无穷级数的概念和性质
- 格式:ppt
- 大小:491.00 KB
- 文档页数:24
高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。
以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。
其中,无穷级数的定义域可以是实数集或复数集。
2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。
数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。
3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。
如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。
4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。
常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。
5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。
在实际应用中,无穷级数往往被用来求解各种问题。
6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。
无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。
7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。
例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。
以上是高等数学无穷级数的一些重要知识点总结。
希望能对读者有所帮助。
第十章 无穷级数一、本章结构图⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧→⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧→⎪⎩⎪⎨⎧→函数的幂级数展开收敛半径、收敛区间和函数求解幂级数函数项级数发散条件收敛绝对收敛敛散性判定交错级数根值审敛法比值审敛法比较审敛法敛散性判定正项级数常数项级数无穷级数二、基本概念1.无穷级数:设给定一个数列1u ,2u ,, n u ,,则由这数列构成的表达式12n u u u ++++称为无穷级数,简称级数,记为1nn u∞=∑,即121nn n uu u u ∞==++++∑其中n u 称为级数的一般项(或通项),2.级数1n n u ∞=∑前n 项的部分和:级数1n n u ∞=∑的前n 项的和,记作n S3.级数的和:若级数1n n u ∞=∑的部分和数列{}n S 的极限存在,即lim n n S S →∞=,则称级数1nn u∞=∑收敛,S 为级数1nn u∞=∑的和,记为121nn n uu u u S ∞==++++=∑如果lim n n S →∞不存在,则称级数1nn u∞=∑发散4.正项级数:如果级数1nn u∞=∑的每一项都是非负数,即0(1,2,)n u n ≥=,则称此级数为正项级数5.交错级数:如果各项是正负交错的级数,可以写成下面的形式1234u u u u -+-+-或 1234u u u u -+-+其中1u ,2u ,都是正数,则称此级数为交错级数6.绝对收敛:如果级数1nn u∞=∑各项的绝对值所构成的正项级数1nn u∞=∑收敛,则称级数1nn u∞=∑绝对收敛7.条件收敛:如果级数1nn u∞=∑收敛,而级数1nn u∞=∑发散,则称级数1nn u∞=∑条件收敛8.函数项级数:如果给定一个定义在区间I 上的函数列12(),(),,(),n u x u x u x ,则称有这个函数列构成的表达式121()()()nn n uu x u x u x ∞==++++∑ (1)为定义在区间I 上的函数项无穷级数,简称函数项级数9.收敛点:对于任意的0x I ∈,函数项级数就成为常数项级数1()nn u x ∞=∑,若此常数项级数收敛,则称点0x 是函数项级数的收敛点;若常数项级数发散,则称点0x 是函数项级数的发散点10.收敛域:函数项级数的所有收敛点的全体称为它的收敛域;所有发散点的全体称为它的发散域11.和函数:在收敛域上,函数项级数的和是x 的函数()S x ,称()S x 为函数项级数的和函数,这个函数的定义域就是级数的收敛域,即12()()()()n S x u x u x u x =++++12.幂级数:形如2012nn a a x a x a x +++++的级数称为幂级数,记作nn n a x∞=∑,其中012,,,,,n a a a a 都是常数,称为幂级数的系数13.幂级数收敛半径:对于幂级数nn n a x∞=∑,若存在正数R ,使得当x R <时,幂级数绝对收敛;使得当x R >时,幂级数发散;当x R =与x R =-时,幂级数可能收敛也可能发散,这个正数R 称为幂级数nn n a x∞=∑的收敛半径,收敛域内的最大开区间),R R -(称为幂级数nn n a x∞=∑的收敛区间14.泰勒级数:如果函数)(x f 在点0x 的某邻域内具有任意阶导数,有泰勒公式可知,函数)(x f 将展成幂级数+-++-''+-'+n n x x n x f x x x f x x x f x f )(!)()(!2)())(()(00)(200000称以上幂级数为函数)(x f 在点0x 处的泰勒级数,其系数称为函数)(x f 在点0x 处的泰勒系数三、基本定理1.收敛级数的基本性质:(1)如果级数1n n u ∞=∑收敛于S ,则它的各项同乘以一个常数k 所得的级数1n n ku ∞=∑也收敛,且级数1nn ku∞=∑收敛于kS(2)如果级数1n n u ∞=∑,1n n v ∞=∑分别收敛于1S 和2S ,则级数1()n n n u v ∞=±∑也收敛,且级数1()nn n uv ∞=±∑收敛于12S S ±(3)在级数1n n u ∞=∑中任意去掉、增加或改变有限项,级数的敛散性不会改变,但对于收敛级数,其和将受到影响(4)如果级数1n n u ∞=∑收敛,则任意加括号后得到的级数1121111()()()k k n n n n n u u u u u u -++++++++++++仍收敛,其和不变(5)如果加括号后所得的级数发散,则原来级数也发散 (6)级数收敛的必要条件:若级数1nn u∞=∑收敛,则它的一般项n u 趋于零,即lim 0n n u →∞=(7)lim 0n n u →∞≠(包括极限不存在),则级数1nn u∞=∑必发散2、正项级数审敛法(1)正项级数1nn u∞=∑收敛的成分必要条件是它的部分和数列有界(2)比较审敛法:设级数1nn u∞=∑和1nn v∞=∑都是正项级数,且(1,2,)n n u v n ≤=,若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛;反之,若级数1nn u∞=∑发散,则级数1nn v∞=∑发散(3)设级数1nn u∞=∑和1nn v∞=∑都是正项级数,如果级数1nn v∞=∑收敛,且存在自然数N ,使当n N ≥时,有(0)k n u kv k ≤>成立,则级数1nn u∞=∑收敛;若级数1nn v∞=∑发散,且当n N≥时,有(0)k n u kv k ≥>成立,则级数1nn u∞=∑发散(4)设级数1n n u ∞=∑是正项级数,如果有1p >,使1(1,2,)n p u n n ≤=,则级数1nn u ∞=∑收敛;如果1(1,2,)n u n n≥=,则级数1n n u ∞=∑发散(5)比较审敛法的极限形式:设级数1nn u∞=∑和1nn v∞=∑都是正项级数,如果lim (0)nn nu l l v →∞=<<+∞,则级数1n n u ∞=∑和1n n v ∞=∑有相同的敛散性 (6)比值审敛法:若正项级数1n n u ∞=∑的后项与前项的比的极限等于ρ,即1lim n n nu u ρ+→∞=,则当1ρ<时级数收敛;当1ρ>(或1lim n n nu u +→∞=∞)时级数发散;当1ρ=时级数可能收敛也可能发散,要用其他方法判定(7)根值审敛法:设级数1nn u∞=∑是正项级数,如果它的一般项n u 的n 次根的极限等于ρ,即n ρ=,则当1ρ<时级数收敛;当1ρ>(或n =∞)时级数发散;当1ρ=时级数可能收敛也可能发散 3、交错级数审敛法莱布尼茨定理:如果交错级数11(1)n n n u ∞-=-∑满足条件1(1,2,)n n u u n +≥=及lim 0n n u →∞=,则级数收敛,且其和1S u ≤,其余项n r 的绝对值1n n r u +≤4、绝对收敛与条件收敛的关系如果级数1nn u∞=∑绝对收敛,则级数1nn u∞=∑一定收敛 (逆定理不成立)5、幂级数收敛域的定理(1)阿贝尔定理:如果幂级数nn n a x∞=∑,当00(0)x x x =≠时收敛,则适合不等式0x x <的一切x 使次幂级数绝对收敛。
无穷级数的概念与性质无穷级数(Infinite series)是数学中一个非常重要的概念,它是由无限多个数相加或相减得到的数列。
在数学中,我们经常会遇到各种各样的无穷级数,它们具有丰富的性质和应用。
本文将介绍无穷级数的基本概念,并探讨其性质及应用。
一、无穷级数的概念无穷级数指的是无限多个数按照一定的规律连加(或连减)得到的数列。
一般可以表示为下面的形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃是无穷级数的通项,S是无穷级数的和。
无穷级数的和并不一定存在,它可能是一个有限数值,也可能是无穷大或不存在。
二、常见的无穷级数1.等差数列等差数列是最简单的无穷级数之一。
它的通项公式为:aₙ = a₁ + (n-1)d其中,a₁是首项,d是公差,n表示项数。
等差数列的无穷级数可以通过求和公式来计算:S = a₁ + (a₁+d) + (a₁+2d) + ...通过对等差数列求和,我们可以得到如下公式:S = (a₁ + aₙ) * n / 22.等比数列等比数列也是常见的无穷级数之一,它的通项公式为:aₙ = a₁ * q^(n-1)其中,a₁为首项,q为公比,n表示项数。
等比数列的无穷级数可以通过求和公式来计算:S = a₁ / (1-q)其中,当0<q<1时,S存在且为有限值,当q≥1时,S不存在。
3.调和级数调和级数是指无穷级数的通项是倒数的情况,它的通项公式为:aₙ = 1/n调和级数可以表示为:S = 1/1 + 1/2 + 1/3 + ...调和级数是一个特殊的无穷级数,它的和可以无限增大。
例如,前n项和可以表示为:Sₙ = 1/1 + 1/2 + ... + 1/n当n趋向于无穷大时,Sₙ趋向于无穷大。
三、无穷级数的性质1.收敛与发散无穷级数的和可能是有限的,也可能是无穷大,也有可能不存在。
如果一个无穷级数的和存在并且有限,我们称该级数是收敛的;反之,如果一个无穷级数的和不存在或者无穷大,我们称该级数是发散的。
无穷极数知识点总结1. 无穷级数的定义无穷级数是指由无穷多个项组成的级数,通常表示为a1 + a2 + a3 + ... + an + ...,其中每一项an是一个实数或复数。
无穷级数可以是收敛的,即其和是一个有限的值,也可以是发散的,即其和不存在或为无穷大。
2. 无穷级数的收敛无穷级数收敛的概念是指无穷级数的和在某个范围内趋于一个有限的值。
收敛的无穷级数在数学分析和实际应用中有着广泛的应用,例如在泰勒级数展开、微积分中的积分计算等方面。
无穷级数的收敛有多种判别法,如比较判别法、根值判别法、积分判别法等。
3. 无穷级数的发散无穷级数发散的概念是指无穷级数的和无法趋向于一个有限的值,而是趋向于无穷大或者根本无法定义。
无穷级数的发散也有多种判别法,例如奇偶项判别法、柯西收敛准则等。
4. 绝对收敛与条件收敛无穷级数的收敛有两种情况,一种是绝对收敛,即该级数每一项的绝对值级数收敛;另一种是条件收敛,即该级数每一项的绝对值级数发散,但级数本身却收敛。
绝对收敛级数在某种程度上更容易处理和计算,而条件收敛级数的性质相对更为复杂,也更有意思。
5. 级数收敛的充分条件对于实数级数来说,级数部分和序列的收敛性与级数本身的收敛性之间是十分紧密的,因此研究级数部分和序列的收敛性可以得到级数收敛的充分条件。
比如级数收敛的柯西准则、级数收敛的柯西——施瓦茨准则、莱布尼茨级数收敛准则等。
6. 无穷级数的运算无穷级数也可以进行加减乘除等运算,不过进行这些运算时需要满足一定的条件,比如级数收敛、级数部分和序列的收敛性等。
无穷级数的运算规则也有许多特殊的性质,如级数的收敛性与绝对收敛性的性质、级数的乘法运算性质、级数的幂级数展开等。
7. 级数收敛的应用无穷级数的研究在数学中有着广泛的应用,比如在分析学中的泰勒级数展开、微积分中的求和、微分方程的求解、数论中的级数和等方面都有不同程度的应用。
无穷级数也在物理学、工程学、经济学等应用领域中有着很多重要的应用。
无穷级数知识点总结公式无穷级数的定义:无穷级数的一般形式可以表示为:\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]其中,\( a_n \) 是级数的第 n 个项。
级数的和通常记为 \( S \),即\[ S = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]当级数的和存在有限值时,称级数收敛;当级数的和不存在有限值时,称级数发散。
无穷级数的性质:1. 无穷级数的和与项的次序无关级数的项次序可以进行重新排列,其和仍然相同。
2. 收敛级数的任意项的和都趋于零对于收敛级数,其各项的和对应的部分和序列的极限为级数的和。
3. 收敛级数的每一项都可以表示为部分和序列的差对于收敛级数,其每一项都可以表示为相邻两个部分和之差。
无穷级数的收敛性:在讨论无穷级数时,我们关心的一个重要问题是该级数是否收敛。
无穷级数的收敛性可以通过不同的收敛判别法来进行判断。
1. 正项级数收敛判别法对于正项级数 \(\sum_{n=1}^{\infty} a_n\):- 若 \( \lim_{n \to \infty} a_n = 0 \) 且 \( a_n \) 单调递减(即 \( a_{n+1} \leq a_n \)),则级数收敛;- 若 \( a_n \) 单调递减且有界,则级数收敛;- 若 \( \lim_{n \to \infty} a_n \) 不存在或 \( \lim_{n \to \infty} a_n \neq 0 \) ,则级数发散。
2. 比较判别法设 \( \sum_{n=1}^{\infty} a_n \) 和 \( \sum_{n=1}^{\infty} b_n \) 为两个级数,若存在正常数 \( C \),当 \( n \) 充分大时有 \( 0 \leq a_n \leq Cb_n \),则级数\( \sum_{n=1}^{\infty} b_n \) 收敛时级数 \( \sum_{n=1}^{\infty} a_n \) 收敛,级数\( \sum_{n=1}^{\infty} b_n \) 发散时级数 \( \sum_{n=1}^{\infty} a_n \) 发散。
无穷级数的基本概念与性质无穷级数是数学中一种重要且有趣的概念。
它由无穷多个数项按照一定规律相加而构成。
在本文中,我们将详细探讨无穷级数的基本概念与性质。
无穷级数的定义相对简单直观。
给定一列实数 { a_n }_{ n =1 }^{ \infty } ,则无穷级数可以通过将其数项按顺序相加得到。
符号∑_{ n = 1 }^{ \infty } a_n 表示这个无穷级数。
然而,要确定无穷级数是否收敛,我们需要引入部分和的概念。
部分和 S_n 是无穷级数的前 n 项和,即 S_n = a_1 + a_2 + ... + a_n 。
如果当 n 增大时,部分和 S_n 的值逐渐趋近于一个有限的数,那么我们说这个无穷级数 S 收敛,记作S = ∑_{ n = 1 }^{ \infty } a_n 。
否则,无穷级数 S 发散。
无穷级数有许多有趣的性质。
首先,我们需要讨论和与部分和之间的关系。
当无穷级数收敛时,我们称之为收敛级数,而它对应的部分和序列 { S_n }_{ n = 1 }^{ \infty } 是收敛的。
换句话说,收敛级数的部分和序列趋近于一个有限的数。
一个重要的定理是柯西收敛准则。
柯西收敛准则表明,当且仅当对于任意的正整数 N ,存在正整数 M > N ,使得当 m > n > N 时, | S_m - S_n | < ε ,其中ε > 0 是任意小的正数。
这个定理给出了判断无穷级数收敛与否的充分条件,即无穷级数收敛当且仅当其部分和序列满足柯西收敛准则。
对于收敛级数,我们还可以进行求和的运算。
当无穷级数S = ∑_{ n = 1 }^{ \infty } a_n 收敛时,我们可以计算其和。
设 S_n 是无穷级数的前 n 项和,即部分和序列 { S_n }_{ n = 1 }^{ \infty } 收敛到 S ,则我们可以得到以下结论:当 n 趋近于无穷大时, S_n 也趋近于 S 。
无穷级数与收敛半径无穷级数在数学中扮演着重要的角色,它们的理论和应用在各个领域都有广泛的应用。
其中一个关键概念就是收敛半径,它是无穷级数收敛的程度的度量。
本文将介绍无穷级数的定义、性质,并探讨收敛半径的概念及其计算方法。
一、无穷级数的定义与性质无穷级数由一系列具有特定规律的数项组成,形如:S = a₁ + a₂ + a₃ + ... + aₙ + ...其中a₁, a₂, a₃, ...是一系列实数或复数,称为级数的项。
级数的部分和是指取前n个项之和,即Sn = a₁ + a₂ + ... + aₙ。
对于级数S,如果存在一个数L,使得对于任意给定的正数ε,总存在正整数N,使得当n > N时,|Sn - L| < ε成立,则称级数S收敛于L。
如果不存在这样的数L,则称级数S发散。
收敛级数有一些重要性质。
首先,收敛级数的项必定趋于零。
其次,对于收敛的级数,其部分和构成的数列是收敛的。
这意味着收敛级数的部分和序列将会趋于一个有限的值。
二、收敛半径的定义与性质对于幂级数∑aₙxⁿ,其中aₙ是系数,x是变量,我们定义一个重要的概念——收敛半径。
收敛半径R以以下方式定义:R = 1 / lim sup(√ⁿᵀʰ aₙ)其中lim sup表示上极限。
该公式给出了一个半径,使得当|x| < R时,幂级数绝对收敛,并且当|x| > R时,幂级数发散。
收敛半径具有以下重要性质。
首先,对于任何收敛半径R,幂级数在区间(-R, R)内都是绝对收敛的。
其次,幂级数在区间外发散,即当|x| > R时,幂级数绝对发散或者发散。
三、计算收敛半径的方法在实际应用中,计算收敛半径是十分重要的。
下面介绍两种常用的判别法来计算收敛半径。
1. 比值法比值法是一种简便的方法,可以快速判断幂级数的收敛半径。
具体步骤如下:首先,计算幂级数的通项极限:ρ = lim|aₙ₊₁ / aₙ|然后,根据以下三种情况进行判断:- 当ρ = 0时,收敛半径为正无穷。