +
B 21x -
C 23x -
D 27x +
9.曲线34y x x =-在点(-1,-3)处的切线方程是
( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =-
10.设⎩⎨⎧<+≥-=)
10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A 10 B 11 C 12 D 13
二、填空题(每题4分,共20分)
11.完成下面的三段论:
大前提:互为共轭复数的乘积是实数;小前提:yi x +与yi x -是互为共轭复数 结 论:
12下列图形由单位正方形组成,请观察图1至图4的规律,按图示的规律画下去,第n -1个图的正方形个数为1-n a ,第n 个图的正方形个数为n a ,则n a -1-n a -=
13.等差数列{a n }前n 项和为S n ,则S 4,S 8—S 4,S 12-S 8,S 16-S 12成等差数列。
类比以上结论有:等比数列{b n }前n 项积为T n ,则T4, , ,12
16T T 成等比数列。
14. 若+∈R a a a a 4321,,,,有以下不等式成立:
21212a a a a ≥+,33213213a a a a a a ≥++,4432143214
a a a a a a a a ≥+++。
由此归纳一般结论是 。
15读下面的流程图,若输入的值为-5时,输出的结果是__________.
三、解答题(每题8分,共40分)
16. 若复数z=
i i a 213++(a ∈R ,i 为虚数单位位)是纯虚数,求z 表示的点与原点之间的距离。
17函数()(),
定义域为若R x f x a x a x f )(,6131)(22+-+-=求实数a 的取值范围。
18. 求函数1x 2x y --=的值域。
19数()()1
12)(,ln +-==x x x g x x f , 求证:在区间(1,+∞)上,()()图像的上方的图像在x g x f
20函数09)('),0(3
)(23=->+++=x x f a d cx bx x a x f 且方程的两个根分别为1,4。
(1)当的解析式;
过原点时,求且曲线)()(3x f x f y a == (2)若的取值范围)内无极值点,求,在(a x f ∞+∞-)(。
(此试卷无答案)。