研究生矩阵理论
- 格式:ppt
- 大小:2.94 MB
- 文档页数:119
研究生矩阵论矩阵论是数学中的一个重要分支,它研究的对象是矩阵及其性质。
研究生在学习矩阵论时,需要深入理解矩阵的基本概念和性质,并掌握一些重要的定理和推论。
本文将介绍研究生矩阵论的一些重要内容,以帮助读者更好地理解和应用矩阵论知识。
矩阵是由数个数按照一定的规律排列成的矩形数组。
矩阵的行和列分别代表其维度。
在矩阵论中,我们通常用大写字母表示矩阵,如A、B、C等。
矩阵中的每个元素用小写字母表示,如a、b、c等。
矩阵的运算包括加法、减法、数乘和矩阵乘法等。
这些运算满足一定的性质,如结合律、分配律等。
矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
转置矩阵的性质有:(A^T)^T = A,(A + B)^T = A^T + B^T,(kA)^T = kA^T,其中A、B是矩阵,k是数。
矩阵的逆是指对于一个可逆方阵A,存在一个方阵B,使得AB = BA = I,其中I是单位矩阵。
如果一个矩阵没有逆矩阵,我们称其为奇异矩阵。
逆矩阵的性质有:(A^T)^{-1} = (A^{-1})^T,(AB)^{-1} = B^{-1}A^{-1},(kA)^{-1} = \frac{1}{k}A^{-1},其中A、B是可逆矩阵,k是非零数。
矩阵的秩是指矩阵中非零行(列)的最大个数。
矩阵的秩具有一些重要的性质:如果矩阵A的秩为r,则A的任意r阶子式不等于0,而r+1阶子式等于0。
矩阵的特征值和特征向量是矩阵论中的重要概念。
对于一个方阵A,如果存在一个非零向量x,使得Ax = \lambda x,其中\lambda是一个数,那么\lambda称为A的特征值,x称为对应于特征值\lambda的特征向量。
特征值和特征向量具有一些重要的性质:矩阵A和其转置矩阵A^T具有相同的特征值;A的特征值之和等于A 的迹,即矩阵A的所有特征值之和等于A的主对角线上元素之和。
矩阵的相似性是矩阵论中的一个重要概念。
对于两个方阵A和B,如果存在一个可逆矩阵P,使得P^{-1}AP = B,那么我们称A和B 是相似的。
1矩阵的基本知识正规矩阵:实对称阵,实反对称阵,实正交矩阵,hermite 矩阵,反hermite 矩阵,酉矩阵2.1矩阵的特征值与特征向量2.2矩阵的相似对角化2.3矩阵的Jordan 标准型1、不变因子、初等因子、行列式因子的定义2、Jordan 标准型的求法:初等变换法、行列式因子法3、相似变换矩阵的求法:J=P-1AP→AP=PJ,k i j 的形式、二项式系数4、相似对角化的条件:r 重根需对应r 特征向量,否则不能对角化2.4hamilton-cayley 定理()()()0,det =-=A A I n ϕλλϕ则,用此公式简化矩阵运算2.5矩阵的酉相似1、smit 正交化,shur 分解2、酉矩阵的定义,正规矩阵的定义,酉相似定义,酉相似对角化及充要条件3、酉对角化步骤4、正定hermite 的性质A=GG H3.1矩阵的三个基本分解1、满秩分解:只能是行变换A=FG2、方阵的Jordan 分解、shur 分解3.2矩阵的三角分解1、三角分解的定义及可逆矩阵的三角分解条件,不可逆矩阵也是可以三角分解的2、Doolittle、crout、LDR 分解的形式、正定hermite 矩阵的cholesky 分解3.3矩阵的QR 分解1、householder 变换(1)取记住复数向量的模为sqrt(x hx)αe1Hx 则,2uu 1H 令(3)αe1x αe1x u 取2x α1H=-=--==)()(2、利用householder 变换求矩阵的QR 分解Q=H1H2H3...Hn-13、矩阵奇异值分解的一般步骤4.1向量范数和矩阵范数的定义∑==ni ix x 115.0122⎪⎭⎫ ⎝⎛=∑=ni i x x pni p i px x11⎪⎭⎫⎝⎛=∑=ix xmax =∞∑∑===ni nj ijm a A 111()AA a A H n i n j ij Ftr 5.0112=⎪⎪⎭⎫ ⎝⎛=∑∑==ijm a n A max ⋅=∞∑=≤≤=ni ij nj a A 111max 最大列模和∑=≤≤∞=nj ij ni a A 11max 最大行模和H AA A ==12σA 的最大奇异值谱半径与范数的关系:()AA ≤ρ4.2矩阵级数,矩阵幂级数,收敛性()1-∞=-=∑A I A k k,当级数∑∞=0k kA收敛时即()1<A ρ4.3矩阵函数:几个常用的矩阵函数∑∞==0!k kAk A e ()()120!121sin +∞=∑+-=k k kAk A ()()kk k Ak A 20!21cos ∑∞=-=()()()10111ln +∞=∑+-=+k K kAk A 矩阵函数值的计算方法:1、Hamilton-cayley 定理或零化多项式进行求解2、Jordan 分解:()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P J a P A a A f k k k k kk ()()()100-∞=∞=⎪⎭⎫⎝⎛==∑∑P Jt a P At a At f K k k k kk 3、待定系数法矩阵函数()A f 的特征值对应()i f λ5、矩阵的特征值界的估计∞≤m A λ()∞+≤m HA A 5.0ReλHA A -≤5.0Im λ矩阵特征值的分布区域:圆盘定理,行和列盖尔圆特征值的隔离()~1ii ii R R a z αα-+≤-()x R max 1=λ,()x R n min =λ6、广义逆矩阵P l l l I Q X r ⎥⎦⎤⎢⎣⎡=222112{1}广义逆的求法⎥⎦⎤⎢⎣⎡0nm I I A 初等变换→⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛0000Q P I r。
矩阵考研知识点总结一、矩阵的定义矩阵是由 m×n 个数排成的矩形阵列。
这 m×n 个数称为矩阵的元素,通常用aij (i=1,2,…,m;j=1,2,…,n) 表示矩阵的元素。
当 m=n 时,矩阵称为方阵,特别地,当 m=1 或 n=1 时,矩阵称为行矩阵或列矩阵。
二、矩阵的运算1. 矩阵的加法和减法定义:设 A=(aij) 和 B=(bij) 是同型矩阵,那么 A+B 和 A-B 分别定义为A+B = (aij+bij) 和 A-B = (aij-bij) 。
性质:(1)交换律:A+B = B+A;A-B ≠ B-A(2)结合律:A+(B+C) = (A+B)+C;A-(B-C) ≠ (A-B)-C(3)0 矩阵:对任意矩阵 A 有 A+0=A 和 A-0=A2. 矩阵的数乘定义:数 k 与一个 m×n 阶矩阵 A=(aij) 相乘,得到一个 m×n 阶矩阵 kA=(kaij)。
性质:(1)k(A+B)=kA+kB(2)(k+l)A=kA+lA(3)k(lA)=(kl)A3. 矩阵的乘法定义:设 A 是一个 m×s 阶的矩阵,B 是一个 s×n 阶的矩阵,那么称 C=AB 为 A 和 B 的乘积,其中C=(cij) (i=1,2,…,m;j=1,2,…,n) 且cij=a(i1)b(1j)+a(i2)b(2j)+…+a(is)b(sj)。
性质:(1)乘法不交换:一般情况下,AB≠BA。
(2)结合律:A(BC)=(AB)C(3)单位矩阵:对于任意 n 阶方阵 A,有IA=AI=A(4)分配律:A(B+C)=AB+AC4. 矩阵的转置定义:设 A=(aij) 是一个 m×n 阶矩阵,把它的行和列互换得到一个 n×m 阶矩阵,这个矩阵称为 A 的转置矩阵,记做 A^T。
性质:(1)(A^T)^T=A(2)(kA)^T=kA^T(3)(A+B)^T=A^T+B^T5. 矩阵的逆定义:设 A 是一个 n 阶方阵,如果存在 n 阶方阵 B 使得 AB=BA=I,那么称 B 为 A 的逆矩阵,记做 A^{-1}。
考研数学矩阵知识点总结一、矩阵的基本概念矩阵是一个二维的数组,由m行n列的元素组成。
通常用大写字母A、B、C等表示矩阵,元素用小写字母a_ij、b_ij、c_ij等表示。
例如,一个3行2列的矩阵可以写成:A = [a11 a12][a21 a22][a31 a32]矩阵具有一些基本的性质,包括矩阵的相等、相加、相乘等。
两个矩阵A和B相等,当且仅当它们的对应元素相等,即a_ij=b_ij (i=1,2,…,m;j=1,2,…,n)。
两个矩阵A和B的和是一个矩阵C,其元素c_ij等于a_ij+b_ij。
两个矩阵A和B的乘积是一个矩阵C,其元素c_ij等于a_i1*b1_j+a_i2*b2_j+…+a_in*bn_j。
二、矩阵的运算矩阵的加法和乘法是矩阵运算中的基本操作,它们有一些基本的性质。
矩阵A、B和C满足结合律、分配律、交换律等。
具体的运算规则和性质如下:1. 矩阵的加法设A、B是相同阶数的矩阵,则矩阵的加法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C)。
矩阵的加法还满足分配律,即A(B+C)=AB+AC。
同时,零矩阵是矩阵加法的单位元素。
2. 矩阵的乘法设A是m行n列的矩阵,B是n行p列的矩阵,则矩阵的乘法满足结合律和分配律,即A(BC)=(AB)C,A(B+C)=AB+AC。
但矩阵的乘法不满足交换律,即AB≠BA。
同时,单位矩阵是矩阵乘法的单位元素。
三、特征值和特征向量特征值和特征向量是矩阵理论中的重要概念,它们在研究矩阵的性质和应用中具有重要的作用。
1. 特征值设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。
矩阵A的特征值可以通过求解矩阵的特征方程det(A-λE)=0来得到。
特征值和特征向量在矩阵的对角化、矩阵的相似性等方面有重要的应用。
2. 特征向量设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。