江西省上饶市高一数学第四次周周练试题(实验班,无答案)
- 格式:doc
- 大小:337.50 KB
- 文档页数:5
2024-2025学年江西省部分高中学校高一上学期十一月联考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={x∣9−x>2},B={x∣x≥3},则A∩B=( )A. [3,7)B. (3,7)C. [3,+∞)D. (7,+∞)2.命题“小数都是无理数”的否定为( )A. 所有小数都不是无理数B. 有些小数是无理数C. 有些小数不是无理数D. 所有小数都是无理数3.若幂函数f(x)的图象经过点(2,8),则f(−4)=( )A. 16B. −16C. 64D. −644.若a=x2+3x+5,b=3x+4,则( )A. a<bB. a>bC. a=bD. a,b的大小关系无法确定5.若关于x的不等式−12x2+ax−7≤0恒成立,则a的取值范围为( )A. (−14,14)B. [−14,14]C. (−∞,−14)∪(14,+∞)D. (−∞,−14]∪[14,+∞)6.若函数f(x)的部分图象如图所示,则f(x)的解析式可能为( )A. f(x)=x|x|+1B. f(x)=x2+1|x|+1C. f(x)=x2−1|x|+1D. f(x)=x2−3|x|+17.已知函数f(x−1x)=2x−1x(x>0),则f(x)=( )A. 3x−x2+12B. 3x−x2+42C. 3x+x2+12D. 3x+x2+428.已知函数f(x)={ax,x≤−3,−x2+2ax−3,x>−3,若对任意x1≠x2,f(x2)−f(x1)x2−x1<0恒成立,则a的取值范围为( )A. [−3,0)B. (0,3]C. [−4,−3]D. (−4,−3]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.下列各组函数中,两个函数为同一函数的是( )A. f(x)=35x−3,g(t)=35t−3B. f(x)=x 3x ,g(x)=x 2C. f(x)=x 2+12,g(x)=|x|+12D. f(x)=x 2+1,g(x)=x 4+110.已知集合A ={x|2a ≤x ≤3a−1},B ={x|x 2−12x +32<0},且A 是B 的真子集,则a 的值可以是( )A. 12B. 1C. 2D. 5211.已知f (x )是定义在R 上的奇函数,f (x +2)为偶函数,且f (2)=10,则( )A. f (4)=−10B. f (x )的图象关于直线x =2对称C. f (x )的 图象关于点(4,0)中心对称D. f (206)=−10三、填空题:本题共3小题,每小题5分,共15分。
江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.考查范围:必修第一册第一章至第三章第二节。
2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。
江西省南昌市第十中学2024-2025学年高一上学期第一次月考数学试卷一、单选题1.已知集合{|42}M x x =-<<,{|23}N x x =-<<,则M N =I ( ) A .{|43}x x -<< B .{|42}x x -<<- C .{|22}x x -<<D .{}|23<<x x2.命题“2R 10x x x ∀∈++>,”的否定为( ) A .2R 10x x x ∃∈++<, B .2R 10x x x ∃∈++≤, C .2R 10x x x ∀∉++≤, D .2R 10x x x ∀∈++<,3.不等式23180x x -++<的解集为( ) A .{6x x >或3}x <- B .{}36x x -<< C .{3x x >或6}x <-D .{}63x x -<<4.若0a b >>,c d >,则下列结论一定成立的是( ) A .0a b -<B .a c b c +>+C .ac bc >D .ac bd >5.已知集合{}()210R M x ax x a =-+=∈,则“14a =”是“集合M 仅有1个真子集”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分又不必要条件6.设集合{}22A x a x a =<<+,{3B x x =<-或x >5 ,若A B =∅I ,则实数a 的取值范围为( ) A .3,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎛⎫-+∞ ⎪⎝⎭C .3,2⎛⎤-∞- ⎥⎝⎦D .3,2⎛⎫-∞- ⎪⎝⎭7.已知0,1a b >>,且(1)4a b -=,则a b +的最小值为( ) A .3B .4C .5D .68.若正数a 、b 满足()25ab a b =++,设()()412y a b a b =+---,则y 的最大值是 A .12B .-12C .16D .-16二、多选题9.已知集合{}230A x x x =-=,则有( )A .A ∅⊆B .3A ∈C .{}0,3A ∈D .{}3A x x ⊆≤10.已知关于x 的一元二次不等式20ax bx c ++≥的解集为{2x x ≤-或1x ≥},则( )A .0b >且0c <B .420a b c ++=C .不等式0bx c +>的解集为{}2x x >D .不等式20cx bx a -+<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭11.设a ,b 为两个正数,定义a ,b 的算术平均数为()2a bA a b +=,,几何平均数为()G a b =,,则有:()(),,G a b A a b ≤,这是我们熟知的基本不等式.上个世纪五十年代,美国数学家D .H .Lehmer 提出了“Lehmer 均值”,即()11,p pp p p a b L a b a b--+=+,其中p 为有理数.如:()0.50.50.50.50.5,a b L a b a b--+=+ ) A .()()0.5,,L a b A a b ≤ B .()()0,,L a b G a b ≥ C .()()21,,L a b L a b ≥D .()()1,,n n L a b L a b +≤三、填空题12.条件:10p x -<,条件:q x a >,若p 是q 的充分不必要条件,则a 的取值范围是. 13.设非空集合Q M ⊆,当Q 中所有元素和为偶数时(集合为单元素时和为元素本身),称Q 是M 的偶子集,若集合{}1,2,3,4,5,6,7=M ,则其偶子集Q 的个数为.14.已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是.四、解答题15.若集合{|24},{|0}A x x B x x m =-<<=-<. (1)若3m =,全集U A B =⋃,试求()U A B I ð.(2)若A B A =I ,求实数m 的取值范围.16.设全集R U =,集合{}|15=≤≤A x x ,集合{}122|B x a x a =--≤≤-. (1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围; (2)若B A ⊆,求实数a 的取值范围.17.轩轩计划建造一个室内面积为21500m 的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚的前、后、左、右内墙各保留1.5m 宽的通道,两养殖池之间保留2m 宽的通道.设温室的一边长为m x ,两个养殖地的总面积为2m y ,如图所示.(1)将y 表示为x 的函数;(2)当取x 取何值时,y 取最大值?最大值是多少? 18.设2(1)2y mx m x m =+-+-.(1)若不等式2y ≥-对一切实数x 恒成立,求实数m 的取值范围;(2)在(1)的条件下,求2251m m m +++的最小值;(3)解关于x 的不等式1y m <-.19.有限个元素组成的集合{}12,,,n A a a a =⋅⋅⋅,*n ∈N ,记集合A 中的元素个数为()card A ,即()card A n =.定义{},A A x y x A y A +=+∈∈,集合A A +中的元素个数记为()card A A +,当()()1card 2n n A A ++=时,称集合A 具有性质P .(1){}1,4,7A =,{}2,48B =,,判断集合A ,B 是否具有性质P ,并说明理由; (2)设集合{}123,,,2022A a a a =,1232022a a a <<<且*N i a ∈(1,2,3i =),若集合A 具有性质P ,求123a a a ++的最大值.。
2024届江西省上饶市民校考试联盟(婺源紫阳中学高中毕业班第一次模拟(数学试题文)试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z 满足:((1)11)i z i +-=-,则z 的共轭复数为( ) A .12i - B .1i +C .1i -+D .12i +2.若复数12biz i-=+(b R,i ∈为虚数单位)的实部与虚部相等,则b 的值为( )A .3B .3±C .3-D .3.在ABC ∆中,0OA OB OC ++=,2AE EB =,AB AC λ=,若9AB AC AO EC ⋅=⋅,则实数λ=( )A B C D4.在平面直角坐标系中,经过点P ,渐近线方程为y =的双曲线的标准方程为( )A .22142-=x yB .221714x y -=C .22136x y -=D .221147y x -=5.已知复数21iz i =-,则z 的虚部为( ) A .-1 B .i -C .1D .i6. “8πϕ=-”是“函数()sin(3)f x x ϕ=+的图象关于直线8x π=-对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( )A .54B .5CD 8.已知某几何体的三视图如右图所示,则该几何体的体积为( )A .3B .103C .113D .839.已知函数()y f x =是定义在R 上的奇函数,函数()f x 满足()()4f x f x =+,且(]0,1x ∈时,()2()log 1f x x =+,则()()20182019f f +=( ) A .2B .2-C .1D .1-10.已知点()2,0A 、()0,2B -.若点P 在函数y x =PAB △的面积为2的点P 的个数为( )A .1B .2C .3D .411.设集合{}1,0,1,2A =-,{}22530B x x x =-++>,则AB =( )A .{}0,1,2B .{}0,1C .{}1,2D .{}1,0,1-12.已知底面为边长为2的正方形,侧棱长为1的直四棱柱1111ABCD A B C D -中,P 是上底面1111D C B A 上的动点.给出以下四个结论中,正确的个数是( )①与点D 3的点P 形成一条曲线,则该曲线的长度是2π; ②若//DP 面1ACB ,则DP 与面11ACC A 所成角的正切值取值范围是62⎣; ③若3DP =DP 在该四棱柱六个面上的正投影长度之和的最大值为62A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分。
南昌师范学院附属中学高一上学期第一次月考数学试卷总分150分 考试时间120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表述中正确的是( )A .B .C .D .2.命题“,”的否定是( )A .,B .,C .,D .,3.“”是“关于x 的一元二次方程有实数根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设集合A 含有,1两个元素,B 含有,2两个元素,定义集合,满足,且,则中所有元素之积为( )A .B .C .8D .165.若,,则的取值范围是( )A .B .C .D .6.如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .B .C .D .7.已知关于x 的不等式的解集为,则的最大值是( )AB .CD .{0}=∅{(1,2)}{1,2}={}∅=∅0N ∈0x ∀≥210x x -+≥0x ∃≥210x x -+<0x ∀<210x x -+≥0x ∀≥210x x -+<0x ∃≥210x x -+≥3m >210x mx -+=2-1-A B e 1x A ∈2x B ∈12x x A B ∈e A B e 8-16-14a b <+<24a b -<-<3a b +(5,13)-(2,10)-(2,9)-(5,10)-A B C ()I A C Bð()I A B C ð()I B C A ð22430(0)x ax a a -+<<()12,x x 1212a x x x x ++8.已知,,,则的最小值为( )A .0B .C .1D二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列不等式的解集正确的是( )A .的解集是B .的解集是C .的解集是D .的解集是10.设正实数x ,y 满足,则下列说法正确的是( )A .的最小值为4B .xy 的最大值为C的最小值为2D.的最小值为11.设非空集合满足:当时,有.给出如下命题,其中真命题是( )A .若,则B .若,则C .若,则D .若,则三、填空题:本题共3小题,每小题5分,共15分.12.集合的真子集的个数是__________.13.若命题p :“,”是假命题,命题q :,,是真命题,则实数a 的取值范围是__________.14.若对,,使得成立,则实数m 的取值范围为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题共13分)(1)比较与的大小;(2)已知,求证:.1x y +=0y >0x >121x x y ++542440x x -+-<{}2x x ≠2111x x +≤-{}21x x -≤<2104x x -+<423x x ⎧⎫<<⎨⎬⎩⎭|1||23|x x ->-423xx ⎧⎫<<⎨⎬⎩⎭23x y +=3y x y+98224x y +92{}S x m x n =≤≤x S ∈2x S ∈1m ={}1S x x =≥12m =-114n ≤≤12n =0m ≤≤1n =10m -≤≤{}22(,)2,,x y x y x Z y Z +<∈∈x ∃∈R 2230x ax a ++<0x ∀≤2x a +≥x ∀∈R 0a ∃>221x ax a x am +-≥-+231x x -+221x x +-0c a b >>>a b c a c b>--16.(本题共15分)已知集合,.(1)若,求实数k 的取值范围;(2)已知命题,命题,若p 是q 的必要不充分条件,求实数k 的取值范围.17.(本题共15分)已知x 的不等式:.(1),求不等式的解集.(2),求不等式的解集.18.(本题共17分)已知,,.(1)当时,求xy 的最小值;(2)当时,满足恒成立,求m 的取值范围.19.(本题共17分)某公司决定对旗下的某商品进行一次评估,该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量,公司决定立即对该商品进行全面技术革新和销售策略调整,并提高定价到x 元,公司拟投入万元,作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品改革后的销售量a 至少达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.2511x A x x ⎧⎫-=<⎨⎬+⎩⎭{}21B x k x k =-<<+A B A = :p x A ∈:q x B ∈222ax x ax -≥-1a =a ∈R 0x >0y >4xy x y a =++12a =0a =2413x y m m x y+++≥-()216006x -15x。
江西省上饶市2024高三冲刺(高考数学)部编版真题(备考卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题()A.B.C.D.第(2)题已知集合,,则()A.B.C.D.第(3)题已知函数有3个零点,则实数的取值范围是()A.B.C.D.第(4)题已知,则()A.B.C.D.第(5)题已知函数的图象与函数的图象关于某一条直线对称,若,分别为它们图象上的两个动点,则这两点之间距离的最小值为()A.B.C.D.第(6)题如图是我国古代量粮食的器具“升”,其形状是正四棱台,上、下底面边长分别为20cm和10cm,侧棱长为cm.“升”装满后用手指或筷子沿升口刮平,这叫“平升”.则该“升”的“平升”约可装()A.1.5L B.1.7L C.2.3L D.2.7L第(7)题已知函数、均是周期为的函数,,,若函数在区间有10个零点,则实数m的取值范围是()A.B.C.D.第(8)题魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高()A.表高B.表高C.表距D.表距二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,下列结论中正确的是()A.函数在时,取得极小值-1B.对于,恒成立C.若,则D .若,对于恒成立,则的最大值为,的最小值为1第(2)题“50米跑”是《国家学生体质健康标准》测试项目中的一项,某地区高三男生的“50米跑”测试成绩(单位:秒)服从正态分布,且.从该地区高三男生的“50米跑”测试成绩中随机抽取3个,其中成绩在间的个数记为X,则()A.B.C.D.第(3)题已知抛物线的焦点为,抛物线上的点到点的距离是2,是抛物线的准线与轴的交点,,是抛物线上两个不同的动点,为坐标原点,则()A.B.若直线过点,则C.若直线过点,则D.若直线过点,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知向量,则与的夹角为__________.第(2)题已知幂函数的图象经过点,则__________.第(3)题若双曲线的离心率为2,则此双曲线的渐近线方程___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,圆柱的轴截面ABCD是边长为2的正方形,点P是圆弧CD上的一动点(不与C,D重合),点Q是圆弧AB的中点,且点P,Q在平面ABCD的两侧.(1)证明:平面PAD⊥平面PBC;(2)设点P在平面ABQ上的射影为点O,点E,F分别是△PQB和△POA的重心,当三棱锥P﹣ABC体积最大时,回答下列问题.(i)证明:EF∥平面PAQ;(ii)求平面PAB与平面PCD所成二面角的正弦值.第(2)题已知数列不为常数数列且各项均为正数,数列的前n项和为,,满足,其中是不为零的常数,.(1)是否存在使得数列为等差数列?若存在,求出的值;若不存在,请说明理由;(2)若数列是公比为的等比数列,证明:(且).第(3)题近年来,国家鼓励德智体美劳全面发展,舞蹈课是学生们热爱的课程之一,某高中随机调研了本校2023年参加高考的90位考生是否喜欢跳舞的情况,经统计,跳舞与性别情况如下表:(单位:人)喜欢跳舞不喜欢跳舞女性2535男性525(1)根据表中数据并依据小概率值的独立性检验,分析喜欢跳舞与性别是否有关联?(2)用样本估计总体,用本次调研中样本的频率代替概率,从2023年本市考生中随机抽取3人,设被抽取的3人中喜欢跳舞的人数为X,求X的分布列及数学期望.附:,.0.100.050.0250.0100.0052.7063.8415.0246.6357.879第(4)题已知:,(1)证明:对,且,有;(2)若,求证:.第(5)题编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8得分1535212825361834运动员编号A9A10A11A12A13A14A15A16得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间[10,20)[20,30)[30,40]人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50分的概率.。
高一数学试卷注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:北师大版必修第二册第一章至第四章第二节.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行四边形ABCD 中,AC BC -=()A.DAB.BDC.BAD.DC【答案】D 【解析】【分析】根据平面向量加减法规则求解.【详解】如图,根据平面向量的加法规则有:,AB BC AC AC BC AB DC+=∴-==;故选:D.2.下列函数为偶函数且在π0,2⎛⎫⎪⎝⎭上为减函数的是()A.()sin f x x= B.()tan =f x x C.()cos f x x = D.()f x x=【答案】C 【解析】【分析】根据函数的性质逐项分析.【详解】对于A ,()sin f x x =是奇函数;对于B ,()tan f x x =是奇函数;对于C ,()cos f x x =是偶函数,并且在π0,2x ⎛⎫∈ ⎪⎝⎭时是减函数;对于D ,()f x x =是偶函数,但在0x >时是增函数;故选:C.3.已知()0,1A 、(),3B m 、()4,7C 三点共线,则m =()A.13-B.13C.43D.2【答案】C 【解析】【分析】求出AB 、AC,可知//AB AC uuu r uuu r ,利用平面向量共线的坐标表示可求得实数m 的值.【详解】因为()0,1A 、(),3B m 、()4,7C ,则(),2AB m =,()4,6AC = ,因为A 、B 、C 三点共线,则//AB AC uuu r uuu r ,所以86m =,即43m =.故选:C.4.已知一扇形的面积为8,所在圆的半径为2,则扇形的周长为()A.6B.8C.10D.12【答案】D 【解析】【分析】根据扇形面积公式求弧长,进而求扇形的周长.【详解】由题知:由扇形的面积182S rl ==,且2r =,l 为弧长,所以弧长2882l ⨯==,则扇形的周长为2l r +=12.故选:D5.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且2cos 3a Cbc =+,则ABC 是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D 【解析】【分析】正弦定理和两角和的正弦公式,化简得到2cos sin sin 03A C C +=,进而得到2cos 3A =-,得到ππ2A <<,即可求解.【详解】因为2cos 3a Cbc =+,由正弦定理得2sin cos sin sin 3A C B C =+,又因为πA C B +=-,可得sin sin()sin cos cos sin B A C A C +A C =+=,所以2cos sin sin 03A C C +=,因为(0,π)C ∈,可得sin 0C >,所以2cos 3A =-,又因为(0,π)A ∈,所以ππ2A <<,所以ABC 为钝角三角形.故选:D.6.已知cos1,sin1,tan1a b c ===,则()A.a b c <<B.c b a <<C.b c a <<D.c a b<<【答案】A 【解析】【分析】利用三角函数单调性结合中间值2,12即可比较大小.【详解】因为函数sin y x =在π(0,)2上单调递增,所以π21sin1sin42b >=>=,因为函数cos y x =在π(0,)2上单调递减,所以π20cos1cos42a <=<=,因为函数tan y x =在π(0,)2上单调递增,所以πtan1tan14c =>=,所以212a b c <<<<,即a b c<<.故选:A7.如图,一艘船向正北方向航行,航行速度为每小时1039海里,在A 处看灯塔S 在船的北偏东3sin 4θθ⎛⎫= ⎪ ⎪⎝⎭的方向上.1小时后,船航行到B 处,在B 处看灯塔S 在船的北偏东3θ的方向上,则船航行到B 处时与灯塔S 之间的距离为(注:sin 2sin()sin cos cos sin 2sin cos θθθθθθθθθ=+=+=)()A.103海里B.203海里C.1013海里D.2013海里【答案】B 【解析】【分析】借助正弦定理求解三角形.【详解】由题意得,在ABS 中,BAS θ∠=,1039AB =,32BSA θθθ∠=-=.由正弦定理有sin sin AB BS BSA BAS =∠∠,代入数据得1039sin 2sin BS θθ=,解得539cos BS θ=.因为3sin 4θ=,所以13cos 4θ=,203BS =(海里).故选:B8.彝族图案作为人类社会发展的一种物质文化,有着灿烂的历史.按照图案的载体大致分为彝族服饰图案、彝族漆器图案、彝族银器图案等,其中蕴含着丰富的数学文化.如图1所示的漆器图案中出现的“阿基米德螺线”,该曲线是由一动点沿一条射线以等角速度转动所形成的轨迹,这些螺线均匀分布,将其简化抽象为图2所示,若以OA 为始边,射线OA 绕着点O 逆时针旋转,终边与OB 重合时的角为α,终边与OE 重合时的角为β,终边与OH 重合时的角为γ,则cos cos cos αβγ++的值为()A.1B.33-C.1-D.0【答案】D 【解析】【分析】根据题意可得,,αβγ,然后结合余弦的和差角公式,代入计算,即可得到结果.【详解】由已知得2π9α=,2π8π2π2π49939β=⨯==+,2π14π4π2π79939γ=⨯==+,所以2π2π2π4π2πcos cos cos coscos cos 93939αβγ⎛⎫⎛⎫++=++++ ⎪ ⎪⎝⎭⎝⎭2π2π2π2π2π4π2π4π2πcos cos cos sin sin cos cos sin sin 939393939=+-+-2π12π32π12π32πcoscos sin cos sin 0929292929=---+=.故选:D二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数π()cos 25x f x ⎛⎫=+⎪⎝⎭,则()A.()f x 的图象关于2π,05⎛⎫-⎪⎝⎭对称 B.()f x 的图象关于直线8π5x =对称C.3π5f x ⎛⎫+⎪⎝⎭为奇函数 D.()f x 为偶函数【答案】BC 【解析】【分析】利用余弦型函数的图象及其性质,逐一分析选项即可.【详解】因为π()cos 25x f x ⎛⎫=+⎪⎝⎭,2πππcos 10555f ⎛⎫⎛⎫-=-+=≠ ⎪ ⎪⎝⎭⎝⎭,A 错误;8π4ππcos 1555f ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,B 正确;3π13πππcos cos sin 5255222x x f x x ⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()f x 是奇函数,C 正确;易知()()f x f x -≠,所以()f x 不是偶函数,D 错误.故选:BC10.在△ABC 中,1AB =,2AC =,2π3A =,5BC CD =,E 为AC 的中点,则()A.4BD DC=B.6155AD AC AB=- C.1AB AC ⋅= D.3910AD BE ⋅=【答案】BD 【解析】【分析】利用向量的线性运算可得AB 选项正误;利用向量的数量积公式可得CD 选项正误.【详解】因为5BC CD = ,所以6BD CD =,故A 错误;由向量加法的三角形法则,可得()66615555AD AB BD AB BC AB AC AB AC AB =+=+=+-=-,故B 正确;由数量积公式得:2πcos 13AB AC AB AC ⋅=⋅=- ,故C 错误;6113955210AD BE AC AB AC AB ⎛⎫⎛⎫⋅=-⋅-= ⎪ ⎪⎝⎭⎝⎭ ,故D 正确.故选:BD11.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,若2a =,π4A =,b x =,满足此条件的三角形只有一个,则x 的值可能为()A.2B.2C.22D.3【答案】ABC 【解析】【分析】由正弦定理及三角函数的图象与性质可判定结果.【详解】由正弦定理得2πsin sin4xB =,则22sin x B =,又3π0,4B ⎛⎫∈ ⎪⎝⎭,且满足条件的三角形只有一个,即x 有唯一的角与其对应,所以ππ0,24B ⎧⎫⎛⎤∈⎨⎬ ⎥⎩⎭⎝⎦,故{}(]22sin 220,2x B =∈ .故选:ABC .12.已知函数sin cos ()22sin cos x xf x x x+=+,则()A.()y f x =的图象关于直线π4x =对称 B.()y f x =的图象关于点π,04⎛⎫-⎪⎝⎭对称C.()f x 既是周期函数又是奇函数 D.()f x 的最大值为12【答案】ABD 【解析】【分析】对于A ,验证π()2f x f x ⎛⎫-= ⎪⎝⎭即可;对于B ,验证π()2f x f x ⎛⎫--=- ⎪⎝⎭即可;对于C ,找反例ππ()()44f f -≠-即可判断;对于D ,令sin cos t x x =+,则原函数可化为21ty t =+,分0,0t t =≠结合基本不等式即可判断.【详解】对于A ,因为ππsin cos πsin cos 22()ππ222sin cos 22sin cos 22x x x x f x f x x x x x ⎛⎫⎛⎫-+- ⎪ ⎪+⎛⎫⎝⎭⎝⎭-=== ⎪+⎛⎫⎛⎫⎝⎭+-- ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于直线π4x =对称.A 正确.对于B ,因ππsin cos πsin cos 22()ππ222sin cos 22sin cos 22x x x x f x f x x x x x ⎛⎫⎛⎫--+-- ⎪ ⎪--⎛⎫⎝⎭⎝⎭--===- ⎪+⎛⎫⎛⎫⎝⎭+---- ⎪ ⎪⎝⎭⎝⎭,所以()y f x =的图象关于点π,04⎛⎫-⎪⎝⎭对称,B 正确.对于C ,ππ22sin()cos()π4422()0ππ42222sin()cos()224422f -+--+-===+---⨯⨯,ππ22sincos π24422()ππ432222sin cos 224422f ++===++⨯⨯,则ππ()()44f f -≠-,所以()f x 不是奇函数,C 错误.对于D ,令πsin cos 2sin [2,2]4t x x x ⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos t x x =+,当0=t 时,0y =;当[2,0)t ∈-或(0,2]时,211111212t y t t t t t==≤=++⨯,当且仅当1t =时,等号成立,此时函数取得最大值12,D 正确.故选:ABD三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.函数()π2sin 135x f x ⎛⎫=+- ⎪⎝⎭的最小正周期为__________,最小值为__________.【答案】①.6π②.3-【解析】【分析】利用正弦函数的性质求解.【详解】()f x 的最小正周期2π6π13T ==,最小值为2(1)1⨯--=-3.故答案为:6π;3-.14.已知函数()()πtan 34f x x ϕϕ⎛⎫=+≤ ⎪⎝⎭的图象关于点π,09⎛⎫- ⎪⎝⎭对称,则ϕ=__________.【答案】π6-##1π6-【解析】【分析】由正切函数tan y x =的图象关于点(π,0),Z 2kk ∈对称求解.【详解】因为()()πtan 34f x x ϕϕ⎛⎫=+≤ ⎪⎝⎭的图象关于点π,09⎛⎫- ⎪⎝⎭对称,所以Z π,32πk k ϕ-+=∈,所以ππ,Z 32k k ϕ=+∈,因为π4ϕ≤,所以π6ϕ=-.故答案为:π6-.15.已知M 为线段AB 上的任意一点,O 为直线AB 外一点,A 关于点O 的对称点为C ,B 关于点C 的对称点为D ,若OM xOC yOD =+,则3x y +=________.【答案】1-【解析】【分析】以,OA OB为基底,利用A ,B ,M 三点共线求解.【详解】因为A 关于点O 的对称点为C ,所以OC OA =- ,2BD BC = ,BC OC OB =-,又B 关于点C 的对称点为D ,所以222OD OB BC OC OB OA OB =+=-=--,又OM xOC yOD =+,所以()()2OM x y OA y OB =--+- ,因为A ,B ,M 三点共线,所以21x y y ---=,即31x y +=-;故答案为:1-16.如图,某公园内有一个边长为12m 的正方形ABCD 区域,点M 处有一个路灯,5m BM =,3sin 5MBQ ∠=,现过点M 建一条直路分别交正方形区域两边AB ,BC 于点P 和点Q ,若对五边形APQCD 区域进行绿化,则此绿化区域面积的最大值为________2m .【答案】120【解析】【分析】设BP 和BQ 的长,使PBQ 的面积最小,即可使五边形APQCD 面积最大.【详解】设m BP x =,m BQ y =,(012x <<,012y <<),∵3sin 5MBQ ∠=,π0,2MBQ ⎛⎫∠∈ ⎪⎝⎭,∴π4sin sin cos 25PBM MBQ MBQ ⎛⎫∠=-∠=∠= ⎪⎝⎭,∴PBM 的面积为2114sin 52m 225PBM S BP BM PBM x x =⋅⋅⋅∠=⋅⋅⋅= ,MBQ V 的面积为21133sin 522m 52MBQ y BM BQ M S BQ y =⋅⋅⋅∠=⋅⋅⋅= ,∵PBQ 的面积PBQ PBM MBQ S S S =+ ,∴13222xy x y =+,即43xy x y=+∵012x <<,012y <<,∴由基本不等式得4324343xy x y x y xy =+≥⋅=,解得43xy ≥,即48xy ≥,当且仅当43x y =,即6x =,8y =时,等号成立,∴PBQ 的面积的最小值为()2min14824m 2PBQS =⨯= ,∴五边形APQCD 面积的最大值()2max min14424120m PB D Q ABC S S S =-=-= .故答案为:120.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知222c a b ab =++.(1)求角C ;(2)若47c =,ABC 的周长为1247+,求sin sin A B +.【答案】(1)2π3C =(2)32128【解析】【分析】(1)由余弦定理计算即可;(2)由正弦定理计算即可.【小问1详解】由余弦定理可得222222cos c a b ab C a b ab =+-=++,解得1cos 2C =-,因为C 是ABC 的一个内角,故2π3C =【小问2详解】因为47c =,ABC 的周长为647+,所以6a b +=,由正弦定理sin sin sin a b c A B C ==,可得87sin sin sin 3a b c A B C +==+解得321sin sin 28A B +=18.已知平面向量()1,2a = ,()0,1b =- ,a c ⊥ ,且3b c ⋅= .(1)求c 的坐标;(2)求向量- a c 在向量b上的投影向量的模.【答案】(1)()6,3-(2)5【解析】【分析】根据向量数量积的定义,投影向量的定义和坐标运算规则求解.【小问1详解】设(),c x y = ,因为a c ⊥ ,所以20x y +=,又3b c y ⋅=-= ,解得6x =,=3y -,所以()6,3c =-;【小问2详解】()5,5a c -=- ,所以()5a c b -⋅=- ,则向量- a c 在向量b 上的投影向量的模为()5a c b b-⋅= ;综上,()6,3c =- ,向量- a c 在向量b上的投影向量的模为5.19.已知角θ的始边为x 轴非负半轴,终边过点(1,2)A -.(1)求3ππcos 2sin 22sin(2π)22cos()θθθθ⎛⎫⎛⎫-+++ ⎪ ⎪⎝⎭⎝⎭---的值.(2)已知角α的始边为x 轴非负半轴,角θ和α的终边关于y 轴对称,求πsin 6α⎛⎫-⎪⎝⎭的值.【答案】(1)2-(2)3236-【解析】【分析】(1)由三角函数定义得sin ,cos θθ值,然后由诱导公式化简后代入计算;(2)写出,θα关系,求出sin ,cos αα的值,再代入两角差的正弦公式求解即可.【小问1详解】由题可知3OA =,则63sin ,cos ,tan 233θθθ==-=-,所以3ππcos 2sin sin 2cos tan 2222sin(2π)22cos()sin 22cos tan 22θθθθθθθθθθ⎛⎫⎛⎫-+++ ⎪ ⎪-+-+⎝⎭⎝⎭===--------.【小问2详解】因为角θ和α的终边关于y 轴对称,所以6sin 3α=,3cos 3α=,所以π31323sin sin cos 6226ααα-⎛⎫-=-= ⎪⎝⎭.20.赵爽是我国古代数学家,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形.已知sin 2sin CAF ACF ∠=∠.(1)证明:F 为AD 的中点;(2)求向量AC 与BE 夹角的余弦值.【答案】(1)证明见解析(2)714【解析】【分析】(1)由sin 2sin CAF ACF ∠=∠得CF 2AF =,再根据全等三角形性质可得AF CE =,从而可得2CF CE =,继而得出E 为CF 的中点,F 为AD 的中点,从而得证.(2)设1AC = ,由向量的线性运算可得4677BE AC AB =- ,分别求出,,BE AC BE AC ⋅ 的值,由向量AC 与BE 夹角的余弦值为BE AC BE AC⋅ 得出结论.【小问1详解】证明:因为sin 2sin CAF ACF ∠=∠,所以由正弦定理得CF 2AF =.又因为AFC BDA CEB ≌≌△△△,所以AF CE =,所以2CF CE =,即E 为CF 的中点,所以F 为AD 的中点.【小问2详解】设1AC = ,()()111242BE BF BC BA BD BC =+=++ ,所以111422BE BA BE BC ⎛⎫=++ ⎪⎝⎭ ,则24467777BE BA BC AC AB =+=- ,所以224616483627774949497BE AC AB AC AC AB AB ⎛⎫=-=-⋅+= ⎪⎝⎭.又24646177777BE AC AC AB AC AC AB AC ⎛⎫⋅=-⋅=-⋅= ⎪⎝⎭,所以向量AC 与BE 夹角的余弦值为714BE AC BE AC ⋅= .21.如图,在平面四边形ABCD 中,4AC =,BC CD ⊥.(1)若2AB =,3BC =,15CD =,求△ACD 的面积;(2)若2π3B ∠=,π6D ∠=,求3162AD BC ⎛⎫+- ⎪ ⎪⎝⎭的最大值.【答案】(1)7154(2)463【解析】【分析】(1)先用余弦定理求出cos ACB ∠,再利用面积公式求解;(2)设BCA θ∠=,运用正弦定理分别表示出,BC AD ,再利用恒等变换以及三角函数的性质求解.【小问1详解】在ABC 中,22216947cos 22438AC BC AB ACB AC BC +-+-∠===⋅⨯⨯,因为BC CD ⊥,所以7sin cos 8ACD ACB ∠=∠=,所以ACD 的面积117715sin 4152284S AC CD ACD =⋅⋅∠=⨯⨯⨯=;【小问2详解】设BCA θ∠=,π03θ<<,则π2ACD θ∠=-,π3BAC θ∠=-.在ABC 中,2ππsin sin 33BC AC θ=⎛⎫- ⎪⎝⎭,则8πsin 33BC θ⎛⎫=- ⎪⎝⎭,在ACD 中,ππsin sin 62AD AC θ=⎛⎫- ⎪⎝⎭,则8cos AD θ=,所以31438π4cos sin 62333AD BC θθ⎛⎫⎛⎫⎛⎫+-=+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭434346πcos sin sin 3334θθθ⎛⎫=+=+ ⎪⎝⎭,当π4θ=时,3162AD BC ⎛⎫+- ⎪ ⎪⎝⎭取得最大值463;综上,ACD 的面积为7154,3162AD BC ⎛⎫+- ⎪ ⎪⎝⎭的最大值463.22.已知函数()()[]2sin (0,0,2π)f x x ωϕωϕ=+>∈的部分图象如图所示.(1)求()f x 的解析式;(2)将函数()f x 图象的横坐标变为原来的3倍,纵坐标不变,再向左平移π个单位长度,得到函数()y g x =的图象,若()πg x λ+在区间π,π2⎛⎫ ⎪⎝⎭上无零点,求正数λ的取值范围.【答案】(1)()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭(2)170,1,22⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据图中的点的坐标求出参数值即可求出函数解析式;(2)先通过图象变换求出函数解析式,然后利用函数无零点建立不等式关系即可求解.【小问1详解】因为()02sin 1f ϕ==,可得1sin 2ϕ=,因为()f x 在0x =处附近单调递增,所以6πϕ=,所以()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭,因为()ππ2sin π16f ω⎛⎫=+=- ⎪⎝⎭,所以π1sin π,62ω⎛⎫+=- ⎪⎝⎭因为()f x 在πx =处附近单调递减,且当0x >时,()f x 在πx =处的第一次取值为12-,所以π7ππ66ω+=,可得1ω=.即()π2sin 6f x x ⎛⎫=+⎪⎝⎭.【小问2详解】将()f x 图象的横坐标变为原来的3倍,纵坐标不变,可得到π2sin 36x y ⎛⎫=+ ⎪⎝⎭的图象,再把π2sin 36x y ⎛⎫=+ ⎪⎝⎭的图象向左平移π个单位长度,可得()()1ππ2sin π2sin 2cos 36323x x g x x ⎡⎤⎛⎫=++=+= ⎪⎢⎥⎣⎦⎝⎭的图象,则()ππ2cos 33x g x λλ⎛⎫+=+ ⎪⎝⎭,由()πg x λ+在区间π,π2⎛⎫ ⎪⎝⎭上无零点可得3ππ22T λ=≥,解得06λ<≤,因为π,π2x ⎛⎫∈ ⎪⎝⎭,所以πππππ,336333x λλλ⎛⎫+∈++ ⎪⎝⎭,则ππππ632ππππ332k k λλ⎧+≥-+⎪⎪⎨⎪+≤+⎪⎩,k ∈Z ,解得15632k k λ-+≤≤+,k ∈Z ,由06λ<≤,可得170,1,22λ⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦,即正数λ的取值范围为170,1,22⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.。
2024年HGT 第一次模拟测试数学本试卷共4页,22小题,满分150分.考试时间120分钟一、单项选择题:共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}2R 240,N 10A x x x B x x +=∈--<=∈<∣∣,则A B = ()A.{}1 B.{}1,2 C.{}1,2,3 D.{}1,2,3,4【答案】C 【解析】【分析】先求出集合,A B ,再由交集的定义求解即可.【详解】因为2240x x --<,所以11x -<<+所以{{}R11,1,2,3,4,5,6,7,8,9A x x B =∈-<<+=∣,所以A B = {}1,2,3.故选:C .2.已知复数z 满足2i i 4z z -=+,则z =()A.3B.C.4D.10【答案】B 【解析】【分析】先由复数的乘法和除法运算化简复数,再由复数的模长公式求解即可.【详解】由2i i 4z z -=+可得:i 2i 4z z -=+,所以()()()()()()22i 41i 2i 21i 2i 4i i 22i 3i 11i 1i 1i 2z +++++====+++=+--+,所以z ==故选:B .3.已知等差数列{}n a 的前n 项和为n S ,若3612,33a a ==,则17S =()A.51B.34C.17D.1【答案】C 【解析】【分析】由题意列方程组可求出1a ,d ,再由等差数列的前n 项和公式求解即可.【详解】设等差数列{}n a 的首项为1a ,公差为d ,所以由3612,33a a ==可得:11123253a d a d ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:11919a d ⎧=⎪⎪⎨⎪=⎪⎩,所以17117161171611717172929S a d ⨯⨯=+=⨯+⨯=.故选:C .4.已知()21:ln 10,:0,x p a q x a x+->∃>≤,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义,结合对数函数定义域和基本不等式求最值,利用集合包含关系可得.【详解】由()ln 10a ->,得10211a a a ->⎧⇒>⎨->⎩,设(){}{}:ln 102p A a a a a =->=>,由210,x x a x +∃>≤的否定为210,x x a x+∀>>,令()2112x f x x x x +==+≥,当且仅当1x x =时,又0x >,即1x =等号成立,若210,x x a x+∀>>,则2a <,若210,x x a x+∃>≤,则2a ≥,设{}:2q B a =≥,因为{}{}22a a a ≥⊇>,所以p q ⇒且q p ⇒/,所以p 是q 的充分不必要条件故选:A5.已知抛物线2:4C x y =的焦点为,F A 是抛物线C 在第一象限部分上一点,若4AF =,则抛物线C 在点A 处的切线方程为()A.30y --= B.210x y --=C.10x y --=D.20y --=【答案】A 【解析】【分析】设()11,A x y ,根据抛物线的定义求得1x =,13y =,再根据导函数的几何意义求出切线斜率,由点斜式写出方程即可【详解】设()11,A x y ,由24x y =,得2p =,所以抛物线的准线方程1y =-,由抛物线的定义可得114AF y =+=,得13y =代入24x y =,得1x =±又A 是抛物线C 在第一象限部分上一点,所以1x =由24x y =,得214y x =,所以12y x '=,所以抛物线C 在点A 处的切线方程斜率为112x x y ===⨯'=所以抛物线C 在点A 处的切线方程为3y x -=-30y --=,故选:A6.已知1225log 5,log 2,e a b c ===,则()A.c a b <<B.a c b <<C.a b c <<D.b c a<<【答案】D 【解析】【分析】由对数函数和指数函数的性质可得2,1,a b ><12c <<,即可得出答案.【详解】因为2255log 5log 42,log 2log 51,a b =>==<=121e 2c <==<=,所以b c a <<.故选:D .7.已知函数()][1sin ,2,11,2f x x x x ⎛⎫⎡⎤=-∈--⋃ ⎪⎣⎦⎝⎭,则下列结论中错误的是()A.()f x 是奇函数B.max ()1f x =C.()f x 在[]2,1--上递增 D.()f x 在[]1,2上递增【答案】B 【解析】【分析】根据奇函数的定义可判A ;根据复合函数的单调性并求出最值判断B 、C 、D 【详解】因为][2,11,2x ⎡⎤∈--⋃⎣⎦,所以定义域关于原点对称,且()()111sin sin sin f x x x x f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=--=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()f x 是奇函数;故A 对;令[]1,1,2u x x x=-∈,所以()h x 在[]1,2单调递增,所以13π022x x ≤-≤≤,即3π022u ≤≤≤,又sin y u =在π0,2⎡⎤⎢⎥⎣⎦单调递增,所以()1sin f x x x ⎛⎫=-⎪⎝⎭在[]1,2单调递增,故D 对;因为()f x 是奇函数,所以()f x 在[]2,1--上递增,故C 对,综上,()()110f f -=-=,则()max 13()2sin 2sin 122f x f ⎛⎫==-=≠ ⎪⎝⎭,故B 错;故选:B8.木桶效应,也可称为短板效应,是说一只水桶能装多少水取决于它最短的那块木板.如果一只桶的木板中有一块不齐或者某块木板有破洞,这只桶就无法盛满水,此时我们可以倾斜木桶,设法让桶装水更多.如图,棱长为2的正方体容器,在顶点1C 和棱1AA 的中点M 处各有一个小洞(小洞面积忽略不计),为了保持平衡,以BD 为轴转动正方体,则用此容器装水,最多能装水的体积V =()A.4B.163C.6D.203【答案】C 【解析】【分析】作出辅助线,得到1PMQC 为菱形,从而得到多能装入的体积为长方体MTRX ABCD -的体积加上长方体1111MTRX A B C D -的体积的一半,结合正方体的体积求出答案.【详解】棱长为2的正方体的体积为328=,在11,BB DD 上分别取,P Q ,使得1112B P D Q ==,又M 为棱1AA 的中点,故由勾股定理得112C P MQ MP C Q =====,故四边形1PMQC 为菱形,故1,,,P M Q C 四点共面,取111,,BB CC DD 的中点,,T R X ,连接,,,MT TR RX XM ,则平面1PMQC 将长方体1111MTRX A B C D -的体积平分,故以BD 为轴转动正方体,则用此容器装水,则最多能装入的体积为长方体MTRX ABCD -的体积加上长方体1111MTRX A B C D -的体积的一半,故最多能装水的体积1111633844ABCD A B C D V V -==⨯=.故选:C二、多项选择题:共4小题,每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中两条不同的直线,m n 和两个不同的平面,αβ,则下列说法正确的是()A.若m,n m α⊂,则n αB.若α ,m βα⊂,则m βC.若,m n ββ⊥⊂,则m n ⊥D.若,n αββ⊥⊂,则n α⊥【答案】BC 【解析】【分析】根据线面平行的判定判断选项A ;根据面面平行的性质以及线面平行的定义判断选项B ;根据线面垂直的定义判断选项C ;根据面面垂直性质判断选项D 【详解】若m,n m α⊂,则n α或n ⊂α,故A 错;若α ,m βα⊂,则m 与平面β无公共点,故m β,故B 对;若,m n ββ⊥⊂,则m 垂直于β内的任一条直线,所以m n ⊥,故C 对;若,n αββ⊥⊂,则n 与α可能平行或相交或在α内,故D 错;故选:BC10.已知圆22:4O x y +=与直线:l x my =+交于,A B 两点,设OAB 的面积为()S m ,则下列说法正确的是()A.()S m 有最大值2B.()S m 无最小值C.若12m m ≠,则()()12S m S m ≠D.若()()12S m S m ≠,则12m m ≠【答案】ABD 【解析】【分析】设出点线距离,求出面积取值范围判断AB ,利用圆的对称性判断C ,将D 转化为逆否命题再判断即可.【详解】由题意得:l x my =+)P ,如图,取AB 中点为D ,故()12OAB S S m AB OD OD ==⨯⨯== ,设OD 为d ,故OAB S == ,易知OD OP ≤,即0d <≤,故203d <≤,令(]20,3t d =∈,而OAB S =由二次函数性质得当2t =时,OAB S 取得最大值,此时()2OAB S m S == ,故A 正确,由二次函数性质得,()S m 在(]0,2单调递增,在(]2,3单调递减,易知当3t =时,()S m =,当0t →时,()0S m →,故()(]0,2S m ∈,则B 正确对于C ,作A 关于x 轴的对称点A ',B 关于x 轴的对称点B ',连接OA ',OB ',由圆的对称性知OAB OA B S S ''= ,故不论m 取何值,必有()()12S m S m =,故C 错误,易知D 的逆否命题为若12m m =,则()()12S m S m =,故欲判断D 的真假性,判断其逆否命题真假性即可,显然当12m m =时,则()()12S m S m =,故D 正确,故选:ABD11.某环保局对辖区内甲、乙两个地区的环境治理情况进行检查督导,若连续10天,每天空气质量指数(单位:3μg/m )不超过100,则认为该地区环境治理达标,否则认为该地区环境治理不达标.已知甲乙两地区连续10天检查所得数据特征是:甲地区平均数为80,方差为40,乙地区平均数为70,方差为90.则下列推断一定正确的是()A.甲乙两地区这10天检查所得共20个数据的平均数是75B.甲乙两地区这10天检查所得共20个数据的方差是65C.甲地区环境治理达标D.乙地区环境治理达标【答案】ACD 【解析】【分析】根据条件分别求出平均数和方差判断选项A 、B ;根据条件判断甲乙地区的每天空气质量指数判断选项C 、D【详解】甲地区平均数为80,乙地区平均数为70,则甲乙两地区这10天检查所得共20个数据的平均数是801070107520⨯+⨯=,故A 对;设甲乙两地区连续10天检查所得数据分别为,1,2,3,,10i x i = 和,1,2,3,,10i y i = ,所以()102211804010i i S x ==-=∑甲,得()102180400ii x =-=∑,()102211709010i i S x ==-=∑乙,得()102170900i i x =-=∑,由()1010111111180,10801010800108001080002020202020i i i i x x x ===∴-=⨯-⨯⨯=⨯⨯-⨯⨯=⎡⎤⎣⎦∑∑,由()1010111111170,10701010700107001070002020202020i i i i y y y ===∴-=⨯-⨯⨯=⨯⨯-⨯⨯=⎡⎤⎣⎦∑∑,甲乙两地区这10天检查所得共20个数据的方差是()()102211758020i i i S x y =⎡⎤=-+-⎣⎦∑()()101022111175752020i i i i x y ===-+-∑∑()()10102211118057052020i i i i x y ===-++--∑∑()()()()101022111180108025701070252020i i i i i i x x y y ==⎡⎤⎡⎤=-+-++---+⎣⎦⎣⎦∑∑()()()()1010101022111111111180108010257010701025202020202020i i i i i i i i x x y y =====-+-+⨯⨯+---+⨯⨯⎡⎤⎡⎤⎣⎦⎣⎦∑∑∑∑1140090025902020=⨯+⨯+=,甲地区平均数为80,方差为40,如果这10天中有一天空气质量指数大于100,那么它的方差就一定大于()21100804010⨯-=,所以能确定甲地区连续10天,每天空气质量指数不超过100,所以甲地区环境治理达标,故C 对;乙地区平均数为70,方差为90,如果这10天中有一天空气质量指数大于100,那么它的方差就一定大于()21100709010⨯-=,所以能确定乙地区连续10天,每天空气质量指数不超过100,所以乙地区环境治理达标,故选:ACD12.已知直线1l 是曲线()ln f x x =上任一点()11,A x y 处的切线,直线2l 是曲线()e xg x =上点()11,B y x 处的切线,则下列结论中正确的是()A.当111+=x y 时,1l 2lB.存在1x ,使得12l l ⊥C.若1l 与2l 交于点C 时,且三角形ABC 为等边三角形,则123x =+D.若1l 与曲线()g x 相切,切点为()22,C x y ,则121x y =【答案】ACD 【解析】【分析】根据导数求出两直线斜率可判断选项A 、B ;根据斜率与倾斜角的关系及和差角公式求出123x =+,判断选项C ;利用导数的几何意义求出斜率判断选项D 【详解】由题意得11ln y x =,由111+=x y ,得11ln 1x x +=,如图,可知ln y x x =+与1y =交点是()1,1可得11x =,11ln ln10y x ===,由()ln f x x =,得()1f x x'=,所以直线1l 的斜率为()()111f x f ==',由()e xg x =,得()e xg x '=,所以直线2l 的斜率为()()()0110e 1g y g f x '==='=,即直线1l 的斜率等于直线2l 的斜率,所以12l l ∥,故A 对;因为()()1112ln 111111111e e 11y x l l k kf xg y x x x x ''⋅=⋅=⋅=⋅=⋅=≠-,所以不存在1x ,使得12l l ⊥,故B错;如图,设21,l l 的倾斜角分别为,αβ,因为三角形ABC 为等边三角形,所以π3βα=+,又()()11ln 11111tan ,tan e e y x f x g y x x αβ======'',所以1111πtan 3tan tan 131tan 1x x x αβαα++⎛⎫=+=== ⎪-⎝⎭-,整理得21110x --=,所以12x =±,因为()11,A x y 在曲线()ln f x x =上,所以1>0x,所以12x =+,故C 对;若1l 与曲线()g x 相切,切点为()22,C x y ,则()()211211e x l kf xg x x '==='=,即211e x x =,又()22,C x y 在()e x g x =上,所以22e x y =,所以211y x =,即121x y =,故D 对;故选:ACD【点睛】关键点点睛:根据导数的几何意义求出直线斜率,结合两直线平行和垂直的斜率关系进行判断各项.三、填空题:共4小题,每小题5分,共20分.13.已知向量,a b满足(2,1,a b == ,且1a b ⋅=- ,则向量,a b 夹角的余弦值为__________.【答案】16-【解析】【分析】由向量的夹角和模长公式求解即可.【详解】因为(1,b = ,所以3b == ,所以向量,a b 夹角的余弦值为:11cos 236a b a b a b ⋅-⋅===-⨯⋅ .故答案为:16-.14.()6(2)1x y x --的展开式中43x y 的系数是__________.【答案】160【解析】【分析】根据二项式展开6(2)x y -,然后在与()1x -相乘,找到43x y 这一项即可.【详解】由于题目要求43x y 的系数,所以对于6(2)x y -的展开项中,没有43x y 这一项.所以只需要求出6(2)x y -的33x y 项在与()1x -相乘即可.()()333436C 2160x y x x y -⋅-=,故系数为160.故答案为:160.15.“南昌之星”摩天轮半径为80米,建成时为世界第一高摩天轮,成为南昌地标建筑之一.已知摩天轮转一圈的时间为30分钟,甲乙两人相差10分钟坐上摩天轮,那么在摩天轮上,他们离地面高度差的绝对值的取值范围是__________.【答案】⎡⎣【解析】【分析】由已知设甲乙两人坐上摩天轮的时间分别为t ,10t +,得到甲乙两人坐上摩天轮转过的角度,分别列出甲乙离地面的高度1π8080cos 15h t =-,2π2π8080cos 153h t ⎛⎫=-+ ⎪⎝⎭,然后得到12ππ153h h t ⎛⎫-=+ ⎪⎝⎭,由t 的取值范围即可求解.【详解】设甲乙两人坐上摩天轮的时间分别为t ,10t +,则甲乙两人坐上摩天轮转过的角度分别为2ππ3015t t =,()2ππ2π1030153t t +=+,则甲距离地面的高度为1π8080cos15h t =-,乙距离地面的高度为2π2π8080cos 153h t ⎛⎫=-+ ⎪⎝⎭,则12ππ2π8080cos 8080cos 15153h h t t ⎛⎫-=--++ ⎪⎝⎭π2πππ2ππ2ππ80cos 80cos 80cos cos sin sin cos 1531515315315t t t t ⎛⎫=+-=- ⎪⎝⎭3π3ππ1πππ80cos sin sin 21521515215153t t t t t ⎛⎫=--=+=+ ⎪⎝⎭因为030t ≤≤,所以ππ7π01533t ≤+≤,所以ππ0sin 1153t ⎛⎫≤+≤ ⎪⎝⎭,即12h h ⎡-∈⎣.故答案为:⎡⎣.16.用平面截圆锥面,可以截出椭圆、双曲线、抛物线,那它们是不是符合圆锥曲线的定义呢?比利时数学家旦德林用一个双球模型给出了证明.如图1,在一个圆锥中放入两个球,使得它们都与圆锥面相切,一个平面过圆锥母线上的点P 且与两个球都相切,切点分别记为12,F F .这个平面截圆锥面得到交线,C M 是C 上任意一点,过点M 的母线与两个球分别相切于点,G H ,因此有12MF MF MG MH GH +=+=,而GH 是图中两个圆锥母线长的差,是一个定值,因此曲线C 是一个椭圆.如图2,两个对顶圆锥中,各有一个球,这两个球的半径相等且与圆锥面相切,已知这两个圆锥的母线与轴夹角的正切值为43,球的半径为4,平面α与圆锥的轴平行,且与这两个球相切于,A B 两点,记平面α与圆锥侧面相交所得曲线为C ,则曲线C 的离心率为__________.【答案】53##213【解析】【分析】根据矩形的性质求出1212O O F F =,由题意求出2110O O =,根据旦德林双球模型和双曲线定义可得126PF PF -=,求出a 、c 即可【详解】如图,,M N 是圆锥与球的切点,12,O O 是球心,P 是截口上任一点,连接12O O ,12,,O A O B 则12,O A AB O B AB ⊥⊥,所以124O A O B ==,12O A O B ,所以12O ABO 是矩形,12O O AB=连接112,O M O N ,则12,O M MN O N MN ⊥⊥,因为圆锥的母线与轴夹角的正切值为43,即14tan 3MOO ∠=,所以1144tan 33O MAOO OM OM OM ∠===⇒=,根据对称性得3ON =,所以6MN =,故两圆的公切线长为6连接PB ,PA ,OP ,设OP 与球1O 的切线交于K ,与球2O 的切线交于H ,则,PH PB PK PA ==,所以26PA PB HK MN a -====,得3a =,在1OO A △中,22119165OO O A OA =+=+=,所以1212210O O F F c ===,得5c =曲线C 的离心率为53c a =故答案为:53四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.【答案】(1)()2e,∞+;(2)2e .【解析】【分析】(1)求导得()2e ln f x x=',令()0f x '<可求()f x 的单调递减区间;(2)由(1)易判断()f x 在()0,2e x ∈时单增,()f x 在()2e,x ∞∈+时单减,进而求出()max f x .【小问1详解】()2e 1ln2ln ln f x x x =+-=',令()0f x '<,得2e 01x<<,即2e x >,所以()f x 的单调递减区间为()2e,∞+;【小问2详解】当()0,2e x ∈时,()()0,f x f x '>单调递增;当()2e,x ∞∈+时,()()0,f x f x '<单调递减,所以()()()2e 2ln22e 2eln2e 2e f x f ≤=+-=,即()f x 的最大值为2e .18.对于各项均不为零的数列{}n c ,我们定义:数列n k n c c +⎧⎫⎨⎬⎩⎭为数列{}n c 的“k -比分数列”.已知数列{}{},n n a b 满足111a b ==,且{}n a 的“1-比分数列”与{}n b 的“2-比分数列”是同一个数列.(1)若{}n b 是公比为2的等比数列,求数列{}n a 的前n 项和n S ;(2)若{}n b 是公差为2的等差数列,求n a .【答案】(1)()1413n n S =⨯-;(2)()21413n a n =⨯-.【解析】【分析】(1)利用已知求出通项公式,再求前n 项和即可.(2)利用累乘法求通项公式即可.【小问1详解】由题意知12n n n na b a b ++=,因为11b =,且{}n b 是公比为2的等比数列,所以14n na a +=,因为11a =,所以数列{}n a 首项为1,公比为4的等比数列,所以()()114141143n n n S ⨯-==⨯--;【小问2详解】因为11b =,且{}n b 是公差为2的等差数列,所以21n b n =-,所以122321n n n n a b n a b n +++==-,所以1212121215,,,23251n n n n a a a n n a n a n a ---+-===-- ,所以()()1212131n n n a a +-=⨯,因为11a =,所以()21413n a n =⨯-.19.如图,两块直角三角形模具,斜边靠在一起,其中公共斜边10AC =,ππ,34BAC DAC ∠∠==,BD 交AC 于点E.(1)求2BD ;(2)求AE .【答案】(1)50+;(2)5.【解析】【分析】(1)由锐角三角函数求出AB 、AD ,又ππ34BAD ∠=+,利用两角和的余弦公式求出cos BAD ∠,最后由余弦定理计算可得;(2)解法1:首先求出sin BAD ∠,再由ABD ABE ADE S S S =+ ,利用面积公式计算可得;解法2:首先得到33ABD BCD S AE EC S == ,再由10AE EC +=计算可得.【小问1详解】由已知,1cos 1052AB AC BAC ∠=⋅=⨯=,2cos 102AD AC DAC ∠=⋅=⨯=因为ππ34BAD BAC DAC BAC ∠=∠+∠=∠=+,所以ππππππcos cos cos cos sin sin 343434BAD ∠⎛⎫=+=- ⎪⎝⎭122224=⨯-=,所以在ABD △中由余弦定理可得2222cos BD AB AD AB AD BAD=+-⋅⋅∠2550254=+-⨯⨯50=+.【小问2详解】解法1:因为ππππππ62sin sin sin cos cos sin 3434344BAD ∠+⎛⎫=+=+= ⎪⎝⎭,又因为ABD ABE ADE S S S =+ ,所以111sin sin sin 222AB AD BAD AB AE BAE AE AD EAD ∠∠∠⋅⋅⋅=⋅⋅⋅+⋅⋅⋅,即162131255242222AE AE ⨯⨯=⨯⨯⨯+⨯⨯,解得5AE =.解法2:因为πBAD BCD ∠+∠=,所以()sin sin πsin BAD BCD BCD ∠=-∠=∠,又AD CD ==BC =所以11sin 5322113sin 22ABD BCD AB AD BAD BAD S AE EC S BC CD BCD BCD ∠∠∠∠⨯⋅⋅⨯⨯====⨯⋅⋅⨯ ,又因为10AC =,所以10AE EC +=,则10AE +=,所以5AE =.20.甲公司现有资金200万元,考虑一项投资计划,假定影响投资收益的唯一因素是投资期间的经济形势,若投资期间经济形势好,投资有25%的收益率,若投资期间经济形势不好,投资有10%的损益率;如果不执行该投资计划,损失为1万元.现有两个方案,方案一:执行投资计划;方案二:聘请投资咨询公司乙分析投资期间的经济形势,聘请费用为5000元,若投资咨询公司乙预测投资期间经济形势好,则执行投资计划;若投资咨询公司乙预测投资期间经济形势不好,则不执行该计划.根据以往的资料表明,投资咨询公司乙预测不一定正确,投资期间经济形势好,咨询公司乙预测经济形势好的概率是0.8;投资期间经济形势不好,咨询公司乙预测经济形势不好的概率是0.7.假设根据权威资料可以确定,投资期间经济形势好的概率是40%,经济形势不好的概率是60%.(1)求投资咨询公司乙预测投资期间经济形势好的概率;(2)根据获得利润的期望值的大小,甲公司应该执行哪个方案?说明理由.【答案】(1)0.5;(2)甲公司应该选择方案二,理由见解析【解析】【分析】(1)由全概率公式即可得解;(2)方案一服从两点分布,由此求出对应的概率可得期望;方案二有三种情况,分别算出相应的概率,结合期望公式算出期望,比较两个期望的大小即可得解.【小问1详解】记投资期间经济形势好为事件1B ,投资期间经济形势不好为事件2B ,投资咨询公司预测投资期间经济形势好为事件A ,则()()120.4,0.6P B P B ==,因此()()120.40.80.60.30.5P A P B A B A =+=⨯+⨯=;【小问2详解】若采取方案一,则该公司获得的利润值X 万元的分布列是X5020-P 0.40.6()500.4200.68E X =⨯-⨯=万元;若采取方案二:设该公司获得的利润值为Y 万元,有以下情况,投资期间经济形势好,咨询公司乙预测经济形势为好,49.5Y =,其发生的概率为:()10.40.80.32P B A =⨯=,投资期间经济形势好,咨询公司乙预测经济形势为不好, 1.5Y =-,其发生的概率为:()10.40.20.08P B A =⨯=,投资期间经济形势不好,咨询公司乙预测经济形势为好,20.5Y =-,其发生的概率为:()20.60.30.18P B A =⨯=,投资期间经济形势不好,咨询公司乙预测经济形势为不好, 1.5Y =-,其发生的概率为:()20.60.70.42P B A =⨯=,因此,随机变量Y 的分布列为:Y20.5- 1.5-49.5P 0.180.50.32因此,()20.50.18 1.50.549.50.32 3.690.7515.8411.4E Y =-⨯-⨯+⨯=--+=万元,因为()()E X E Y <,所以甲公司应该选择方案二.21.如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,π3ABC ∠=,已知E 为棱AD 的中点,P 在底面的投影H 为线段EC 的中点,M 是棱PC 上一点.(1)若2CM MP =,求证://PE 平面MBD ;(2)若,PB EM PC EC ⊥=,确定点M 的位置,并求二面角B EM C --的余弦值.【答案】(1)证明见解析(2)M 为PC 中点,19.【解析】【分析】(1)根据角平分线性质定理得2CD CN DE NE==,由平行线分线段成比例定理得MN PE ,再由线面平行的判定可证;(2)利用线面垂直可得PH BC ⊥,进而得BC ⊥平面PEC ,由线面垂直得EM PC ⊥,然后根据等边三角形三线重合即得M 为PC 中点,以C 为原点,分别以,CB CE 为,x y 轴,以过C 点且与平面ABCD 垂直的直线为z 轴建立空间直角坐标系,求出两个平面的法向量,利用公式cos ,n CB n CB n CB⋅=⋅ 求解即可【小问1详解】设BD CE N ⋂=,因为底面ABCD 是边长为2的菱形,所以CD AB =,对角线BD 平分ADC ∠,又E 为棱AD 的中点,所以2CD AB DE ==,在ADC △中,根据角平分线性质定理得2CN CD NE DE==,又2CM MP =,所以2CM MP =,所以2CN CM NE MP==,//MN ∴PE ,PE ⊄平面MBD ,且MN ⊂平面,//MBD PE ∴平面MBD .【小问2详解】PH ⊥Q 平面ABCD ,且BC ⊂平面ABCD ,PH BC ∴⊥,因为π3ABC ∠=,所以2π3BCD ∠=,在ACD 中,CD AB =,π3ABC ∠=,所以ACD 是等边三角形,又E 为棱AD 的中点,所以BC CE ⊥,PH ⊥Q 平面ABCD ,PH ⊂平面PCE ,所以平面PCE ⊥平面ABCD ,又平面PCE ⋂平面ABCD =CE ,BC ⊂平面ABCD ,BC ∴⊥平面PEC ,又EM ⊂平面PEC ,BC EM ∴⊥,又PB EM ⊥ ,,,PB BC B PB BC ⋂=⊂平面PBC ,EM ∴⊥平面PBC ,且PC ⊂平面PBC ,EM PC ∴⊥.因为P 在底面的投影H 为线段EC 的中点,所以PC PE =,又PC CE =所以PCE 为等边三角形,故M 为PC 中点,所以M 在底面ABCD 上的投影为CH 的中点.在CDE 中,CE ===3,22CE AD PH CE ⊥== ,以C 为原点,分别以,CB CE 为,x y 轴,以过C 点且与平面ABCD 垂直的直线为z 轴建立空间直角坐标系,所以()()()30,0,0,2,0,0,,0,,44C B E M ⎛⎫ ⎪ ⎪⎝⎭,()3332,,0,44EB ME ⎛⎫∴==- ⎪ ⎪⎝⎭ ,设(),,n x y z = 是平面EBM的一个法向量,则02030044n EB x n ME y z ⎧⋅=⇒-=⎪⎨⋅=⇒-=⎪⎩,令2y =,则x z ==,即2,n = ,BC ⊥ 平面PEC ,()2,0,0CB ∴= 是平面PEC的一个法向量,57cos ,19n CB n CB n CB ⋅∴==⋅ ,因为二面角B EM C --是一个锐角,所以二面角B EM C --的余弦值为19.【点睛】方法点睛:向量法求二面角的方法:首先设两个平面的法向量坐标,利用线面垂直得到线线垂直即向量的数量积为零列出方程组求出法向量坐标,把二面角转化为向量的夹角,利用公式cos ,n CB n CB n CB⋅=⋅ ,结合图形写出夹角或补角.22.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为32,左右两顶点分别为12,A A ,过点()1,0C 作斜率为()110k k ≠的动直线与椭圆E 相交于,M N 两点.当11k =时,点1A 到直线MN 的距离为322.(1)求椭圆E 的标准方程;(2)设点M 关于原点的对称点为P ,设直线1A P 与直线2A N 相交于点Q ,设直线OQ 的斜率为2k ,试探究21k k 是否为定值,若为定值,求出定值并说明理由.【答案】(1)2214x y +=(2)是定值32,理由见解析【解析】【分析】(1)由题意可得32c a =322=,解方程求出,a c ,再结合b =,即可得出答案.(2)设()()()112211,,,,,M x y N x y P x y --,直线AB 的方程为1x my =+,联立直线和椭圆方程,利用根与系数的关系、斜率公式即可求得21k k 为定值.【小问1详解】依题意可知32c e a ==,由于11k =,则直线MN 的方程为10x y --=,因为点1A 到直线MN 的距离为322.322=,解得2a =,所以c =1b ==,所以椭圆E 的标准方程2214x y +=.【小问2详解】设()()()112211,,,,,M x y N x y P x y --,直线AB 的方程为1x my =+.此时11k m =.联立直线与椭圆方程22144x my x y =+⎧⎨+=⎩消去x 得()224230m y my ++-=,则有12122223,44m y y y y m m --+==++不妨设()00,Q x y ,因为2,,A N Q 三点共线,则22A N A Q k k =,所以则有020222y y x x =--,因为1,,A P Q 三点共线,则11A P A Q k k =则有010122y y x x =+-,所以0022110222011122212111,x x x my x my m m y y y y y y y y -+----===-===-20012222114422334mx m m m m y y y m -⎛⎫+=-+=-= ⎪-⎝⎭+,所以0032y x m =,所以232k m=,所以2132k k =,所以2132k k =.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.24。
江西省上饶中学2012-2013学年高一数学第四次周周练试题(实验班,
无答案)
练习时间:90分钟 满分:150分
班级___________ 姓名_______________ 学号_________
一、选择题:(本大题共10个小题,每小题5分,共50分)
1.已知全集{
}8,7,5,3,1=U ,集合{}7,3,1=A ,{}8,7,3=B ,则C U (A∩B )是( ) A .{
}8,5,1 B .{}8,7,5,3,1 C .{}7,5,3,1 D .{}8,7,5,3 2.要得到抛物线1)4(22
--=x y ,只需将抛物线y =2x 2
( )
A.向左平移4个单位,再向上平移1个单位
B.向左平移4个单位,再向下平移1个单位
C.向右平移4个单位,再向上平移1个单位
D.向右平移4个单位,再向下平移1个单位 3.已知幂函数)(x f y =的图象经过点)4
1
,2(,则=)3(f ( ) A.
61 B. 9
1
C. 33
D. 3
4.如果函数2
()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( )
A 、3a -≤
B 、3a -≥
C 、a ≤5
D 、a ≥5 5. 若函数()y f x =的定义域是[0,2],则函数(2)
()1
f x
g x x =-的定义域是( ) A .[0,1] B .[0,1) C . [0,1)
(1,4] D .(0,1)
6. 如图所示,曲线是幂函数α
x y =在第一象限内的图象, 已知α分别取2,2
1
,
1,1-四个值,则相应图象依次为( )
A.4321,,,C C C C
B.3124,,,C C C C
C. 1324,,,C C C C
D. 1234,,,C C C C
7. 设函数)(x f 定义在实数集上,且)1()1(x f x f +=-,当1≥x 时,x x f =)(,则有( ) A. )3
2()23()31
(f f f << B.
)3
1()3
2()2
3(f f f << C .)2
3()3
1()32(f f f << D. )3
1()2
3()3
2(f f f <<
8.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离,则H 与下落时间t (分)的函数关系表示的图象只可能是( )
D
C
B
A
t
H
O
3
t
H
O
3t H
O
3
3
O
H
t
9.已知函数x x x x f 2)(-=,则下列结论正确的是( )
A.)(x f 是偶函数,递增区间是()1,0
B.)(x f 是偶函数,递减区间是()1,∞-
C.)(x f 是奇函数,递减区间是()1,1-
D.)(x f 是奇函数,递增区间是()0,1- 10.已知b a bx ax x f +++=3)(2
是定义域为[]a a 2,1-的偶函数,则b a +的值为( )
A.
31 B. 0 C.2
1
D.不能确定 二.填空题(本大题共4个小题,每小题5分,共20分)
H
11.已知集合{
}1|-=
=x y y M ,{}
x y x N -==1|,则M ∩N=_______________。
12.已知)(x f 为奇函数,8)()(-=x f x g 且10)2(=-g ,则)2(g =________________ 13. 具有性质:1()()f f x x
=-的函数,我们称为满足“倒负”交换的函数,下列函数:
①1;y x x =-②1
;y x x =+③,(01)0,(1)1
,(1)x x y x x x
⎧
⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是
___________________________.(填序号)
14.如果关于x 的方程1242+=-m x x 有四个不同的实根,则m 的取值范围是 三:解答题(本大题共5小题,每小题16分,共80分)
15.已知集合{}73|≤≤=x x A ,{}102|<<=x x B ,{}a x x C <=|.
(1)求A ∪B (2)求)(A C R ∩B (3)若C A ⊆,求a 的取值范围.
16.已知二次函数)(x f 的最小值为1,且3)2()0(==f f . (1)求)(x f 的解析式;
(2)若)(x f 在区间[]1,3+a a 上不单调...
,求实数a 的取值范围.
17. 已知)(x f 的定义域为),0(+∞,且对定义域内的任意b a ,满足)()()(b f a f ab f +=,若
1>a ,则,0)(>a f 且1)2(=f
(1)证明:)(x f 在),0(+∞上是递增的 (2)若2)(<m f ,求m 的取值范围。
18. 已知函数x
b ax x f -+=1
)(2是奇函数,且2)1(-=f ,
(1)求函数)(x f 的解析式;
(2)试判断)(x f 在(0,1)上的单调性,并用定义证明你的结论。
19.已知二次函数32)(2
++=ax x x f
(1)若函数)(x f 在区间[-1,1]上的最小值为1,求实数a 的值。
(2)当8-=a 时,问: 是否存在常数)0(≥t t ,使得[]10,t x ∈时,)(x f 的值域为区间D ,
且D 的长度为t -12.(说明:区间[]b a ,的长度为b-a)。