求证:AF=CF.
分析:关键是条件
其中x 是某条线段.
1
2
= 的应用,通过作平行线,证明
= ,
证明:过点 D 作 DH∥AC,交 BF 于点 H,如图.
∵D 是 BC 的中点,
1
∴
=
= .
2
1
∵
= ,∴
=
.
2
1
又 ∵DH∥AF,∴
+
+
=
.
= (其中b+d+…+n≠0),那么
②合比性质:如果 = , 那么
③等比性质:如果 = = ⋯
++…+
= .
++…+
(5)线段的比与比例线段是既有区别又有联系的两个概念.线段的
比是对两条线段而言的,而比例线段是对四条线段而言的.线段的
虑把比例转移,过点C作CM∥EF,交AB于点M,交AD于点N,且BC的
中点为D,可以考虑补出一个平行四边形来证明.
证明:如图,过点C作CM∥EF,交AB于点M,交AD于点N.
∵AE=AF,∴AM=AC.
∵AD为△ABC的中线,∴BD=CD.
延长AD到点G,使得DG=AD,连接BG,CG,
则四边形ABGC为平行四边形.∴AB=GC.
要a,b,c互相平行,构成一组平行线,m与n可以平行,也可以相交,但它
们必须与已知的平行线a,b,c相交,即被平行线a,b,c所截.平行线的条
数还可以更多.