自动定位坐标控制系统设计与应用
- 格式:pdf
- 大小:210.04 KB
- 文档页数:3
浅谈GPS实时动态定位原理及应用0、引言随着我国经济的高速发展,为了满足工程施工、测绘等工作的需要,采用GPS 实时动态定位技术的测绘系统逐步进入我国市场。
采用传统GPSRTK (Real-Time-Kinematic)技术的测绘系统的数据链路电台,必须经过无线电管理部门批准才可设置使用,但在此前的几起此类设备所造成的无线电干扰案例中,所查获的无线电台均未向无线电管理部门申报。
目前这类设备使用时所造成的无线电干扰越来越多,因此无线电管理部门应该加强对这类设备的管理。
而增加对GPSRTK技术的了解和认识,将会对查处工作及无线电管理工作大有帮助。
1RTK概述RTK(Real-Time-Kinematic)技术是GPS实时载波相位差分的简称。
这是一种将GPS与数传技术相结合,实时解算并进行数据处理,在1~2秒时间内得到高精度位置信息的技术。
RTK的工作原理是将一台接收机置于基准站上,另一台或几台接收机置于载体(称为流动站)上,基准站和流动站同时接收同一时间、同一GPS卫星发射的信号,基准站所获得的观测值与已知位置信息进行比较,得到GPS差分改正值。
然后将这个改正值通过无线电数据链电台及时传递给共视卫星的流动站精化其GPS观测值,从而得到经差分改正后流动站较准确的实时位置。
精密GPS定位均采用相对技术。
无论是在几点间进行同步观测的后处理(RTK),还是从基准站将改正值传输给流动站(DGPS),这些都称为相对技术,以采用值的类型为依据可分为4类:(1)实时差分GPS,其精度为1m~3m;(2)广域实时差分GPS,其精度为1m~2m;(3)精密时差分GPS,其精度为1cm~5cm;(4)实时精密时差分GPS,其精度为1cm~3cm。
差分的数据类型有伪距差分、坐标差分和相位差分三类。
前两类定位误差的相关性,会随基准站与流动站的空间距离的增加而迅速降低。
故RTK采用第三类方法。
RTK的观测模型为:因轨道误差、钟差、电离层折射及对流层折射的影响在实际的数据处理中一般采用双差观测值方程来解算,在定位前需确定整周未知数,这一过程称为动态定位的“初始化”(OnTheFly即OTF)。
编号:毕业设计说明书题目:物体运动轨迹实时监测系统设计院(系):电子工程与自动化学院专业:测控技术与仪器学生姓名:学号:指导教师:职称:副教授理论研究实验研究工程设计软件开发2016年5月20日随着科学技术的不断发展,物体运动轨迹实时监测系统在导航系统、人机交互、游戏控制等领域具有广阔应用。
传统的方法,如激光追踪系统,或者是运用高精度的加速度传感器、激光陀螺仪等,这些设备过于复杂,成本高。
本文基于MPU6050六轴加速度计陀螺仪传感器的运动轨迹检测系统具有成本低、易携带、体积小的特点。
本论文以单片机STM32F103C8T6为核心控制器,通过MPU6050得到的加速度,加速度二次积分得到位移,从MPU6050 DMP直接读取四元数和欧拉角来校准在重力加速度在二维空间中对x,y轴的影响,通过IIC总线将数据由MPU6050传送给单片机STM32F103C8T6将数据进行处理,并通过蓝牙串口将数据传输给安卓手机,通过安卓手机APP建立二维坐标系,并将得到的数据在二维坐标系中打点来显示轨迹。
本论文中运用单片机C语言来编写程序,从MPU6050得到的加速度通过均值校准法来减少外界对加速度计的干扰,经过积分后得到的位移值通过分解成一个数组来发送具体字节数,来保障发送给手机的数据准确性。
当手机APP接收到单片机发来的数据,通过分隔符将两个数据解析成一个列表,通过提取列表中的每一项,来将每个物体运动轨迹数据显示在APP上,并在APP上打点显示,若打的点超出APP坐标轴的范围,手机将自动震动报警。
本次设计的物体运动轨迹监测系统,能够检测出物体的运动轨迹,经过测试在短时间内误差在1cm左右,且当物体运动轨迹超出APP坐标系的量程,手机将震动报警,且物体运动轨迹数据在0.5s更新一次,大致实现了毕业设计的要求。
关键词:运动轨迹实时监测;加速度计;陀螺仪;安卓手机APP;With the development of science and technology .The monitoring system of real-time trajectory in navigation system, human-computer interaction, game control have a wide range of applications.Traditional methods,for example, laser tracking system,using high precision acceleration sensor, laser gyroscope and so on.These equipment is too complex and high cost. In this paper , the monitoring system of real-time trajectory based on MPU6050 which is six axis accelerometer gyroscope sensor’s advantages is low cost, easy to carry,small volume and so on.STM32F103C8T6 MCU as the core controller in this paper, the displacement is obtained by quadratic integral MPU6050 get acceleration, from MPU6050 DMP directly read quaternion and euler Angle to calibration in the acceleration of gravity in the two-dimensional space of x, y axis, the effect of the data through the IIC bus STM32F103C8T6 controlled by MPU6050 sent the data processing, and through bluetooth serial transmission to the android mobile phone, through the android APP to establish two-dimensional coordinate system, and will get data dot in a two-dimensional coordinate system to display the trajectory.This paper uses microcontroller C language to write programs, from MPU6050 acceleration by average calibration method to reduce the outside disturbance to the accelerometer, after the displacement value resulting from the integral by decomposition into an array to send a specific number of bytes, to ensure data accuracy sent to mobile phones. When the phone APP to receive data from the microcontroller, through the separator will be two data parsed into a list, by extracting each item on the list, to each object trajectory data display on the APP, and dot on the APP shows that if a dozen points beyond the scope of APP axis, the phone will automatically vibration alarm.the design of he monitoring system of real-time trajectory in navigation system can detect the movement of the object, after testing in a short period of time error in 1 cm, and when the object movement beyond the range of APP coordinate system, cell phone will vibrate alarm, and object trajectory data updated once in 0.5 s.Key words:The monitoring system of real-timetrajectory;accelerometer;gyroscope;android APP;目录1 引言 (1)1.1 研究背景及意义 (1)1.2国内外研究现状 (2)1.3惯性导航的发展趋势 (2)1.4论文的章节安排 (2)2 设计任务及要求 (3)2.1 设计任务 (3)2.1.1课题内容 (3)2.1.2主要任务 (3)2.2 设计要求 (4)3 系统设计理论依据及方案论证 (4)3.1系统设计理论依据 (4)3.2 方案论证 (5)3.3 软件算法方案选择 (6)3.3.1方案一 (6)3.3.2方案二 (7)3.3.3方案三 (8)3.4 安卓APP开发工具的选择 (8)3.4.1方案一 (8)3.4.2方案二 (8)4 硬件系统设计 (9)4.1 单片机最小系统控制部分 (9)4.1.1芯片的选择 (9)4.1.2单片机最小系统电路 (10)4.2 蓝牙模块电路 (10)4.3 稳压电源电路 (11)4.4 MPU6050模块电路 (12)4.5 运动轨迹监测系统工作过程 (13)4.5.1灵敏度的影响 (14)4.5.2稳定性分析 (14)5 系统软件设计 (14)5.1软件设计基本思想 (14)5.2 各个模块的设计 (15)5.2.1系统初始化程序 (15)5.2.2 MPU6050初始化与数据读取程序 (16)5.2.3均值校准程序 (17)5.2.4算法运算程序 (18)5.2.5数据处理程序 (19)5.2.6中断服务程序 (19)5.3 手机APP软件的设计与分析 (20)5.3.1UI的设计 (21)5.3.2逻辑的设计 (22)6 系统调试 (26)6.1 硬件系统调试 (26)6.1.1单片机STM32F103C8T6最小系统模块的硬件调试 (26)6.1.2蓝牙模块的硬件调试 (27)6.1.3MPU6050模块的硬件调试 (28)6.2软件调试 (29)6.3 调试结果分析 (34)7 系统测试 (34)7.1 系统测试的方案与过程 (34)7.1.1系统测试所需设备与工具 (34)7.1.2系统测试方案与过程 (34)8 结论 (36)谢辞 (38)参考文献 (39)附录 .............................................................................. 错误!未定义书签。
坐标控制点是什么意思坐标控制点是在数学和计算机领域中经常遇到的一个概念,它在定位、图形处理、计算机视觉等领域中都有重要的应用。
坐标控制点能够精确定位一个特定的位置,为计算机和数学模型提供准确的参考点。
在本文中,我们将深入探讨坐标控制点的定义、作用以及应用领域。
什么是坐标控制点坐标控制点是一个特定的位置点,它用坐标系统中的坐标值来描述。
坐标系统可以是二维空间中的笛卡尔坐标系,也可以是三维空间中的球坐标系、柱坐标系等。
坐标控制点可以通过确定的坐标值来定位一个特定的位置。
在二维笛卡尔坐标系中,一个坐标控制点通常由两个数值表示,分别是横坐标和纵坐标。
例如,坐标控制点(2, 3)表示在平面上沿横坐标方向移动2个单位,以及沿纵坐标方向移动3个单位,可以得到一个具体的位置。
在三维空间中,坐标控制点通常由三个数值表示,分别是横坐标、纵坐标和高度。
通过这三个坐标值,我们可以确定一个空间中的位置。
坐标控制点的作用坐标控制点在数学和计算机领域中有着广泛的应用。
它的主要作用是提供位置信息和参考点,方便计算机进行定位和图形处理。
在计算机图形学中,坐标控制点被广泛应用于曲线和曲面的绘制。
通过指定一系列的坐标控制点,可以精确定义一条曲线或者曲面。
计算机利用这些坐标控制点进行插值计算,从而绘制出平滑曲线和曲面。
在计算机视觉领域,坐标控制点也扮演着重要的角色。
例如,在目标检测和图像识别任务中,我们可以通过在图像上标记坐标控制点来指定感兴趣区域。
计算机可以利用这些控制点来识别和定位目标,进而实现自动化和智能化的图像处理。
此外,坐标控制点还在定位和导航系统中发挥着重要的作用。
通过在地图上标记坐标控制点,可以方便地确定位置和计算导航路径。
许多导航软件和地图应用都依赖于坐标控制点进行定位和导航。
坐标控制点的应用领域坐标控制点在众多领域中都有着重要的应用,下面列举几个常见的领域:地理信息系统地理信息系统(GIS)利用坐标控制点来记录和分析地理空间数据。
北斗卫星导航系统及应用综述0引言北斗卫星导航系统是中国自行研制的全球卫星定位与通信系统〔BDS〕,是继美全球定位系统〔GPS〕和俄GLONASS之后第三个成熟的卫星导航系统。
系统由空间端、地面端和用户端组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度优于20m,授时精度优于100ns。
2012年12月27日,北斗系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。
1 北斗卫星导航系统基本信息介绍中国在2003年完成了具有区域导航功能的北斗卫星导航试验系统,之后开始构建服务全球的北斗卫星导航系统,于2012年起向亚太大部分地区正式提供服务,并计划至2020年完成全球系统的构建。
北斗卫星导航系统和美国全球定位系统、俄罗斯格洛纳斯系统及欧盟伽利略定位系统一起,是联合国卫星导航委员会已认定的供给商。
北斗卫星导航系统的定位原理“北斗一号”卫星导航系统的定位原理与GPS系统不同,GPS采用的是被动式伪码单向测距三维导航,由用户设备独立解算自己的三维定位数据,而“北斗一号”卫星导航定位系统则采用主动式双向测距二维导航, 由地面中心控制系统解算供用户使用的三维定位数据。
“北斗”卫星是中国“北斗”导航系统空间段组成部分,由两种基本形式的卫星组成,分别适应于GEO和MEO轨道。
“北斗”导航卫星由卫星平台和有效载荷两部分组成。
卫星平台由测控、数据管理、姿态与轨道控制、推进、热控、结构和供电等分系统组成。
有效载荷包括导航分系统、天线分系统。
GEO卫星还含有RDSS有效载荷。
因此,“北斗”卫星为提供导航、通信、授时一体化业务创造了条件。
“北斗”导航卫星分别在1559MH z~1610MH z、1200MH z~1300MH z两个频段各设计有两个粗码、两个精密测距码导航信号, 具有公开服务和授权服务两种服务模式[1]。
基于chirp信号的室内导航定位系统设计与实现任修坤;李珂;郑娜娥;朱世磊【摘要】室内定位系统成熟的产品少、需求高,因此开发实用的室内导航定位系统具有重要意义.基于无线chirp扩频信号具有的较高时间分辨率,利用双边TOA(到达时间)测距技术和泰勒级数定位解算算法,设计并开发了一种可用于室内导航定位的实验验证系统.设计系统的组成架构、工作原理、硬件设计、软件方案和工作流程,最后在实际室内环境中测得系统的定位精度优于1m,具有极高的实用性.【期刊名称】《通信技术》【年(卷),期】2016(049)006【总页数】6页(P788-793)【关键词】室内定位;chirp信号;双边TOA测距;设计与实现【作者】任修坤;李珂;郑娜娥;朱世磊【作者单位】解放军信息工程大学,河南郑州450001;解放军信息工程大学,河南郑州450001;解放军信息工程大学,河南郑州450001;解放军信息工程大学,河南郑州450001【正文语种】中文【中图分类】TN95;TN911.7随着科技发展,位置服务(LBS)市场快速增长,在紧急救助、交通运输、治安消防、个性化服务等领域展现出巨大活力。
目前,北斗、GPS等卫星导航定位已渗透人们的生活。
据统计,人类有超过80%的时间在室内活动[1],而室内属于卫星覆盖的盲区。
目前,室内导航定位系统尚不成熟,各种技术方法纷繁复杂,如何突破室内定位的难题,成为当前的研究热点[2-3]。
本文依托chirp扩频信号TOA测距技术,设计并开发了一种室内导航定位系统,以期能够为这场技术浪潮提供参考。
1.1 系统架构系统架构如图1所示,包括定位控制中心、数据收发器、测量基站、用户标签四个部分。
(1)定位控制中心:主要完成位置解算、数据库、管理、数据分析等功能,并提供用户交互界面,方便参数配置和定位结果获取。
(2)数据收发器:主要完成用户标签与测量基站之间TOA数据的上传,同时完成参数配置及控制命令的分发任务。
基于单片机的GPS定位系统设计摘要GPS是全球定位系统英文名词Global Positioning System的缩写.该系统是美国布设的第二代卫星无线电导航系统。
它能为用户提供全球性、全天候、连续、实时、高精度的三维坐标、三向速度和时间信息.其目的是在全球范围内对地面和空中目标进行准确定位和监测。
现在,GPS接收机作为一种先进的导航和定位仪器,已在军事及民用领域得到广泛的应用。
本设计是基于AT89C51单片机来实现的简易GPS定位信息显示系统。
本控制系统主要完成接受数据、时间显示、经度显示、纬度显示等常规功能.此方案基于单片机、GPS模块和12864液晶显示屏等硬件,并应用C语言实现了GPS信号的提取、显示及基本的键盘控制操作等。
经过实践测试,这种接收机可以达到基本GPS信息的接收以及显示,可以做到体积小、精度高、连续导航,并可广泛应用于个人野外旅游探险、出租汽车定位及海上作业等领域。
关键词:GPS定位系统,单片机,液晶显示屏DESIGN OF GPS RECEIVER BASED ON 51 SINGLE CHIPCOMPUTERABSTRACTGPS is the abbreviation of the English term Global Positioning System global positioning system. The system is the United States laid the second generation satellite radio navigation system. It can provide users with continuous, real—time,global, round—the—clock,high precision three dimensional coordinates, three velocity and time information. Aimed at targets on the ground and in the air around the world an accurate positioning and monitoring。