基于ANSYS软件的齿轮接触强度分析
- 格式:pdf
- 大小:726.67 KB
- 文档页数:3
基于ANSYS的齿轮接触应力与啮合刚度研究共3篇基于ANSYS的齿轮接触应力与啮合刚度研究1齿轮作为一种常用的传动元件,在机械系统的运转中发挥着重要的作用。
因此,对于齿轮的力学性能研究具有重要的意义。
本文以ANSYS软件为工具,研究齿轮接触应力与啮合刚度的相关问题。
一、齿轮模型的建立齿轮模型的建立是研究齿轮力学性能的基础。
初步建模需要确定齿轮参数、材料参数等。
在本次研究中,我们选取了一个模数为4的齿轮进行建模,在材料参数选取方面,我们选择了常用的20CrMnTi材料,以其为基础进行实验。
建模之后需要进行网格划分,网格密度的选择会影响后续分析的准确性以及计算时间,因此需要选择合适的密度。
选取太粗的网格会导致结果失真,选取太细的网格则会消耗大量的计算时间。
本次研究选取了相对均匀的中等密度网格,以保证结果的准确性。
二、齿轮接触应力分析齿轮在啮合过程中会产生接触应力,这对于齿轮的寿命和工作效率都有着至关重要的作用。
因此,研究齿轮接触应力,选择适当的润滑方式,对齿轮寿命和传动效率都有着重要的意义。
在ANSYS中进行齿轮接触应力的分析和计算,需要考虑到许多复杂的因素,如齿形、材料参数、润滑方式等。
在本次研究中我们采用了基于有限元方法的接触分析(FEM),对齿轮接触应力进行评估。
得到接触应力的结果后,我们可以对齿轮的寿命进行评估,并针对接触应力过大的地方进行优化处理。
三、齿轮啮合刚度分析除了接触应力之外,齿轮的啮合刚度对于传动的效率和精度也有着重要的影响。
啮合刚度是指啮合中两齿之间相对于轴线方向的相对运动能力,也可以视为齿轮在啮合过程中的弹性变形程度。
齿轮的啮合刚度与齿轮副的堆叠误差、硬度、几何尺寸等的影响有关。
在本次研究中,我们采用了ANSYS的非线性有限元分析方法,对齿轮的啮合刚度进行建模和优化。
通过对啮合刚度的研究,我们可以指导齿轮的加工和优化,提高其传动效率和精度。
四、总结本次研究基于ANSYS对齿轮接触应力和啮合刚度进行了研究。
0引言差速器作为汽车动力传动系统的重要组成部分,在汽车于凹凸不平的路面上行驶或转弯时,能够限制左右(或前后)驱动轮以不同的速度旋转,确保驱动轮以纯滚动状态行驶。
差速器齿轮的优化设计对保证差速器强度和耐久度,保证车辆安全可靠行驶,提高整车驾驶性,减少能源消耗等具有重要意义。
差速器的齿轮传动性能的影响因素之一是齿形;目前广泛应用于差速器的齿廓曲线齿轮有渐开线齿轮、圆弧齿轮和Logix 齿轮。
日本学者小守勉首次提出了名为Logix 齿轮(Logix Gear )的新型齿轮。
如图1所示,Logix 齿形由多条微段渐开线连接而成,其节圆内外为凹凸形式,在啮合时齿廓上分布着大量相对曲率为0的结合点[1]。
取任一点O 1作夹角为α0的两条射线O 1N 1和O 1n 0,分别与节线P.L 交于N 1和n 0两点,其中O 1N 1与节线P.L 垂直。
取O 1n 0=G 1,并作线段O 1O′1=2G 1,使其与O 1n 0夹角为δ(称为相对压力角[2])。
若以O 1和O′1为圆心,以G 1为半径分别作两个相切的基圆,和节线P.L 分别交于N 1和n 0两点。
取g 1s 1为两圆的发生线,则根据渐开线的形成原理,曲线m 0s 1和m 1s 1分别是发生线g 1s 1沿O 1和O′1的基圆滚过弧长g 1n 1和g 1n 0形成的渐开线。
1Logix 齿轮副有限元模型根据齿轮啮合理论,Logix 齿轮由于各微段渐开线的结合点在啮合时相对曲率为零,大量零点的啮合使得齿轮的滑动系数非常小,基本上能够实现滑动摩擦,从而增加齿轮表面的接触疲劳强度。
差速器是车辆驱动桥的核心部件,建立一套针对差速器Logix 齿轮的高精度、普适性仿真模型,对保证整车动力传递及疲劳耐久性能起着关键作用。
本文主要选用有限元软件ANSYS 进行Logix 齿轮接触应力和齿根弯曲应力的仿真分析,一方面充分利用ANSYS 接触分析功能强大和后处理操作简便,运算速度快,结果可靠性高等优点,另一方面考虑ANSYS 前处理与ProE 等建模软件的契合度高,建好的模型导入过程顺利,节省了模型导入过程中可能的数据错误,提高了解算的准确性,有利于提高产品设计的优化效率。
基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。
接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。
ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。
本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。
二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。
解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。
数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。
ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。
接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。
三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。
用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。
2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。
接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。
3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。
可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。
四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。
ANSYS齿轮接触应力分析案例齿轮是机械传动系统中常用的零部件,用于传递动力和转速。
在齿轮的工作过程中,由于受力情况复杂,容易发生接触应力过大导致齿轮损坏的情况。
为了确保齿轮的工作性能和寿命,需要进行接触应力的分析和优化设计。
ANSYS作为常用的有限元分析软件,可以用于进行齿轮接触应力的模拟和分析。
本文将以一个齿轮接触应力分析案例为例,介绍如何使用ANSYS软件进行接触应力的分析。
本案例以一对齿轮为例,通过对齿轮的建模、加载和分析过程,展示如何通过ANSYS软件进行齿轮接触应力的分析。
1.齿轮建模首先,在ANSYS软件中建立齿轮的几何模型。
可以通过CAD软件绘制齿轮的几何形状,然后导入到ANSYS中进行网格划分。
在建模过程中,需要考虑齿轮的齿形、齿数、模数等参数,并根据实际情况设置合适的几何形状。
2.设置加载在建模完成后,需要设置加载条件。
在本案例中,以齿轮传递动力时的载荷为例,可以通过施加力或扭矩来模拟齿轮的工作情况。
根据实际情况设置载荷大小和方向,以便进行接触应力的仿真分析。
3.网格划分接着对齿轮的几何模型进行网格划分,生成有限元网格。
在ANSYS中,可以通过自动网格划分功能或手动划分网格,确保模型的几何形状与加载条件得到合理的分析精度。
4.设置材料属性在进行齿轮接触应力分析前,需要设置材料的力学性质。
根据齿轮的实际材料属性,设置材料的弹性模量、泊松比等参数,以便进行接触应力的仿真分析。
5.运行分析设置完加载和材料属性后,可以进行齿轮接触应力的仿真分析。
在ANSYS中选择适当的分析模型和求解器,进行接触应力的计算和分布分析。
通过分析结果可以得到齿轮接触区域的应力分布情况,确定是否存在应力集中的问题。
6.结果分析最后,分析计算结果并进行结果的分析和优化。
根据接触应力的分布情况,确定齿轮的工作性能是否满足要求,是否存在应力过大导致损坏的风险。
如果需要,可以对齿轮的设计参数进行调整和优化,以提高齿轮的工作性能和寿命。
基于ANSYS的齿轮静强度有限元分析0 引言作为工业领域中不可或缺的配件,齿轮在汽车、航空、冶金、矿山等行业的应用越来越广泛。
齿轮在工作过程中,主要起到啮合传递作用,同时齿轮也承受各种载荷,齿轮的强度对整个传动系统有着至关重要的影响,如果齿轮强度设计不当,在工作过程中齿轮失效会导致整个传动系统无法正常工作,甚至会引起其他部件的连锁失效,同时由于齿轮长时间处于交变荷载或冲击荷载的作用,因而对于其变形和强度的分析显得尤为重要。
有限单元法是利用电子计算机进行数值模拟分析的方法,ANSYS 软件作为一个功能强大、应用广泛的有限元分析软件,不仅有几何建模的模块,而且也支持其他主流三维建模软件,目前在工程技术领域中的应用十分广泛,其有限元计算结果已成为各类工业产品设计和性能分析的可靠依据。
在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。
求解时对整个问题区域进行分解,每个子区域都成为简单的,这种简单部分就称作有限元。
它通过变分方法,使得误差函数达到最小值并产生稳定解。
类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS开发。
它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。
《基于ANSYS软件的接触问题分析及在工程中的应用》篇一一、引言随着现代工程技术的快速发展,接触问题在各种工程领域中扮演着越来越重要的角色。
ANSYS软件作为一种强大的工程仿真工具,被广泛应用于解决各种复杂的工程问题,包括接触问题。
本文将详细介绍基于ANSYS软件的接触问题分析,并探讨其在工程中的应用。
二、ANSYS软件接触问题分析1. 接触问题基本理论接触问题是一种高度非线性问题,涉及到两个或多个物体在力、热、电等作用下的相互作用。
在ANSYS软件中,接触问题主要通过定义接触对、设置接触面属性、设定接触压力等参数进行模拟。
2. ANSYS软件中接触问题的分析步骤(1)建立模型:根据实际问题,建立相应的几何模型和有限元模型。
(2)定义接触对:在ANSYS软件中,需要定义主从面以及相应的接触类型(如面-面接触、点-面接触等)。
(3)设置接触面属性:根据实际情况,设置接触面的摩擦系数、粘性等属性。
(4)设定载荷和约束:根据实际情况,设定载荷和约束条件。
(5)求解分析:进行求解分析,得到接触问题的解。
3. 接触问题分析的难点与挑战接触问题分析的难点主要在于高度的非线性和不确定性。
此外,还需要考虑多种因素,如接触面的摩擦、粘性、温度等。
这些因素使得接触问题分析变得复杂且具有挑战性。
三、ANSYS软件在工程中的应用1. 机械工程中的应用在机械工程中,ANSYS软件被广泛应用于解决各种接触问题。
例如,在齿轮传动、轴承、连接件等部件的设计和优化中,ANSYS软件可以模拟出部件之间的接触力和应力分布,为设计和优化提供有力支持。
2. 土木工程中的应用在土木工程中,ANSYS软件可以用于模拟土与结构之间的接触问题。
例如,在桥梁、大坝、建筑等结构的分析和设计中,ANSYS软件可以模拟出结构与土之间的相互作用力,为结构的设计和稳定性分析提供依据。
3. 汽车工程中的应用在汽车工程中,ANSYS软件被广泛应用于模拟汽车零部件之间的接触问题。
基于ANSYS的齿轮弯曲应力、接触应力以及模态分析随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。
为较好地改善齿轮传动性能,有必要对齿轮进行静力学以及动力学分析。
对于齿轮的静力学分析,本文利用ANSYS对齿轮进行了齿根弯曲应力分析以及齿轮接触应力分析。
对于齿轮的动力学分析,本文利用ANSYS对其进行了模态分析,提取了齿轮的前十阶固有频率和固有振型。
最后实验表明,基于ANSYS的齿轮弯曲应力和接触应力相比较传统方法具有一定的裕度,而模态分析能较形象地展现其振型。
标签:齿轮;弯曲应力;接触应力;模态分析引言随着汽车性能和速度的提高,对变速箱齿轮也提出了更高的要求。
改善齿轮传动性能成为齿轮设计中的重要内容。
为了避免由于齿轮接触疲劳而引发的行驶事故,有必要对齿轮的齿根弯曲应力和齿面接触应力进行分析和评估。
同理,为避免由于齿轮共振引起的轮体破坏,有必要对齿轮进行固有特性分析,通过调整齿轮的固有振动频率使其共振转速离开工作转速。
齿轮的工作寿命与最大弯曲应力值的六次方成反比,因此最大弯曲应力略微减小,齿轮工作寿命即会大大提高[1]。
齿轮的最大弯曲应力往往出现在齿轮的齿根过渡曲线处,因此精确计算渐开线齿轮齿根过渡曲线处的应力,进而合理设计过渡曲线,对延长齿轮工作寿命、提高齿轮承载能力至关重要。
为了进行齿面接触强度计算,分析齿面失效和润滑状态,必须分析齿面的接触应力。
经典的齿面接触应力计算公式是建立在弹性力学基础上,而对于齿轮的接触强度计算均以两平行圆柱体对压的赫兹公式为基础。
但由于齿轮副啮合齿面的几何形状十分复杂,采用上面的方法准确计算轮齿应力和载荷分配等问题非常困难甚至无法实现。
随着计算机的普及,齿轮接触问题的数值解法获得了越来越广泛的应用。
齿轮副在工作时,在内部和外部激励下将发生机械振动。
振动系统的固有特性,一般包括固有频率和主振型,它是系统的动态特性之一,同时也可以作为其它动力学分析的起点,对系统的动态响应、动载荷的产生与传递以及系统振动的形式等都具有重要的影响。
基于ANSYS的圆柱直齿轮接触应力分析摘要:根据轮齿齿廓的数学模型,在ANSYS环境下建立了轮齿平面有限元模型,并进行了应力分析计算.与传统的方法相比,有限元分析法能准确地获得齿轮的真实应力场,为齿轮强度计算提供了可靠的依据.通过实例阐述了直齿轮的建模方法,并介绍了具体的设计原理,将生成的一对齿轮进行标准安装生成啮合模型。
通过ANSYS转化成由节点及元素组成的有限元模型,运用完全牛顿-拉普森方法进行接触应力的静力学求解,并介绍了算法原理。
说明了新的接触单元法的精确性、有效性和可靠性。
关键词:齿轮Ansys 接触应力接触分析有限元Based on the ANSYS spur gear contact stress analysisAbstract: According to the mathematic model of a tooth profile of gear,the finite element model of a flat of gear tooth was established under the environment of ANSYS and the stress of a gear tooth was analyzed and caculated by means of finite element method. The real stress field of gear obtained by finite element method was more accurate than that obtained by traditional method.Therefore,it can provide the dependable basis for strength calculation of teeth of the gear.The method of modeling of spur gear is illustrated by an example. The concrete design principles are introduced as well.A constructed pair of gears is fixed normatively to give birth to gear model. By way of ANSYS,the gear model is transformed to the finite element model consisting of nodes and elements. Then NR method is used to get the statics solution by contact stress,and the arithmetic principle is introduced. The new contact element method proposed in the thesis is proved to be precise,valid and reliability. Keyword:gear Ansys contact stress contact analysis finite element0 引言齿轮传动是机械传动中最广泛应用的一种传动,它具有效率高、结构紧凑、工作可靠、寿命长等优点。
基于ANSYS的多齿轮动态接触分析摘要:基于ansys建模,分析多齿轮在动态接触过程中齿面各处应力的分布与变化,对于合理设计齿轮副提高齿轮寿命具有重要意义,并且避免设计过程中复杂的人工计算,以此为依据进行齿轮设计可以大大加快设计过程提高可靠性。
关键词:ansys 有限元应力齿轮动态接触中图分类号:th132.41 文献标识码:a 文章编号:1007-3973(2013)006-051-021 引言随着齿轮传动向重载、高速、低噪、高可靠性方向发展,现代齿轮设计对齿轮传动系统的静、动态特性提出了更高的要求。
基于ansys对齿轮副建模,然后划分为有限个单元体并设置边界条件,将复杂力学问题的计算求解过程交由计算机完成可以大大节省人力,并且计算迅速,结果可靠。
本文以一对齿轮副的动态啮合过程为例,利用ansys对其进行建模、加载、求解从而分析其在啮合过程中的应力变化,为以后的齿轮设计提供力学上的理论依据。
2 有限元模型的建立与网格划分2.1 模型参数两个齿轮的基本参数如下:大齿轮:齿数45,模数2mm,压力角20?埃荻ジ呦凳?.0,顶隙系,0.5小齿轮:齿数36,模数2mm,压力角20?埃荻ジ呦凳?.0,顶隙系,0.5材料参数:45#,泊松比0.3,弹性模量206gpa,密度7850 2.2 单元选择及边界条件分析单元采用solid185单元,具有超弹性、应力钢化、蠕变、大变形和大应变能力。
通过接触向导建立齿轮之间的接触对和齿轮的刚性约束,则接触单元和目标单元将自动分配。
小齿轮为主动轮,约束齿轮内缘的径向位移和轴向位移;大齿轮为被动轮,约束径向位移和轴向位移。
小齿轮匀速转动,转速为0.2rad/s,大齿轮承受1200n·m的阻力矩,计算时间为1秒(小齿轮转过约11.5?埃邢拊p偷慕⑷缤?所示。
图1 齿轮啮合三维有限元模型3 仿真求解3.1 加载与求解由于是接触非线性瞬态分析,运算量很大,这里不进行整周旋转的模拟,只进行一对齿啮合过程的模拟,其余的轮齿与此相同。
1072013年9月下 第18期 总第174期1 概述随着齿轮传动向重载、高速、低噪、高可靠性方向发展,现代齿轮设计对齿轮传动系统的静、动态特性提出了更高的要求。
齿轮设计的主要内容之一是强度设计,因此,建立比较精确的分析模型,准确的掌握齿轮应力的分布特点和变化规律具有重要的意义。
①③④设计模型的几何尺寸及边界条件如下表所示,大齿轮与小齿轮的齿厚为10mm,两个齿轮的中心距离为81mm。
小齿轮为主动齿轮,大齿轮为从动齿轮,小齿轮均匀转速0.2rad/s,大齿轮承受600N.m 的阻力扭矩,计算时间为1s.(如表1表2)2 模型的建立定义小齿轮渐开线,定义小齿轮根部过渡曲线,定义小齿轮齿廓线,建立小齿轮模型,同理建立大齿轮模型,调整两个齿轮的位置,如图1所示。
3 齿轮有限元网格模型的建立在Ansys中对齿轮副进行分析,首先要建立齿轮的有限元网格模型。
依据齿轮啮合模型参数,把根据齿面方程设计的专有程序计算结果导人Ansys,建立齿轮单齿有限元网格模型如图2所示。
针对所建齿轮模型,在齿高方向划分了17层单元,过渡部分划分4层单元,齿厚方向划分41层单元,为节省计算资源,省略了齿轮的辐板和轮载部分等对接触分析结果影响不大的部分。
该模型共有7896个节点,7678个单元,轮齿采用Solid45八节点线性等参元,将生成的单齿模型数据导人到Ansys中,并对其进行旋转复制等操作,把单齿模型拓展为有限元网格模型。
4 齿面接触情况及分析过程在上述模型上施加扭矩,对面齿轮副进行分析计算。
由于面齿轮的传动误差都很小,一般都在10-4-10-2范围内,基本上呈一条直线,并且波动性不大。
下图给出面齿轮轮齿在一个啮合周期内5个啮合位置的接触情况。
其中:图3为初始啮合位置的接触情况,图4为啮合终了位置的接触情况。
图中显示了不同啃合位置面齿轮轮齿接触区域的位置和形状变化,反映了齿轮副的啃合性能。
理论上讲,面齿轮啃合时为点接触,而在加载时齿面形成椭圆状接触区,接触区的大小用接触椭圆的长轴来衡量。
622013年第31期(总第274期)NO.31.2013( CumulativetyNO.274 )通常在设计齿轮强度选择过程中,采取的多是人工方式进行设计和齿轮强度校验,具体方法是材料力学,用齿轮作为悬臂梁,对齿面接触强度和翅根弯曲强度进行设计和校核。
接着利用所得的设计结果对结构进行设计,同时将二维图纸画出来。
1 设计想法实践中可以看到,ANSYS技术对复杂实体建模表现出一定的局限性,一方面难以保证渐开线齿廓自身的形状精确度,另一方面也不能完成参数化设计。
对于Pro/E软件而言,其可以有效解决这一问题,实现这一操作目标;此外,与ANSYS之间的数据接口性能也比较好。
笔者建议在Pro/E软件应用基础上,建立一个精确度非常高的三维参数化圆柱齿轮模型,然后向ANSYS中导入Pro/E软件得到的模型,对齿轮模态、静态特性等进行有限元分析,此时推土机的终传齿轮自身的强度特性就可以得出,最后可以通过振型图、应用云图以及变形云图等方式和方法,对分析结果进行最为直接的显示。
2 建模图1 齿轮模型以笔者之见,齿轮模型建立只需将模数、齿数以及压力角和螺旋角等齿轮参数整合,并对轮缘、辅板的厚度以及轴孔的半径等参数进行综合考虑,便可以自动生成 齿轮。
低,所以得到了极大的推广。
而现代社会中随着PC机的普及发展,虚拟仪器的测试技术得到了实现,与前两段历程相比,这个阶段操作性更强,且费用最低,其灵活性与效率也最高,势必在将来得到大发展,但是其漏洞在于潜在的第三方技术的升级成为了始终威胁安防系统的隐患。
5 结语信息技术与通信技术的发达使安防技术的质量与效率愈加提高完善。
目前,安防技术已经涵盖了几乎所有行业,包括建筑、生活区、银行、交通、车辆等。
伴随人民生活水平的提高其需求水平相应增加,安防意识也越来越强,信息技术的飞速发展也反过来刺激了不法人员的升级换代,所以安防系统的重要性可想而知,由于智能安防市场的扩大,越来越多的企业开始介入对其的研发,但是客观的安防并不能根除危机隐患,要从根本上杜绝还依赖于社会精神文明的建设,人民总体素质的提高。
用柔度矩阵法求解三维弹性接触问题,只需调用一次有限元法得到各接触体可能接触点对上分别作用单位力时的柔度值,就可以完成接触问题的求解。
3有限元模型对一些比较复杂的结构计算,较为有效的方法是运用有限元模型进行数值计算,来获得所需要的计算结果。
为了模拟齿轮之间的接触力的传递情况,在2个齿轮之间考虑了接触问题,采用的有限元计算软件是ANSYS。
3.1齿轮有限元建模(1)大齿轮主要参数模数:2.5nlln齿数:30材料:45钢泊松比:0.259(2)小齿论主要参数模数:2.5mln齿数:20材料:40Cr泊松比:0.277由于ANSYS在齿轮造型比较复杂,所以,利用其比较完善的数据接口,在CAXA电子图板中利用其自带的齿轮库完成齿轮造型,以IGS文件格式导入到ANSYS中。
3.2定义单元属性由于直齿齿轮可以转化为平面问题,所以选用二维4节点片面单元PLANEl82用于建立面模型。
3.3网格划分如果用智能网格划分可能无法保证分析结果的精确,可以控制轮廓线上的单元数进行智能划分,网格划分结果见图1。
图1齿轮对整体有限元模型接触处的局部网格见图2,根据划分情况可以<起重运输机械:》2008(6)看出在接触处网格足够紧密,而不会产生应力集中的部位网格较疏松。
减少了不必要的单元,大大减少了计算量。
图2局部接触处网格划分4建模中的一些问题由于接触问题是一种高度非线性问题,其处理上存在2大难点:(1)在求解问题之前,并不知道接触区域,表面之间是接触或分开是未知的,突然变化的,这随载荷、材料、边界条件和其他因素而定;(2)大多的接触问题需要计算摩擦,有几种摩擦和模型供选择,摩擦使问题的收敛变得困难。
接触问题分为2种基本类型:刚体一柔体的接触,柔体一柔体的接触。
齿轮接触问题是典型的柔体一柔体的面一面接触问题。
4.1处理界面约束的方法选择在ANSYS中,提供了4种处理界面约束的方法:(1)Lagrange乘子法;(2)罚方法;(3)啪ge法和罚方法结合;(4)增广的Lagrange法。
基于ANSYS的齿轮强度有限元分析引言:齿轮是一种常见的传动装置,广泛应用于机械工程领域。
为了确保齿轮的可靠性和安全性,需要对其进行强度分析。
有限元方法是一种广泛使用的工程分析方法,可以对齿轮的强度进行准确的分析和预测。
本文将介绍基于ANSYS软件的齿轮强度有限元分析。
1.有限元建模:首先,需要进行齿轮的有限元建模。
在ANSYS软件中,可以通过创建几何体来构建齿轮模型。
可以根据实际情况选择建模方法,例如使用曲线来描述齿廓,并通过拉伸、旋转等操作来构建齿轮体。
在建模过程中应注意准确描述齿轮的尺寸、齿廓等关键参数。
2.材料属性定义:在有限元分析中,需要为齿轮定义材料属性。
根据齿轮的材料特性,可以选择合适的材料模型。
对于金属齿轮,通常可以采用线弹性或塑性模型。
在ANSYS软件中,可以通过选择材料属性来定义齿轮的材料模型,并设置相应的材料参数。
3.载荷和边界条件:在齿轮强度分析中,需要为齿轮定义载荷和边界条件。
载荷是齿轮承受的外部力和力矩,可以通过模拟实际工作情况来确定。
边界条件是指限定齿轮模型的边界约束条件,可以固定齿轮的一些部分或进行其他约束设置。
4.网格划分:有限元分析中的网格划分对结果的准确性和计算效率有重要影响。
在齿轮分析中,需要对齿轮模型进行网格划分,将其划分为一系列小单元。
在ANSYS软件中,可以选择不同的网格划分方法和参数,以获得合适的网格质量。
5.材料应力分析:在齿轮分析中,需要分析齿轮的应力分布情况。
通过有限元分析可以得到齿轮在不同位置的应力值,并可以通过结果云图等方式来可视化应力分布。
对于齿轮强度分析来说,重点要分析齿轮齿面、根底、齿轮轴等处的应力情况,以判断其是否满足设计要求。
6.应力分析结果评估:在有限元分析过程中,需要对分析结果进行评估。
可以将得到的应力结果与材料的强度数据进行比较,判断齿轮是否满足强度要求。
如果应力超过了材料极限,说明齿轮存在强度问题,需要进行结构优化和改进。
基于ANSYS有限元软件的直齿轮接触应力分析一、本文概述随着现代机械工业的飞速发展,齿轮作为机械设备中的关键传动元件,其性能的稳定性和可靠性对于设备的长期运行和维护至关重要。
直齿轮作为齿轮传动的一种基本形式,其接触应力的分布与大小直接影响着齿轮的工作性能和使用寿命。
因此,对直齿轮接触应力的深入研究与分析,对于提高齿轮的设计水平、优化制造工艺以及提升设备的整体性能具有重要意义。
本文旨在利用ANSYS有限元软件对直齿轮的接触应力进行分析。
简要介绍了直齿轮的基本结构和传动原理,阐述了接触应力分析的必要性和重要性。
详细阐述了ANSYS有限元软件在齿轮接触应力分析中的应用,包括建模、网格划分、材料属性设定、接触设置、求解及后处理等关键步骤。
通过实例分析,展示了ANSYS软件在直齿轮接触应力分析中的具体操作流程,并对分析结果进行了详细的解读。
总结了利用ANSYS进行直齿轮接触应力分析的优势和局限性,并对未来的研究方向进行了展望。
本文旨在为齿轮设计师和工程师提供一种有效的直齿轮接触应力分析方法,帮助他们更好地理解直齿轮的应力分布特性,优化齿轮设计,提高齿轮的工作性能和可靠性。
本文也为相关领域的学者和研究人员提供了一种有益的参考和借鉴。
二、直齿轮接触应力的理论基础在直齿轮传动过程中,接触应力是决定齿轮使用寿命和性能的关键因素之一。
因此,对其进行准确的接触应力分析至关重要。
接触应力的分析主要基于弹性力学、材料力学和摩擦学的基本理论。
弹性力学是研究弹性体在外力作用下变形和应力分布规律的学科。
在直齿轮接触问题中,通常假设齿轮材料为线性弹性材料,满足胡克定律。
齿轮在啮合过程中,由于接触力的作用,齿面会产生弹性变形,进而产生接触应力。
材料力学是研究材料在受力作用下的应力、应变和强度等性能表现的学科。
对于直齿轮,材料的选择对齿轮的接触应力分布和承载能力有重要影响。
通常,齿轮材料需要具备较高的弹性模量、屈服强度和疲劳强度等。
10.16638/ki.1671-7988.2018.08.013基于ANSYS软件的齿轮接触强度分析季景方1,黎遗铃2(1.汽车动力传动与电子控制湖北省重点实验室(湖北汽车工业学院),湖北十堰442002;2.比亚迪汽车工业有限公司,广东深圳518000)摘要:齿轮传动是汽车传动的主要形式,其强度不足导致的失效问题给汽车企业造成巨大经济损失,文章基于ANSYS软件对齿轮接触强度进行分析。
首先使用CATIA软件建立了一对渐开线直齿圆柱齿轮的三维模型,并将三维模型导入ANSYS软件中进行了齿轮强度接触分析,得到了齿面、齿根等处的应力分布规律。
论文的研究为齿轮的设计提供了理论参考。
关键词:齿轮;接触强度;有限元中图分类号:U467 文献标识码:B 文章编号:1671-7988(2018)08-36-03Contact strength analysis of gear based on ANSYSJi Jingfang1, Li Yiling2( 1.Key Laboratory of Automotive Power Train and Electronics (Hubei University of Automotive Technology), Hubei Shiyan, 442002; 2.BYD Automotive Industry Limited Company. Guangdong Shenzhen 518000 )Abstract: The gear transmission is the main form of automobile transmission and the failure of gear causes great economic loss for automobile enterprise. Contact strength analysis of gear is researched based on ANSYS in this paper. The three- dimensional model of a pair of involutes spur gear is established by using CATIA and the three dimensional model is introduced into the ANSYS to carry out contact strength analysis, and the stress distribution law of the tooth surface and the tooth root is obtained. The research provides a theoretical reference for gear design in this paper.Keywords: gear; contact strength; finite elementCLC NO.: U467 Document Code: B Article ID: 1671-7988(2018)08-36-03前言齿轮传动以其工作可靠、寿命长等特点在汽车传动系中具有非常广泛的应用,其齿轮的质量和性能直接影响了产品的品质。
齿轮在实际工作中要适应复杂的载荷工况,因强度不足导致的轮齿折断、齿面磨损等工作失效给企业造成了巨大的经济损失。
本文基于ANSYS软件对齿轮的接触强度进行分析,为齿轮的科学化设计提供参考。
1 直齿轮参数化建模1.1 渐开线方程根据几何关系,渐开线的极坐标方程式为:(1)其中r k为向径,r b为基圆半径,θk为展角,αk为压力角。
运用CATIA建模时,函数方程使用的坐标系为直角坐标系,需要将极坐标系方程式转化为直角坐标系方程式,即(2)作者简介:季景方,(1986-),男,汉族,河南濮阳人,硕士,助教,研究方向:汽车零部件设计和力学分析。
项目基金:汽车动力传动与电子控制湖北省重点实验室创新基金项目(2015XTZX0430)。
36季景方 等:基于ANSYS 软件的齿轮接触强度分析371.2 齿轮参数模数、齿数、压力角、齿顶高系数、顶隙系数为直齿轮的基本参数,选择压力角为20°,齿顶高系数为1,顶隙系数为0.25。
齿轮的具体参数如表1所示。
表1 齿轮参数表齿根圆角半径p f 公式是由实践总结得出的经验公式,科学合理的选择齿根圆角半径可以在很大程度上减少应力集中,增大轮齿抗弯强度。
在CATIA 提供的变量规则fog 中输入方程式(1.2)来创建渐开线上的点。
由于轮齿的各个齿形一致且具有对称性,故只需绘制一个齿的齿廓,再通过阵列命令完成全部渐开线齿廓建模。
图1为得到的单个轮齿的齿廓线。
单个轮齿齿廓线通过完整径向“阵列”和“接合”操作后,就可得到整个齿轮的齿廓曲线。
在CATIA 的零件设计模块中,通过“凸台”、“凹槽”等命令即可完成渐开线直齿轮的三维参数化建模,如图2所示。
此外,修改齿数z 便可得到与之啮合的另一个齿轮模型。
图1 单个轮齿齿廓线 图2 渐开线直齿轮模型1.3 齿轮啮合装配齿轮的虚拟装配实质是约束两齿轮的相对位置使之实现啮合,在CATIA 的装配设计模块中进行。
为了给齿轮接触有限元分析打下基础,齿轮装配需在节圆处相切啮合。
通过手动调节去实现齿轮相切,有很大的可能使齿轮发生干涉。
实现渐开线直齿轮的精确装配,有以下两种方法。
第一种方法是分别在齿轮轮廓线的接触点处建立两个平面,一个是与齿廓表面相切的平面,另一平面是与之相互垂直的法平面。
装配中,约束两齿轮切平面与切平面、法平面与法平面的偏移量为0,再约束两齿轮同侧端面偏移为0即可。
第二种方法是分别在齿轮轮廓线的接触点建立与齿廓表面相切的切平面。
装配中,约束两齿轮的切平面偏移量为0,再约束同侧齿轮端面偏移为0,最后约束两齿轮中心距,中心距为两齿轮模数与齿数乘积之和。
最终得到的装配图如图3所示。
图3 齿轮啮合的装配图2 齿轮接触强度分析2.1 单元类型与材料属性 为了减少单元数目,节约计算时间,啮合齿轮模型采用简化模型,如图4所示。
图4 简化的齿轮对模型生成有限元模型的前期工作是设定模型的单元属性。
单元类型的选择不仅影响网格的合理划分,而且对求解的结果精度影响很大。
由于齿轮接触分析为非线性分析,本文采用Solid186作为结构分析单元,即有中间节点的六面体单元,因为它适用于有曲线边界的建模,具有塑性、应力强化、大变形和大应变的功能。
两齿轮选取相同材料,材料特性如表2所示。
表2 齿轮材料特性2.2 网格划分与接触对建立网格划分是几何模型生成有限元模型的关键步骤,网格的质量会直接影响计算时间和结果精度。
结合直齿轮载荷轴向均匀分布的特点,本文采用扫掠网格划分,即先设置两齿轮全局网格尺寸大小,扫掠生成网格后,最后在可能的应力集中区域进行网格细化。
最终的网格单元数为7070,节点数为32039,具体如图5所示。
由于小齿轮为主动轮,大齿轮为从动轮,因此,小齿轮轮齿齿面为目标面,大齿轮轮齿齿面为接触面。
在定义接触对之前,要识别模型在变形期间可能会发生的接触,齿轮啮合较为复杂且存在接触变形,有时候会多个轮齿进行啮合,此时应定义多个接触对。
本文选取只有一对轮齿在分度圆处汽车实用技术38进行啮合的情况进行分析,即模型中只有一对接触对,建立的接触对如图6所示。
图5 齿轮的网格划分 图6 齿轮模型的接触对2.3 边界条件和载荷施加齿轮传动过程是主动轮带动从动轮来实现力和运动的传递,一般的齿轮传动只有绕轴线转动的一个自由度。
本文对被动轮的内孔表面施加全约束,主动轮在柱坐标系下约束使其只有绕轴线转动一个自由度。
载荷加载时,在小齿轮内孔表面所有的节点上施加切向力,方向为逆时针转动,切向力F r 大小为:(3)其中T 为转矩,N 为内圈节点数,R 为内圈半径。
本文中T =15000N . mm ,小齿轮内孔d =45 mm ,内圈节点数N =260。
根据公式(1.3)得到切向力F r =1.283N 。
2.4 结果分析ANSYS 完成计算后得到的von Mises 应力如图7所示。
由图7可见,应力在接触区域的接触中心处最大,最大值247.71MPa ,在沿接触面法线方向应力逐渐减小。
同时在轮齿齿根处的弯曲应力也比较大,并向齿轮旋转中心方向逐渐减小,应力沿齿宽方向均匀分布。
图7 齿轮接触von Mises 应力图3 结论本文利用CATIA 的参数化建模功能建立了渐开线直齿轮的三维数字模型,并根据直齿轮啮合原理对两齿轮进行了虚拟装配。
借助ANSYS 有限元软件对齿轮三维啮合模型进行了接触强度分析,指出接触应力在节线附近的区域相对较大,在节线以下靠近齿根的位置接触应力达到最大值,并且应力沿齿宽方向均匀分布。
参考文献[1] 刘建亮,范乃则,田华军,赵家栋,裴帮,李耀,赵玉凯,李宝奎.基于有限元法的渐开线斜齿轮接触强度分析[J].电力机车与城轨车辆,2017,40(02):56-64.[2] 戴喜明.基于有限元法的齿轮强度接触研究分析[J].中国新技术新产品,2016(13):12-13.[3] 周万峰.双渐开线齿轮接触特性研究[D].青岛科技大学,2016. [4] 王运知.直齿轮承载接触分析与强度计算[J].机械传动,2016,40(03):74-77.[5] 张延杰.车辆传动齿轮强度计算现代方法研究[D].上海工程技术大学,2016.。