细菌纤维素的研究进展(DOC)
- 格式:doc
- 大小:46.50 KB
- 文档页数:9
复合细菌纤维素材料的研究进展摘要:细菌纤维素(BC)是一类由微生物合成的可降解环保型生物高分子材料。
近年来,国内外研究者致力于对BC进行生物和化学改性,研制出多种复合细菌纤维素材料。
复合细菌纤维素材料在一定程度上优化了BC的理化和生物学、材料学性能,拓宽了BC的应用范围和领域。
本文简要介绍细菌纤维素的性质和应用,并对发展前景进行展望。
关键词:细菌纤维素、复合、应用细菌纤维素(简称BC)是由微生物发酵合成的多孔性网状纳米级生物高分子聚合物,因其由细菌合成而命名为细菌纤维素。
目前已知的细菌纤维素生产菌属有醋杆菌属、无色杆菌属、假单胞菌属、根瘤菌属、八叠球菌属、气杆菌属、固氮菌属、土壤杆菌属和产碱杆菌属等,其中研究最多、合成能力最强、生产潜力最大的菌种是木醋杆菌。
BC的纤维直径在纳米范围内,其相互交错无序排列形成微纳米级的孔隙,为许多小分子进入提供了合适的空间。
以BC为模板,利用其纳米级的超细网络结构以及其表面大量的活泼羟基,通过化学修饰、材料复合等途径,可以赋予BC更多特殊性能。
一、细菌纤维素的特性1、1 纳米结构细菌纤维素具有独特的束状纤维,其宽度约100nm,厚度为3—8nm,单根细丝纤维直径为2—5nm,属于纳米级纤维,其大小为人工合成纤维的1/10,在纤维研究中是目前发现最细的天然纤维。
1、2 高持水性和高透气性细菌纤维素分子内有大量的亲水基团及很多孔道,因此具有良好的透气、透水和持水性能。
根据实验条件不同,细菌纤维素可吸收比自身干重大60—700倍的水分,细菌纤维素膜的持水性能为600%—1000%。
1、3 高抗张强度和弹性模量细菌纤维素因其分子内存在大量的氢键,而具有高杨氏模量,其经处理后,弹性模量可达1.5×109Pa,这一性能满足其作为医用敷料、医用组织器官及其他产品的要求。
细菌纤维素抗撕拉能力是同样厚度的聚乙烯和聚氯乙烯膜的6倍,证明了细菌纤维素膜比人类的动脉和静脉更有弹性。
﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡关于细菌纤维素研究现状的综述院系: 材料科学与工程学院 材料0707班姓名: 秦 伟学号: 20070236指导教师: 彭碧辉 老师细菌纤维素研究现状[摘要]: 本文从细菌纤维素的合成入手,列举了细菌纤维素合成研究过程中的研究点,其中包括了对合成过程的研究、发酵工艺及设备的改进以及细菌纤维素复合材料的研究等,最后对未来细菌纤维素发展趋势作出了展望。
[关键词]:细菌纤维素;发酵工艺;细菌纤维素复合材料The Bacterial cellulose researchsituation[abstrcat]: From the synthesis of bacterial cellulose, liststhe synthesis process of bacterial cellulose research points,including the synthesis process of the research, the fermentation process and equipment improvement and bacterial cellulose composites for future research, development trend of bacterial cellulose is forecasted.[key words]: bacteria cellulose; Fermentation; bacteria cellulose composites细菌纤维素发现至今已有100多年的历史,由于对其物理特性了解不够充分,以致应用受到限制。
最近十几年,随着对其生物合成机制的深入了解以及发酵条件的改善,加速了细菌纤维素的工业应用。
细菌纤维素[1](bacterial cellulose, BC),是由β-1, 4-糖苷键连接而成的天然聚合体,细菌纤维素的化学纯度非常高,具有良好的生物可降解性;它具有精致的天然超微纤维网状结构,这种网状结构是由一种天然形成的纳米纤维构成,其直径仅为 1. 5 nm。
纤维素化学研究进展一、本文概述纤维素,作为地球上最丰富的天然有机化合物,其化学研究进展对于推动生物质资源的高效利用、促进可持续发展具有重要意义。
本文旨在全面概述纤维素化学研究的最新进展,包括纤维素的化学结构、性质、改性方法以及其在不同领域的应用。
通过深入了解纤维素化学的研究现状和发展趋势,可以为纤维素的高效转化利用提供理论支撑和技术指导,为生物质资源的可持续利用开辟新的途径。
本文将首先介绍纤维素的化学结构和基本性质,包括其分子结构、结晶度、可及性等方面。
随后,重点综述纤维素改性的方法和技术,包括化学改性、物理改性和生物改性等,以及改性后纤维素性能的变化和应用领域。
本文还将关注纤维素在不同领域的应用,如纤维素基材料、纤维素能源、纤维素生物降解等,以期全面展示纤维素化学研究的广泛应用前景。
通过本文的阐述,读者可以深入了解纤维素化学研究的最新进展和发展动态,为相关领域的研究和开发提供有益的参考和启示。
本文也期望能够激发更多研究者对纤维素化学研究的兴趣和热情,共同推动纤维素化学领域的发展和创新。
二、纤维素的来源与提取纤维素作为自然界中最丰富的有机聚合物之一,广泛存在于植物细胞壁中,为植物提供了必要的结构支撑。
由于其独特的化学和物理性质,纤维素在多个领域都有着广泛的应用,包括纺织、造纸、生物材料以及最近的生物能源等。
因此,对纤维素的来源和提取方法的研究具有重要意义。
纤维素的主要来源是植物纤维,如木材、棉花、亚麻、竹子等。
其中,木材是最常见的纤维素来源,由于其生长周期短、可再生以及资源丰富等特点,被广泛应用于工业生产中。
一些农业废弃物,如稻草、玉米秸秆等,也是纤维素的潜在来源,其利用不仅能实现资源的有效循环利用,还能为农业生产带来经济效益。
纤维素的提取通常包括化学法、生物法和物理法等多种方法。
化学法提取纤维素主要利用酸、碱或有机溶剂等化学试剂处理植物原料,使其中的纤维素与木质素、半纤维素等其他成分分离。
生物法提取则依赖于酶或微生物的作用,通过选择性降解木质素和半纤维素,实现纤维素的分离。
细菌纤维素的研究和应用新进展纤维素是地球上最丰富的生物聚合物,主要分布于植物如树木、棉花等中,它是形成植物细胞壁的主要成分,也是形成许多真菌、藻类细胞壁的主要成分。
随着人们对纤维素类产品需求的增加,人们获取纤维素的方法正不断地改进和更新。
近年,发现一些细菌也能产生纤维素,其结构、理化特性和生化特性等皆与植物纤维素有较大的差异,与植物纤维相比,细菌纤维素(Bacterial Cellulose,BC)是由超微纤维组成的超微纤维网。
不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是自1989 年Yamanaka 等[1]发现BC具有独特的功能后,以微生物作为载体,在分子水平上有高纯度、高结晶度、绿色环保的BC成为世界上公认的性能优异的新型生物学材料。
本文就BC的结构、性质、研究历史以及在生物医学材料上的应用综述如下。
1细菌纤维素的结构与特性1.1细菌纤维素的结构特点:BC是由葡萄糖分子以β-1,4糖苷键聚合而成的一种具有多孔性结构及一定纳米级孔径分布的高分子材料[2]。
早在1940 年,人们就用电镜观察到BC由独特的束状纤维组成,这种束状纤维的宽度大约为100 nm,厚度为3~8 nm,每一束由许多微纤维组成,而微纤维又与其晶状结构相关。
术醋杆菌(A.xylinum)是合成BC最强的细菌之一[3],BC的生物合成可分为聚合、分泌、组装、结晶四大过程,这四大过程是高度耦合的,并和细胞膜上的特定位点密切相关。
1.2 細菌纤维素有许多独特的性质:①强的持水性和透气性:BC是一种水不溶性的惰性支持物,有很多“孔道”,有良好的透气、透水性能。
依据合成条件的不同,它能吸收60~700倍于其干重的水份[2],未经干燥的BC的强持水性能(waterretentionvalues,wRv)值高达1000%以上,冷冻干燥后的持水能力仍超过600%。
经100℃干燥后的BC在水中的再溶胀能力与棉短绒相当,即有非凡的持水性,并具有高湿强度[4];②高化学纯度和高结晶度:BC是一种“纯纤维素”,以100%纤维素的形式存在,不含半纤维素、木质素、果胶和其他细胞壁成分,结构单一,提纯过程简单;③较高的生物适应性和生物可降解性:Helenius等[5]开展了BC植入小鼠皮下组织的生物适应性研究及Klenm等[6]用BC微管材料取代老鼠颈动脉的研究都表明BC与老鼠身体没有任何排斥反应。
新型生物材料细菌纤维素的研究进展
武志芳;张霞;易彬;沈才洪;胡承
【期刊名称】《食品与发酵科技》
【年(卷),期】2010(046)001
【摘要】细菌纤维素是一种天然的生物高分子聚合物,具有独特的理化、机械性能,如高持水性,南杨氏模量,很好的机械强度,很好的生物相客性,因此成为一种很有前景的应用材料.本文主要综述了细菌纤维素在各方面的用途及研究现状.
【总页数】4页(P27-30)
【作者】武志芳;张霞;易彬;沈才洪;胡承
【作者单位】四川大学生命科学学院教育部生物资源重点实验室,成都,610065;四川大学生命科学学院教育部生物资源重点实验室,成都,610065;四川大学生命学院·泸州老窖股份有限公司发酵工程研究所,成都,610065;四川大学生命学院·泸州老窖股份有限公司发酵工程研究所,成都,610065;四川大学生命科学学院教育部生物资源重点实验室,成都,610065
【正文语种】中文
【中图分类】TS201-3
【相关文献】
1.新型生物材料——细菌纤维素 [J], 贾士儒;欧宏宇;傅强
2.新型纳米生物材料细菌纤维素的研究现状与前景 [J], 李飞;贾原媛;汤卫华;贾士儒
3.细菌纤维素——一种新兴的生物材料 [J], 郝常明;罗祎
4.利用种子细胞及新型生物材料进行尿道狭窄修复的研究进展 [J], 史建国;陈宇东
5.细菌纤维素基纳米生物材料在储能领域的应用 [J], 马丽娜; 石川; 赵宁; 毕志杰; 郭向欣; 黄玉东
因版权原因,仅展示原文概要,查看原文内容请购买。
新型生物材料细菌纤维素的研究现状和发展趋势邓甫090524105摘要:细菌纤维素是一种天然的生物高分子聚合物,具有独特的理化、机械性能,如高持水性,高杨氏模量,很好的机械强度,很好的生物相容性,因此成为一种很有前景的应用材料。
本文主要综述了细菌纤维素的结构特点和功能特性以及在各方面的用途及研究现状,并且重点介绍了细菌纤维素在造纸工业和医学方面的应用。
关键词:细菌纤维素,结构,应用,造纸工业,生物医学1.细菌纤维素的基本介绍1.1 细菌纤维素的由来细菌纤维素(Bacterial cellulose,简称BC)是由生长在液态含糖基质中的细菌产生的, 并分泌到基质中的纤维素成分, 它不是细菌细胞壁的结构成分,而是一种胞外产物。
为了与植物来源的纤维素区分,将其命名为“细菌纤维素”。
1866年英国科学家Brown 首次报导了木醋杆菌能合成纤维素。
在适当的条件下,能产生纤维素的细菌种类很多,主要集中在:醋酸杆菌属,产碱菌属,八叠球菌属,根瘤菌属,假单胞菌属,固氮杆菌属,土壤杆菌属,无色杆菌属,气杆菌属和葡糖醋杆菌属等。
近来报道的葡糖醋杆菌是醋酸杆菌科出现较晚的一个属,1997年,Y amada在进行辅酶Q 类型和16S rRNA序列比较的基础上,提出应将葡糖醋杆菌提升为属,目前,葡糖醋杆菌属共包含11个种,分别是:G.liquefaciens、G. azotocaptans、G.diazotrophicus、G.entanii、G.europaeus、G.hansenii、G.intermedius、G.johannae、G.oboediens、G.sacchari、G.xylinus。
1.2 细菌纤维素的结构细菌纤维素与自然界中的植物纤维素化学结构相似, 都是由毗喃型葡萄糖单体(β一D一葡萄糖) 通过β一1 , 4 一糖昔键连接而形成的一种无分支、大分子直链聚合物, 具有(C6H1005)n的组成, 直链间彼此平行, 不呈螺旋构象, 无分支结构, 又称为β一1 , 4 一葡聚糖。
细菌纤维素的研究进展摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。
概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。
关键词:细菌纤维素;改性;生物医学材料;应用0 前言细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xylium 在静置培养时于培养基表面形成的一层白色纤维状物质。
后来在许多革兰氏阴性细菌,如土壤杆菌、致瘤农杆菌和革兰氏阳性菌如八叠球菌中也发现了细菌纤维素的产生。
细菌纤维素与天然纤维素结构非常相似,都是由葡萄糖以β一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸张或者加工成任何形状的无纺织物,还可通过发酵条件的改变控制合成不同结晶度的纤维素,从而可根据需要合成不同结晶度的纤维素。
从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足够重视。
近十几年来随着分子生物学的发展和体外无细胞体系的应用,细菌纤维素的生物合成机制已有了很深人的研究,同时在细菌纤维素的应用方面也有了很大进展。
1.细菌纤维素的结构特点和理化特性1.1化学特性经过长期的研究发现,BC和植物纤维素在化学组成和结构上没有明显的区别,均可以视为是由很多D-吡喃葡萄糖苷彼此以(1-4)糖苷键连接而成的线型高分子,相邻的吡喃葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结构。
日本的Masuda等采用13C和1H旋转扩散核磁共振分析了BC的纤维素结构,试验结果表明:在CP/MAS13C NMR图谱上出现共振线很大地分裂为低场线和高场线,其原因可能是高场线处的C4与微纤维中CH2OH的混乱的氢键结合在一起的构象不规则所引起的结构缺陷。
1.2细菌纤维素的聚合度,结晶度及其性质BC的聚合度随着培养方式和条件不同而有很大差异,动态培养时较低,约为3000-5000,静态培养时可以高达16000,优质棉纤维为113000-14000,棉短绒为5000左右,木浆纤维素为7000-10000。
结晶度高于普通高等植物纤维,而低于藻类(Vatinia)和动物纤维(Tunicin)。
结晶度增加,纤维的抗张强度、杨氏模量、硬度、比重和体积的稳定性会随之增加,而伸长率、吸湿性、润胀度、柔软性和化学反应性均会随之降低。
但是BC纤维的吸湿性、润胀度、柔软性和化学反应活性却比高等植物纤维素好得多这个反常规的原因可能是由于细菌纤维超细(纳米级)特点所造成,有待于深入研究。
Strobin等通过凝胶渗透色谱法研究了BC在不同培养时间以及培养基组成时的聚合度和聚合度分布性,结果表明:随培养时间的延长,其聚合度随之增加,到28天时开始降低,但聚合度分布性却增加。
1.3细菌纤维素膜的结构与性质BC成膜性能好,BC膜的抗撕能力比聚乙烯膜和聚氯乙烯膜要强5倍;BC 膜持水量高,其内部有很多“孔道”,有良好的透气、透水性能,通常情况下持水率大于1:50,经特殊处理可达1:700,并且具有高的湿强度。
Wfochowicz等采用X-射线衍射研究了在不同培养时间发酵的细菌纤维素的纳米结构;采用重量分析法可知膜的持水率随培养时间延长而从193%降到120%。
广角衍射测试表明:不管培养时间的长短,膜均有半结晶形态;小角衍射测试表明纤维素结晶纤维随机地分布在无定相中。
Dubey研究了除去蛋白质后的BC膜在二元溶剂体系(水-醇)中的全蒸发,随乙醇的浓度增加,对纤维素膜的渗透通量、选择性、全蒸发分离指数(PSI)和吸气度进行了研究,发现纤维素膜对水有高的选择性,当乙醇浓度高于70%时纤维素膜仍能透过95%的水,当二元体系中含水量少于30%时,纤维素膜对水的选择度在125-287范围,渗透通量高于100g/m2,PSIy约为104g/m2h。
1.4细菌纤维素的介电性能Baranov等研究了由纳米晶体构成的BC在频率100Hz到1MHz之间,温度在100-400K之间的介电性能,高温状态下纤维素的介电常数的异常行为可以通过纤维素中水分子的吸附和解吸特征来解释,低于320K时,纤维素膜吸水,而高于此温度时将解吸水。
1.5细菌纤维素的溶解性能Tamai发现BC在8%的二甲基乙酞胺的溶液中溶解形成均质溶液,而在某个浓度时会形成非均质溶液。
szkiewicz从实验中发现,BC像云杉纤维一样,聚合度低于400,可以在-5℃下溶于8.5%的NaOH溶液中。
当NaOH溶液中加入1%的尿素时,BC的溶解度会增加,聚合度不超过560就可以溶解。
这个实验结果具有重要的实用意义,它指出了不用汽蒸或酶生物转移活化纤维素,而是通过纤维素纺丝液制备纤维的可能性。
这种方法不同于传统的粘胶法生产纤维素,溶剂是一种对环境无毒,价格便宜,不需要制备纤维素衍生物的直接溶剂。
1.6其他性质较高的生物适应性和良好的生物可降解性,可利用广泛的基质进行生产可以进行烷基化、轻烷基化、羧甲基化、硝基化、氰乙基化、氨基甲酸酯化以及多种接枝共聚反应和交联反应,其化学反应的可及度和反应性均强于普通植物纤维。
日本学者在用BC、棉短绒和木浆纤维制造三醋酸纤维素酯和二醋酸纤维素酯时发现,相同条件下,BC完成反应速度快、耗时少。
2.细菌纤维素的生物合成目前除醋酸菌属外,根瘤菌属(Rhizobium)、八叠球菌属(Sarcina)、假单胞菌属(Pseudomonas)、无色杆菌属(Achromobacter)、产碱菌属(Alcaligenes)、气杆菌属(Aerobacter)、固氮菌属(Azotobacter)等的某些种也能生成细菌纤维素。
研究比较全面的是木醋杆菌(Acetobacter xylinum)。
在木醋杆菌生物代谢过程中戊糖循环(HMP)和柠檬酸循环(TCA)2条代谢途径参与了细菌纤维素的生物合成。
由于糖酵解(EMP)活力缺乏或微弱,即缺乏磷酸果糖激酶或酶活力微弱,因此木醋杆菌不能在厌氧条件下代谢葡萄糖。
从草酰乙酸经丙酮酸盐,由于草酰乙酸脱羧酶和丙酮酸盐激酶奇特调节作用,木醋杆菌发生糖原异生作用。
在这种条件下,一条代谢途径是由己糖磷酸盐通过异构化和磷酸化,直接合成纤维素。
另一种为非直接途径,即经过戊糖循环和葡糖异生途径生成纤维素。
其中由己糖磷酸盐直接转化成纤维素时,不需要己糖碳骨架中碳链的改变。
由己糖磷酸盐或通过五碳糖循环生成纤维素都需能量代谢系统进行调节,其调节位点在对ATP敏感、连接葡萄糖-6-磷酸脱氢酶的烟酰胺腺嘌呤二核苷酸(NAD)上。
在木醋杆菌中有两种不同的葡萄糖-6-磷酸脱氢酶,但只有一种葡萄糖-6-磷酸脱氢酶被ATP抑制。
木醋杆菌生物合成纤维素与氧化代谢过程同步进行,但与蛋白质合成体系无关。
细菌纤维素合成的前体物为尿苷二磷酸葡萄糖,由葡萄糖合成纤维素的4个主要酶催反应步骤分别是:葡萄糖激酶的对葡萄糖的磷酸化作用;葡萄糖磷酸异构酶将6-磷酸葡萄糖通过异构作用转化成1-磷酸葡萄糖;焦磷酸化酶将1-磷酸葡萄糖转化成尿苷二磷酸葡萄糖;以及纤维素合成酶的合成作用。
纤维素合成酶催化合成纤维素的最后一步为:UDP-Glc+(β-1,4-glucose)n→UDP+(β-1,4-glucose)n+1通过对木醋杆菌细菌纤维素生物合成的研究,发现细菌纤维素合成步骤的最后一步是在细胞膜上进行的。
c-di-GMP(环状鸟苷酸)是细菌纤维素合成调节机制的关键因子,c-di-GMP是作为纤维素合成酶变构催化剂起作用。
在纤维素生物合成中如果没有c-di-GMP,纤维素合成酶将失去活性。
c-di-GMP浓度的高或低(合成或降解)被认为是由两条具有相反作用途径并由与这两条途径有关的与膜相连的二鸟苷酸环化酶控制。
两个GTP(鸟苷三磷酸)分子在二鸟苷酸环化酶催化作用下,首先释放出一个分子PPi后转变为线性二核苷酸三磷酸pppGpG,在释放出一分子PPi,进而合成c-di-GMP,与此同时,PPi迅速的分解而生成Pi。
Mg2+对二鸟苷酸环化酶有激活作用。
纤维素的生物合成将由于两种c-di-GMP磷酸二酯酶A和B的作用而终止。
PDE-A从环形结构上切下单个的磷酸二酯,将具有活性的c-di-GMP变为不具活性的线性二聚物pGpG。
非活性的二聚物磷酸二酯酶B(PDE-B)的催化作用下被转变为2个5′-GMP。
Ca2+选择性抑制PDE-A的活性。
细菌纤维素的分泌过程是伴随细菌纤维素的生物合成同时进行的。
随着醋酸菌生长,大约12至70分子的细菌纤维素从细胞表面间隔大约为10nm的微孔同时分泌到培养基中。
在细胞表面这些纤维素分子通过氢键互相连接,形成纯的纤维素纤丝。
这种纤丝在纯度上和超分子结构上优于植物纤维素的纤丝。
细菌纤维素的X-射线的分析显示了纤维素颗粒(分子)的具有高度规则的晶体结构。
细菌纤维素纤丝的网眼结构有很大的表面积,具有高持水能力和抗撕强度。
一个醋酸杆菌可以在培养基中通过β-1,4糖苷键聚合20000个葡糖分子形成单一、扭曲、带状的微细纤维。
带状的微细纤维随着细胞的生长分裂而并不断裂。
事实上,纤维素的生成模型中,葡糖聚合以及微细纤维素的连接作用是紧密相连同时进行的两个步骤。
3细菌纤维素的发酵生产木醋杆菌的培养方法有静态法和动态法。
静态法是指将菌种静置培养,在发酵液表面产生纤维素膜。
动态法则是在机械搅拌罐或气升式生化反应器中通风培养细菌,纤维素完全分散在发酵液中,呈不规则的丝状、星状或微团状。
木醋杆菌发酵生产纤维素需要适合发酵条件的培养基,且培养基的组成对纤维素的产量有很大的影响。
另外,改进发酵工艺设计合理的发酵装置、优良菌株的获得,都是获得理想的纤维素产品的途径。
向基础培养基中添加适量的烟酸胺、乙醇、木素磺化盐、琼脂、聚多糖、醋酸和柠檬酸等可以提高BC的产量。
S.Keshk等研究了培养基中加入木素磺化盐对BC产量和结构性质的影响。
Tonouchi等人发现在木醋杆菌生产纤维素的过程中加入少量的纤维素酶可以提高纤维素的产量。
设计不同类型的反应器,如:硅橡胶膜生物反应器、板或圆盘生物反应器、旋转盘生物反应器、改进的气升式生物反应器等来提高纤维素产量。
4细菌纤维素的改性4.1生物改性BC是由醋酸菌属、土壤杆菌属、根瘤菌属和八叠球菌属中的某种微生物在不同的条件下发酵合成的。
不同的培养方式、不同的培养基组成以及不同的培养模型,都会对发酵产物的结构与性能产生很大的影响。
采用不同的培养方法,如静态培养和动态培养,利用醋酸菌可以得到不同高级结构的纤维素。
通过调节培养条件,也可得到化学性质有差异的BC。