2020届上海各区初三数学二模23题汇编---Stu
- 格式:docx
- 大小:553.65 KB
- 文档页数:7
宝山区、嘉定区19 .(本题满分10分)2x * x +1 * 3(x -2)(x 2) x 2 x -22x +(x +1)(x _2) +3(x +2) .................................(x—2)(x+2)2x +4x+4 ..........................................................(x-2)(x 2)2(x+2) ...........................(x-2)(x 2)x+2 .....................................................x —2x 2 2 3 " 2把x=2「3代入得:原式=2 3x—2 2+J3—2长宁区19.(本题满分10分)先化简,再求值:1f ":4x 3,其中X 二1 x 1 x -1 x -2x1 2计算题专题19. (本题满分10分)解:原式=2X 3 (x -1)(x 1)(x -1) (x 3)(x 1)(3分)先化简,再求值: 2x x 1n32 —x,其中x = 2 •.一3.19.解:原式4-331 .....................................(1分)1l 2 2当x2 一1时,原式=2 = ----------------- 2(2+1(x+1) (J 2-1 + 1)崇明区19 .(本题满分10分)1计算: 27 ( .3 -2)292 -(二-3.14)019 .(本题满分10分)解:原式=3,3 ・7-4、3 3-1 ................................................................... 8分=9 7 3.......................................................................... 2 分奉贤区19.(本题满分10分)1 L19、3 -.2 ; 黄浦区19.(本题满分10分)计算:(22 十23 $ +((2018-2018$ —3 —2亦x —1 _2 x 1 (x 1) (2分) 2 (x 1)2(1 分)X 1 -X 12(x-1)(3分)I计算:(』2 T )2十石+庁十82 _(寸)丄.19.解:原式= .12 1 - 2.3-3(6分) 2分)金山区 计算: =2、. 3 1-2.3 3 (2 分) =4tan 45° -2sin 60°12—12 .丿319•解:原式=1 _2汉= 2 2\3 -4 8 分) -1 2,3-41分) = 3、一3 -5 . ............................................................... (1分) 静安区 19.(本题满分10分)计算:j!8+(—cot45 )2018 +卜$ +(兀 一3)0— (sinBO )-1.19.(本题满分10分) 计算:+(—C0t45 )2018 +— 73 +(兀—3)° — (si 门彳。
中考数学二模试题(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计 算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.下列实数中,有理数是ABC .π;D .0.2.如果关于x 的一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是A .1k <;B .10k k <≠且;C .1k >;D .10k k >≠且.3.如果将抛物线2y x =向左平移1个单位,那么所得新抛物线的表达式是A .21y x =+;B .21y x =-;C .2(1)y x =+;D .2(1)y x =-.4.如图,是某中学九(3)班学生外出方式(乘车、步行、骑车)的不完整频数(人数)分布直方图.如果乘车的频率是0.4,那么步行的频率为A .0.4;B .0.36;C .0.3;D .0.24.5.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB (OA <OB )边OA 、OB 上分别截取OD 、OE ,使得OD=OE ;(2)分别以点D 、E 为圆心,以大于12DE 为半径作弧,两弧交于△AOB 内的一点C ;(3)作射线OC 交AB 边于点P . 那么小明所求作的线段OP 是△AOB 的第4题图AO BDEC P第5题图第6题图EA .一条中线;B .一条高;C .一条角平分线;D .不确定.6.如图,在矩形ABCD 中,点E 是CD 的中点,联结BE ,如果AB =6,BC =4,那么分别以AD 、BE 为直径的⊙M 与⊙N 的位置关系是 A .外离;B .外切;C .相交;D .内切.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:26a a ÷= .8. 某病毒的直径是0.000 068毫米,这个数据用科学记数法表示为 毫米.9.不等式组1,2 4.x x ->⎧⎨<⎩的解集是 .10x =的解为 . 11.已知反比例函数3ay x-=,如果当0x >时,y 随自变量x 的增大而增大,那么a 的取值范围为 .12.请写出一个图像的对称轴为y 轴,开口向下,且经过点(1,-2)的二次函数解析式,这个二次函数的解析式可以是 .13. 掷一枚材质均匀的骰子,掷得的点数为素数的概率是 .14. 在植树节当天,某校一个班的学生分成10个小组参加植树造林活动,如果10个小组植树的株数情况见下表,那么这10个小组植树株数的平均数是 株.16.如图,在中,对角线与相交于点,如果AC a =,BD b =,那么用向量a 、b 表示向量AB 是 .17.如图,在Rt △ABC 中,∠ACB =90°,AB=10,sin A =35,CD 为AB 边上的中线,以点B 为圆心,r 为半径作⊙B .如果⊙B 与中线CD 有且只有一个公共点,那么⊙B 的半径r 的取值范围为 .①②18.如图,在△ABC 中,AB =AC ,BC=8,tan B 32=,点D 是AB 的中点,如果把△BCD 沿直 线CD 翻折,使得点B 落在同一平面内的B ′处,联结A B ′,那么A B ′的长为 .三、解答题(本大题共7题,满分78分) 19.(本题满分10分)先化简,再求值:2344(1)11a a a a a -+--÷++,其中a =20.(本题满分10分)解方程组:22444,2 6.x xy y x y ⎧-+=⎨+=⎩21.(本题满分10分)如图,在△ABC 中,4sin 5B =,点F 在BC 上,AB=AF=5,过点F 作EF ⊥CB 交AC 于点E ,且:3:5AE E C =,求BF 的长与sin C 的值.22.(本题满分10分,第(1)小题6分,第(2)小题4分)ACD第17题图B第21题图ABC第18题图D第16题图Dy (千米)第22题图EGCABDF甲、乙两车需运输一批货物到600公里外的某地,原计划甲车的速度比乙车每小时多10千米,这样甲车将比乙车早到2小时.实际甲车以原计划的速度行驶了4小时后,以较低速度继续行驶,结果甲、乙两车同时到达. (1)求甲车原计划的速度;(2)如图是甲车行驶的路程y (千米)与时间x (小时) 的不完整函数图像,那么点A 的坐标为 , 点B 的坐标为 ,4小时后的y 与x 的函数关 系式为 (不要求写定义域).23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE . (1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF AG BC BE ⋅=⋅.24.(本题满分12分,第(1如图,在平面直角坐标系xOy y 轴上的B 、C (1)求抛物线的解析式以及点D (2)求tan ∠BCD ;(3)点P 在直线BC 上,若∠25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD中,AD∥BC,∠C=90°,DC=5,以CD为半径的⊙C与以AB为半径的⊙B相交于点E、F,且点E在BD上,联结EF交BC于点G.(1)设BC与⊙C相交于点M,当BM=AD时,求⊙B的半径;(2)设BC= x,EF=y,求y关于x的函数关系式,并写出它的定义域;(3)当BC=10时,点P为平面内一点,若⊙P与⊙C相交于点D、E,且以A、E、P、D为顶点的四边形是梯形,请直接写出⊙P的面积.(结果保留 )初三数学评分参考建议说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.第一、二大题若无特别说明,每题评分只有满分或零分;3.第三大题中各题右端所注分数,表示考生正确做对这一步应得分数;4.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 5.评分时,给分或扣分均以1分为基本单位.一、选择题(本大题共6题,每题4分,满分24分)1.D 2.A 3.C 4.B 5.C 6.B二、填空题本大题共12题,每题4分,满分48分) 7.4a8.56.810-⨯9.1x <- 10.1x =11.3a > 12. 21y x =-- 等(答案不唯一) 13.1214.615.2 16.1122a b - 17. 56r <≤或245r =18三、解答题(本大题共7题,满分78分)19.解:原式=22131144a a a a a --+⋅+-+ ………………………………………………………(3分) 2(2)(2)11(2)a a a a a +-+=⋅+- ………………………………………………………(3分)22a a +=-…………………………………………………………………………… (2分)当a =, 原式7=--…………………………………………… (2分) .20.解:由①得, 22x y -=或22x y -=-……………………………………………(2分)将它们与方程②分别组成方程组,得:,262;2x x y y ⎧⎨+=-=⎩ 22,2 6.y y x x ⎧⎨+=-=-⎩……………………………………………………(4分) 分别解这两个方程组,得原方程组的解为114,1;x y =⎧⎨=⎩ 222,2.x y =⎧⎨=⎩. …………………………………………(4分)(代入消元法参照给分)21.解:过点A 作AD ⊥CB ,垂足为点D∵4sin 5B =∴3cos 5B = ……………………………………………………(1分) 在Rt△ABD 中,3cos 535BD AB B =⋅=⨯= …………………………………(2分)∵AB=AF AD ⊥CB ∴BF =2BD =6 ………………………………………(1分) ∵EF ⊥CB AD ⊥CB ∴EF ∥AD ∴DF AECF EC= …………………(2分) ∵:3:5AE EC = DF=BD=3 ∴CF=5 ∴CD=8………………………(1分) 在Rt△ABD 中,4sin 545AD AB B =⋅=⨯= ……………………………………(1分) 在Rt△ACD中,AC =……………………………………(1分)∴sin AD C AC ==………………………………………………………………(1分)22.解:(1)设甲车原计划的速度为x 千米/小时由题意得600600210x x-=-…………………………………………………………(3分) 解得150x =- 260x =经检验,150x =- 260x =都是原方程的解,但150x =-不符合题意,舍去∴60x = ……………………………………………………………………………(2分) 答:甲车原计划的速度为60千米/小时.………………………………………(1分) (2)(4,240) (12,600) …………………………………………………(1分,1分)4560y x =+…………………………………………………………………………(2分)23.(1)证明:联结BD …………………………………………………………………(1分)∵EB =ED ∴∠EBD =∠EDB …………………………………………………(2分) ∵∠ABE =∠ADE ∴∠ABD =∠ADB …………………………………………(1分)∴AB=AD …………………………………………………………………………(1分) ∵四边形ABCD 是矩形 ∴四边形ABCD 是正方形………………………(1分) (2)证明:∵四边形ABCD 是矩形 ∴AD ∥BC ∴EF ECDE EA=………………………………………………(2分) 同理DC ECAG EA= ……………………………………………………………(2分) ∵DE=BE∵四边形ABCD 是正方形 ∴BC=DC …………………………………………(1分) ∴EF BCBE AG= ∴EF AG BC BE ⋅=⋅ ……………………………………………………………(1分)24.解:(1)由题意得B (6,0) C (0,3) ………………………………………(1分)把B (6,0) C (0,3)代入22y ax x c =-+得03612,3.a c c =-+⎧⎨=⎩ 解得1,43.a c ⎧=⎪⎨⎪=⎩ ∴21234y x x =-+……………………………………………………………(2分) ∴D (4,-1) ………………………………………………………………(1分)(2)可得点E (3,0) ………………………………………………………………(1分)OE=OC=3,∠OEC =45°过点B 作BF ⊥CD ,垂足为点F 在Rt △OEC中,cos OEEC CEO==∠在Rt △BEF中,sin BF BE BEF =∠=……………………………………(1分)同理,EF =CF ==1分) 在Rt △CBF 中,1tan 3BF BCD CF ∠== …………………………………………(1分) (3)设点P (m ,132m -+)∵∠PEB=∠BCD ∴tan ∠PEB= tan ∠BCD 13= ①点P 在x 轴上方∴131233m m -+=- 解得245m = ………………………………………………(1分) ∴点P 243(,)55………………………………………………………………………(1分) ②点P 在x 轴下方∴131233m m -=- 解得12m = …………………………………………………(1分) ∴点P (12,3)- ………………………………………………………………………(1分) 综上所述,点P 243(,)55或(12,3)-25.(1)联结DM在Rt △DCM中,DM ==…………………………………(2分) ∵AD ∥BC BM =AD ∴四边形ABMD 为平行四边形……………………(1分) ∴AB= DM=即⊙B的半径为1分) (2)过点C 作CH ⊥BD ,垂足为点H在Rt △BCD中,BD =∴sin DBC ∠可得∠DCH =∠DBC∴sin DCH ∠=在Rt △DCH中,sin DH DC DCH =⋅∠=1分)∵CH ⊥BD∴2DE DH ==1分)∴2BE ==………………………………………(1分)∵⊙C 与⊙B 相交于点E 、F ∴EF=2EG BC ⊥EF在Rt △EBG 中,225125sin 25x EG BE DBC x -=⋅∠=+ …………………………(1分)∴221025025x y x -=+(x >1分,1分)(3)254π或(29π-或π ………………………………………(做对一个得2分,其余1分一。
2020年上海市徐汇区中考数学二模试卷2020.05一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1. 下列实数中,有理数是( )A .2πB .C .227D .122. 下列二次根式中,最简二次根式是( )A .B .C .D .3. 下列方程中,有实数根的是( )A . 210x +=B . 210x -=C .1=-D .101x =- 4. 关于抛物线223y x x =-+-的判断,下列说法正确的是( )A . 抛物线的开口方向向上B . 抛物线的对称轴是直线1x =-C . 抛物线对称轴左侧部分是下降的D . 抛物线顶点到x 轴的距离是25. 如果从货船A 测得小岛b 在货船A 的北偏东30°方向500米处,那么从小岛B 看货船A 的位置,此时货船A 在小岛B 的( ) A . 南偏西30°方向500米处 B . 南偏西60°方向500米处C . 南偏西30°方向D . 南偏西60°方向6. 下列命题中,假命题是( )A . 顺次联结任意四边形四边中点所得的四边形是平行四边形B . 顺次联结对角线相等的四边形四边中点所得的四边形是菱形C . 顺次联结对角线互相垂直的四边形四边中点所得的四边形是矩形D . 顺次联结两组邻边互相垂直的四边形四边中点所得的四边形是矩形二、填空题 7. 计算:11a b-=____________8. 分解因式:223m m +-=____________ 9. 方程组22205x y x y -=⎧⎨+=⎩的解是____________ 10. 已知正比例函数()0y kx k =≠的函数值y 随着自变量x 的值增大而减小,那么符合条件的正比例函数可以是____________(只需写出一个)11. 如果关于x 的方程2340x x m ++=有两个相等的实数根,那么m 的值是____________ 12. 已知直线()0y kx b k =+≠与x 轴和y 轴的交点分别是(1,0)和()0,2-,那么关于x 的不等式0kx b +<的解集是____________13. 如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是____________14. 如图,在ABC 中,点D 在边AC 上,已知ABD 和BCD 的面积比是2:3,,AB a AC b ==,那么向量BD (用向量,a b 表示)是____________15. 如图,O 的弦AB 和直径CD 交于点E ,且CD 平分AB ,已知AB =8,CE =2,那么O 的半径长是____________16. 已知某种盆花,若每盆植3株时,则平均每株盈利4元;若每盆增加1株,则平均每株 盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株? 如果设每盆多植x株,那么可以列出的方程是____________17. 已知正三角形ABC 的半径长为R ,那么ABC 的周长是____________(用含R 的式子表示)18. 如图,在ABCD 中,AD =3,AB =5,4sin 5A =,将ABCD 绕着点B 顺时针旋转()090θθ︒<<︒后,点A 的对应是点'A ,联结'A C ,如果'A C BC ⊥,那么cos θ的值是____________三、解答题19. 计算:1 2222cos30321+--︒++20. 解不等式组:()3247133x xxx⎧-->--⎪⎨---≤⎪⎩,并将解集在数轴上表示出来21. 在抗击“新冠肺炎疫情”的日子里,上海全市学生积极响应号召开展“停课不停学”的线上学习活动,某中学为了了解全校1200名学生一周内平均每天进行在家体育锻炼时间的情况,随机调查了该校100名学生一周内平均每天在家体育锻炼时间的情况,结果如下表:时间(分)15202530354045505560人数16241410868464完成下列各题:(1)根据上述统计表中的信息,可知这100名学生一周内平均每天在家体育锻炼时间的众数是____________分,中位数是____________分;(2)小李根据上述统计表中的信息,制作了如下频数分布表和频数分布直方图(不完整),那么①频数分布表中m=______,n=______;②请补全频数分布直方图;(3)请估计该学校平均每天在家体育锻炼时间不少于35分钟的学生大约有______人.22. 如图,抛物线223y ax ax =-+与x 轴交于点()1,0A -和B ,与y 轴交于点C ,顶点为点D .(1)求抛物线的表达式、点B 和点D 的坐标;(2)将抛物线223y ax ax =-+向右平移后所得新抛物线经过原点O ,点B 、D 的对应点分别是点','B D ,联结','','B C B D CD ,求''CB D 的面积23. 已知:如图,在ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,BE =DG ,BF =DH .(1)求证:四边形EFGH 是平行四边形;(2)当AB =BC ,且BE =BF 时,求证:四边形EFGH 是矩形.24. 如图,已知直线22y x =+与x 轴交于点A ,与y 轴交于点C ,矩形ACBE 的顶点B 在第一象限的反比例函数my x=图像上,过点B 作BF OC ⊥,垂足为F ,设OF =t . (1)求∠ACO 的正切值;(2)求点B 的坐标(用含t 的式子表示); (3)已知直线22y x =+与反比例函数my x=图像都经过第一象限的点D ,联结DE ,如果DE x ⊥轴,求m 的值.25. 如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,4cos5B ,点O是边BC上的动点,以OB为半径的O与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.(1)当点E为边AB的中点时,求DF的长;(2)分别联结AN、MD,当AN//MD时,求MN的长;(3)将O绕着点M旋转180°得到'O,如果以点N为圆心的N与'O都内切,求O的半径长.2020年上海市徐汇区中考数学二模试卷答案解析版一、选择题1.下列实数中,有理数是( )A.2πB.C.227D.【答案】C 【解析】 【分析】有理数分为整数和分数,根据有理数的定义判断. 【详解】根据有理数定义:有理数分为整数和分数227是分数,满足条件 故答案选:C【点睛】本题考查有理数的定义,掌握有理数分为整数和分数是解题关键. 2.下列二次根式中,最简二次根式是( )A.B.C.D.【答案】A 【解析】 【分析】最简二次根式:被开方数中不含能开方开的尽的因数或因式;被开方数的因数是整数,因式是整式.根据最简二次根式的定义进行判断即可.【详解】最简二次根式:被开方数中不含能开方开的尽的因数或因式;被开方数的因数是整数,因式是整式AB a b +,错误;C 4a b +=,错误;D 244b a b +=+,错误.故答案选:A【点睛】本题考查最简二次根式的定义,掌握最简二次根式需要满足的条件是解题关键. 3.下列方程中,有实数根的是( )A. 210x +=B. 210x -=C.1=-D.101x =- 【答案】B 【解析】 【分析】根据一元二次方程根的判别式、二次根式有意义的条件以及分数方程的定义进行判断即可. 【详解】根据一元二次方程根的判别式24b ac ∆=- 计算:A :21040x +=⇒∆=-<,方程无实根,错误;B :21040x -=⇒∆=>,方程有两个不等实根,正确;C10=-<,二次根式无意义,方程无解,错误;D :101x =-,分式方程需满足分母不为0,此方程无解,错误. 故答案选:B【点睛】本题一元二次方程根判别式、二次根式有意义的条件以及分数方程的定义,掌握相关的定义与计算是解题关键.4.关于抛物线223y x x =-+-的判断,下列说法正确的是( ) A. 抛物线的开口方向向上B. 抛物线的对称轴是直线1x =-C. 抛物线对称轴左侧部分是下降的D. 抛物线顶点到x 轴的距离是2【答案】D 【解析】 【分析】根据二次项系数的正负性判断开口方向;根据对称轴公式2bx a=-计算对称轴;根据开口方向判断图象是上升还是下降;根据顶点坐标公式24,24b ac b a a ⎛⎫-- ⎪⎝⎭计算顶点坐标进行判断.【详解】A :二次项系数为-10< ,故开口向下,错误;B :对称轴公式()2=-1221b x a =-=-,错误;C :开口向下,在对称轴左侧部分上升,错误;D :顶点坐标公式24,24b ac b aa ⎛⎫-- ⎪⎝⎭代入计算得顶点为()1,2-,顶点到x 轴的距离是2,正确.的故答案选:D【点睛】本题考查二次函数的图象与性质,掌握相关的公式以及系数特殊性判断是解题关键.5.如果从货船A测得小岛B在货船A的北偏东30°方向500米处,那么从小岛B看货船A 的位置,此时货船A在小岛B的()A. 南偏西30°方向500米处B. 南偏西60°方向500米处C. 南偏西30°方向D. 南偏西60°方向【答案】A【解析】【分析】分别以货船A和小岛B建立方位角,再根据方位角得出答案.【详解】建立如图所示方位角:∵B在A的北偏东30方向∵A在B的南偏西30方向又∵B与A相距500米∵A与B相距500米故答案选:A【点睛】本题考查方位角,掌握方位角的描述是解题关键. 6.下列命题中,假命题是( )A. 顺次联结任意四边形四边中点所得的四边形是平行四边形B. 顺次联结对角线相等的四边形四边中点所得的四边形是菱形C. 顺次联结对角线互相垂直的四边形四边中点所得的四边形是矩形D. 顺次联结两组邻边互相垂直的四边形四边中点所得的四边形是矩形 【答案】D 【解析】 【分析】根据平行四边形、特殊的平行四边形的判定、中位线定理、中点四边形的定义进行判定即可.【详解】观察图形:,,,E F G H 分别为,,,AC AB BD CD 的中点,根据中位线定理:1//,//,2EF BC GH BC EF GH BC ==A :顺次联结任意四边形四边中点所得的四边形是平行四边形,正确;B :顺次联结对角线相等的四边形四边中点所得的四边形是菱形,正确;C :顺次联结对角线互相垂直的四边形四边中点所得的四边形是矩形,正确;D :顺次联结两组邻边互相垂直的四边形四边中点所得的四边形是平行四边形,错误. 故答案选:D .【点睛】本题考查中位线定理应用、平行四边形、特殊的平行四边形的判定,掌握四边形的判定是解题关键. 二、填空题 7.计算:11a b-=________. 【答案】b aab- 【解析】 【分析】将式子通分计算即可.【详解】11b a b aa b ab ab ab--=-=【点睛】本题考查分式通分,正确寻找分母的最小公倍数是解题关键. 8.分解因式:223m m +-=_______. 【答案】()()31m m +- 【解析】 【分析】根据十字相乘法分解因式即可.【详解】根据十字相乘法分解因式可得:223m m +-=()()31m m +-【点睛】本题考查因式分解,掌握十字相乘法分解因式是解题关键.9.方程组22205x y x y -=⎧⎨+=⎩的解是_______. 【答案】12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩ 【解析】 【分析】先将y 用含x 的式子表示,再代入解一元二次方程即可.【详解】22205x y x y -=⎧⎨+=⎩①②由∵得:2y x =∵将∵代入∵得:()2225x x +=解得:1x =± ,将1x =±代入∵得:2y =±∵12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩ 故答案为:12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩ 【点睛】本题考查二元二次方程组的解法,掌握代入消元是解题关键.10.已知正比例函数()0y kx k =≠的函数值y 随着自变量x 的值增大而减小,那么符合条件的正比例函数可以是________.(只需写出一个)【答案】2y x =- 【解析】 【分析】根据正比例函数()0y kx k =≠:当0k >时,y 随着自变量x 的值增大而增大;当k 0<时,y 随着自变量x 的值增大而减小,从而得出答案.【详解】正比例函数()0y kx k =≠:当0k >时,y 随着自变量x 的值增大而增大;当k 0<时,y 随着自变量x 的值增大而减小∵要使y 随着自变量x 的值增大而减小,需满足k 0<即可 故答案为:2y x =-(答案不唯一)【点睛】本题考查正比例函数的增减性,掌握k 的意义是解题关键.11.如果关于x 的方程2340x x m ++=有两个相等的实数根,那么m 的值是_______.【答案】43m = 【解析】 【分析】根据一元二次方程根的判别式进行判断即可.【详解】∵关于x 的方程2340x x m ++=有两个相等的实数根∵2=40b ac ∆-=∵24430m -=解得:43m =故答案为:43m =【点睛】本题考查一元二次方程根的判别式,掌握根的判别式的意义是解题关键. 12.已知直线()0y kx b k =+≠与x 轴和y 轴的交点分别是(1,0)和()0,2-,那么关于x 的不等式0kx b +<的解集是_______. 【答案】1x < 【解析】 【分析】根据一次函数的图象判断函数值小于零时x 的取值范围即可.【详解】∵直线()0y kx b k =+≠与x 轴和y 轴的交点分别是()1,0和()0,2- ∵函数经过一、三、四象限 又∵0kx b +<即函数值小于零 ∵x 的取值范围为:1x <【点睛】本题考查一次函数的图象,根据函数图象获取相关信息是解题关键.13.如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是_______. 【答案】12【解析】 【分析】根据构成三角形的条件:两边之和大于第三边,两边之差小于第三边进行判断即可. 【详解】∵从长度分别为2、4、6、7的四条线段中随机抽取三条线段∵可能有:2、4、6;2、6、7;4、6、7;2、4、7四种可能性 又∵构成三角形的条件:两边之和大于第三边,两边之差小于第三边 ∵符合条件的有:2、6、7;4、6、7两种故概率为:21=42故答案为:12【点睛】本题考查构成三角形的条件以及概率的计算,掌握构成三角形的三边之间的关系是解题关键.14.如图,在ABC 中,点D 在边AC 上,已知ABD △和BCD 的面积比是2:3,,AB a AC b ==,那么向量BD (用向量,a b 表示)是________.【答案】25b a - 【解析】 【分析】先根据ABD △和BCD 面积比是2:3得出:2:3AD DC =,再根据向量计算公式求算即可.【详解】∵ABD △和BCD 的面积比是2:3 ∵:2:3AD DC =∵2255AD AC b ==∵22=-55BD BA AD AB AD a b b a =+=-++=- 故答案为:25b a - 【点睛】本题考查向量相关的求算,掌握向量的表示是解题关键. 15.如图,O 的弦AB 和直径CD 交于点E ,且CD 平分AB ,已知AB=8,CE=2,那么O 的半径长是______.【答案】5 【解析】 【分析】连接OB ,设半径为r ,根据勾股定理进行计算即可.【详解】如图:连接OB∵CD 平分AB ,=8AB ∵4AE BE == 设半径为r∵2OE r =-在Rt OEB ∆中:()22224r r =-+解得:=5r 故答案为:5【点睛】本题考查了勾股定理,转化相关线段之间的关系是解题关键.16.某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株.设每盆多植x 株,则可以列出的方程是____________. 【答案】(3+x)(4-0.5x)=15 【解析】 【分析】由每盆多植x 株,可得每盆共有(x +3)株;由“每盆增加1株,平均每株盈利减少0.5元”可得:增加x 株后平均每株盈利为(4-0.5x )元;接下来根据等量关系:每盆花的株数×平均每株盈利=15元,即可列出方程.【详解】解:根据题意可得(x +3)(4-0.5x )=15. 故答案为:(x +3)(4-0.5x )=15.【点睛】本题考查了一元二次方程的应用,根据题意找出等量关系是解答本题的关键. 17.已知正三角形ABC 外接圆的半径长为R ,那么ABC 的周长是________.(用含R 的式子表示)【答案】 【解析】根据垂径定理以及相关角度求算边长,再算周长.【详解】如图:作OH BC ⊥于H ∵60,A OB R ∠=︒= ∵60BOH ∠=︒∵2BH HC R ==∵BC =∵周长为:故答案为:【点睛】本题考查三角形的外接圆,掌握相关的角度转化是解题关键. 18.如图,在ABCD 中,AD=3,AB=5,4sin 5A =,将ABCD 绕着点B 顺时针旋转()090θθ︒<<︒后,点A 的对应是点'A ,联结'A C ,如果'A C BC ⊥,那么cos θ的值是______.【答案】725【解析】 【分析】作'A C BC ⊥,连接'A B 与DC 交于G,作'CH A B ⊥于H ,得出HBC A ∠=∠ ,从而得出G 为'A B 的中点,从而转化相关线段关系即可.【详解】如图:作'A C BC ⊥,连接'A B 与DC 交于G ,作'CH A B ⊥于H∵43,5,sin 5AD AB A ===∵'3,5BC BA ==∵''44,sin 5AC A BC =∠=∵'A BC A GCB ∠=∠=∠∵'52AG GC GB ===在'Rt A BC ∆中,根据等面积法得出:''125AC BC CH A B ==∵710GH ==∵7710cos5252HGC∠==又∵'HGC ABAθ∠=∠=∠∵7 cos25θ=故答案为:725【点睛】本题考查了旋转与直角三角形相关的知识,掌握相关的角度转化和线段之间的关系是解题关键.三、解答题19.1222cos303 +-︒+【答案】1【解析】【分析】根据分母有理化,去绝对值法则、分数指数幂、先化简,最后根据实数的混合运算法则计算.(12121222,3-===-=原式3122312=++=【点睛】本题考查实数的混合运算,在计算过程中能化简要先化简.20.解不等式组:()3247133x x xx ⎧-->--⎪⎨---≤⎪⎩,并将解集在数轴上表示出来.【答案】45x -≤<;数轴见解析. 【解析】 【分析】将不等式分别求解,再找出公共部分即可.【详解】()3247133x x xx ⎧-->--⎪⎨---≤⎪⎩①② 由∵得:364x x -+>--,解得:5x < 由∵得:371x x --≤-,解得:4x ≥-∵不等式的解集为:45x -≤<,在数轴上表示为:【点睛】本题考查不等式组的解法,掌握不等式组的解法以及公共部分的寻找是解题关键.21.在抗击“新冠肺炎疫情”的日子里,上海全市学生积极响应号召开展“停课不停学”的线上学习活动,某中学为了了解全校1200名学生一周内平均每天进行在家体育锻炼时间的情况,随机调查了该校100名学生一周内平均每天在家体育锻炼时间的情况,结果如下表:完成下列各题:(1)根据上述统计表中的信息,可知这100名学生一周内平均每天在家体育锻炼时间的众数是______分,中位数是_______分;(2)小李根据上述统计表中的信息,制作了如下频数分布表和频数分布直方图(不完整),那么∵频数分布表中m=______,n=______;∵请补全频数分布直方图;(3)请估计该学校平均每天在家体育锻炼时间不少于35分钟的学生大约有______人.【答案】(1)20;25;(2)24,14;图见解析(3)432.【解析】分析】(1)根据众数和中位数的定义得出答案;(2)根据题目中的表格以及频数的定义即可得出答案;由统计表中数据补全直方图即可;(3)用样本估计总体即可得到答案.【详解】(1)众数:一组数据中,出现次数最多的数;中位数:将一组数据从小到大排列,处在最中间的数. 根据表格可得: 众数为:20分钟;一共调查了100名同学,处在最中间数是第50,51名,锻炼时间均为25分钟,故中位数为:25+25=252分钟 综上所述:众数为20分钟,中位数为25分钟;(2)由题目中的统计表得出:141024,8614m n =+==+= 频数分布直方图如图所示:(3)统计可知:100名同学中,平均每天在家体育锻炼时间不少于35分钟的学生有36人∵该学校平均每天在家体育锻炼时间不少于35分钟的学生大约有361200=432100⨯人 故答案为:432【点睛】本题考查统计图相关的知识,掌握中位数、众数的定义以及数的估算是解题关键.22.如图,抛物线223y ax ax =-+与x 轴交于点()1,0A -和B ,与y 轴交于点C ,顶点的为点D .(1)求抛物线的表达式、点B 和点D 的坐标;(2)将抛物线223y ax ax =-+向右平移后所得新抛物线经过原点O ,点B 、D 的对应点分别是点','B D ,联结','','B C B D CD ,求''CB D 的面积.【答案】(1)2y x 2x 3=-++;()3,0B ,()1,4D ;(2)''CB D 的面积为5. 【解析】 【分析】(1)将()1,0A -代入抛物线解析式即可求出a ,令0y =即可求出B 点坐标,再将二次函数配成顶点式即可求算顶点坐标,;(2)根据平移求出'',B D 的坐标,再根据割补法求算面积. 【详解】解:(1)将()1,0A -代入223y ax ax =-+: 解得:1a =-∵抛物线的表达式为2y x 2x 3=-++ 令0y =即223=0x x -++解得:121,3x x =-=∵()3,0B又∵()2223=-14y x x x =-++-+∵顶点坐标()1,4D(2)∵抛物线223y ax ax =-+向右平移后所得新抛物线经过原点O ,()1,0A - ∵抛物线向右平移一个单位 ∵()4,0B ,()2,4D如图:连接'''',,CD D B CB ,作'D H y ⊥轴,''B G D H ⊥交'D H 延长线于G∵()''''''11114412245222CB D HCD D B G S S S S ∆∆=--=+--=梯HCB G ∵''CB D ∆的面积为5【点睛】本题考查二次函数的相关性质,掌握二次函数图象的性质以及相关点的求算、割补法求面积等是解题关键.23.如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 边上且AE=CG ,AH=CF .(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.【答案】(1)证明见解析.(2)证明见解析.【解析】【分析】(1)易证得∵AEH∵∵CGF,从而证得BE=DG,DH=BF.故有,∵BEF∵∵DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC∵BD,由AB=AD,且AH=AE可证得HE∵BD,同理可得到HG∵AC,故HG∵HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.【详解】解:(1)在平行四边形ABCD中,∵A=∵C,又∵AE=CG,AH=CF,∵∵AEH∵∵CGF.∵EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∵AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∵B=∵D,∵∵BEF∵∵DGH.∵GH=EF .∵四边形EFGH 是平行四边形.(2)在平行四边形ABCD 中,AB∵CD ,AB=CD . 设∵A=α,则∵D=180°-α. ∵AE=AH ,∵∵AHE=∵AEH=1809022a a︒-=︒-. ∵AD=AB=CD ,AH=AE=CG , ∵AD-AH=CD-CG ,即DH=DG . ∵∵DHG=∵DGH=180(180)22a a ︒--=.∵∵EHG=180°-∵DHG-∵AHE=90°. 又∵四边形EFGH 是平行四边形, ∵四边形EFGH 是矩形.【点睛】本题考查矩形的判定与性质;全等三角形的判定与性质;平行四边形的判定与性质.24.如图,已知直线22y x =+与x 轴交于点A ,与y 轴交于点C ,矩形ACBE 的顶点B 在第一象限的反比例函数my x=图像上,过点B 作BF ⊥OC ,垂足为F ,设OF=t .(1)求∵ACO 的正切值;(2)求点B 的坐标(用含t 的式子表示);(3)已知直线22y x =+与反比例函数my x=图像都经过第一象限的点D ,联结DE ,如果DE x ⊥轴,求m 的值.【答案】(1)∵ACO 的正切值为12;(2)点B 的坐标()42,t t -;(3)m 的值为4825. 【解析】 【分析】(1)根据一次函数解析式算出,A C 点的坐标即可求算;(2)根据矩形的性质得出BFC COA ∆~∆,从而表示B 的坐标;(3)作EM x ⊥轴,根据矩形的性质得出BFC AME ∆≅∆,从而表示出E 的坐标,再根据条件表示D 的坐标,再根据,B D 均在反比例图象上从而算出m 【详解】(1)∵直线22y x =+与x 轴交于点A ,与y 轴交于点C ∵()()1,0,0,2A C -∵1tan 2AO ACO CO ∠== (2)∵四边形AEBC 是矩形,BF ⊥OC ,OF t =∵90,90BFC COA FCB FBC FCB OCA ∠=∠=︒∠+∠=∠+∠=︒ ∵FBC OCA ∠=∠∵BFC COA ∆~∆即BF FC BCCO OA CA==∵221BF t-=∵42BF t =- ∵点B 的坐标()42,t t -(3)如图;作EM x ⊥轴 ∵四边形AEBC 是矩形∵,90BC AE OCA CAO CAO OAE =∠+∠=∠+∠=︒ ∵=OCA OAE FBC ∠=∠∠ ∵BFC AME ∆≅∆ ∵42BF AM t ==- ∵E 点的横坐标为32t -又∵DE x ⊥轴,D 在22y x =+上 ∵()32,84D t t --∵()32,84D t t --,()42,B t t -均在反比例my x=上: ∵()()()328442t t t t --=-解得:126,25t t == ∵四边形AEBC 是矩形∵22t=舍去∵86,55 B⎛⎫ ⎪⎝⎭∵4825 m=【点睛】本题考查一次函数与反比例函数与四边形的综合题目,难度中等,与相似、全等综合转化相关的线段与角度是解题关键.25.如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,cos45B=,点O是边BC上的动点,以OB为半径的O与射线BA和边BC分别交于点E和点M,联结AM,作∵CMN=∵BAM,射线MN与边AD、射线CD分别交于点F、N.(1)当点E为边AB的中点时,求DF的长;(2)分别联结AN、MD,当AN//MD时,求MN的长;(3)将O绕着点M旋转180°得到'O,如果以点N为圆心的N与'O都内切,求O的半径长.【答案】(1)DF的长为158;(2)MN的长为5;(3)O的半径长为258.【解析】【分析】(1)作EH BM⊥于H,根据中位线定理得出四边形BMFA是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ==== ∵52AE BE == ∵cos 45BH B BE == ∵2BH =∵32EH ==设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r = ∵,E O 分别为,BA BM 中点∵BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∵CMN OBE ∠=∠∵//MF AB∵四边形BMFA 是平行四边形 ∵2528AF BM r === ∵2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∵AMB CNM ∠=∠又∵AMB MAD ∠=∠∵MAD CNM ∠=∠又∵AFM NFD ∠=∠∵AFM NFD ∆~∆ ∵AF MF AF DF NF MF NF DF=⇒=∵ 又∵//MD AN∵AFN DFM ∆~∆ ∵AF NF AF MF NF DF DF MF=⇒=∵ 由∵⨯∵得;22AF NF AF NF =⇒=∵NF DF =∵5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∵'=NO R r NO -=∵N 在'OO 的中垂线上∵MN 垂直平分'OO∵90NMC ∠=︒∵90BAM CMN ∠=∠=︒∵A 点在圆上 ∵54cos 5AB B BM BM === 解得:254BM = O 的半径长为258 【点睛】本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.。
2020年上海市长宁区中考数学二模试卷一.选择题(共6小题)1.下列实数中,无理数是()A.0B.C.﹣3D.2.下列单项式中,与xy2是同类项的是()A.x2y B.x2y2C.2xy2D.3xy3.关于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.它的图象关于原点中心对称D.y的值随着x的值的增大而减小4.如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是()A.8、9B.8、8.5C.16、8.5D.16、145.如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切6.▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 二.填空题(共12小题)7.计算:(x3)2÷(﹣x)2=.8.方程=2的根是.9.不等式组的解集是.10.已知正三角形的边心距为1,那么它的边长为.11.如果抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,那么a的取值范围是.12.如果关于x的多项式x2﹣2x+k在实数范围内能分解因式,那么k的取值范围是.13.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问人数、物品的价格各是多少?”如果设共有x人,物品的价格为y元,那么根据题意可列出方程组为.15.甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中的成绩较稳定.16.如图,已知在△ABC中,点D在边AC上,AD=2DC,=,=,那么=.(用含向量,的式子表示)17.如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是.18.如图,已知在△ABC中,∠C=90°,BC=2,点D是边BC的中点,∠ABC=∠CAD,将ACD沿直线AD翻折,点C落在点E处,连结BE,那么线段BE的长为.三.解答题(共5小题)19.如图,在梯形ABCD中,AD∥BC,AD=2,BC=5,∠BAC=45°,cos∠ACB=(1)求线段AC的长;(2)联结BD,交对角线AC于点O,求∠ADO的余切值.20.如图,反映了甲、乙两名自行车爱好者同时骑车从A地到B地进行训练时行驶路程y (千米)和行驶时间x(小时)之间关系的部分图象,根据图象提供的信息,解答下列问题:(1)求乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B地,求A、B两地之间的距离.21.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)连结BD,交EF于点Q,求证:DQ⋅BC=CE⋅DF.22.如图,在平面直角坐标系xOy中,已知抛物线y=x2+mx+n经过点A(2,﹣2),对称轴是直线x=1,顶点为点B,抛物线与y轴交于点C.(1)求抛物线的表达式和点B的坐标;(2)将上述抛物线向下平移1个单位,平移后的抛物线与x轴正半轴交于点D,求△BCD 的面积;(3)如果点P在原抛物线上,且在对称轴的右侧,联结BP交线段OA于点Q,=,求点P的坐标.23.已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD =CB.(1)如图1,如果BO平分∠ABC,求证:AB=BC;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.参考答案与试题解析一.选择题(共6小题)1.下列实数中,无理数是()A.0B.C.﹣3D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.0是整数,属于有理数;B.是无理数;C.﹣3是整数,属于有理数;D.,是整数,属于有理数.故选:B.2.下列单项式中,与xy2是同类项的是()A.x2y B.x2y2C.2xy2D.3xy【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【解答】解:A.x2y与xy2所含字母的指数不同,所以不是同类项;B.x2y2与xy2所含字母的指数不尽相同,所以不是同类项;C.2xy2与xy2所含字母相同且相同字母的指数也相同的项是同类项;D.3xy与xy2所含字母的指数不尽相同,所以不是同类项.故选:C.3.关于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.它的图象关于原点中心对称D.y的值随着x的值的增大而减小【分析】根据反比例函数y=和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:∵反比例函数y=,∴当x=﹣2时,y=﹣1,即点(﹣2,﹣1)在它的图象上,故选项A正确;它的图象在第一、三象限,故选项B正确;它的图象关于原点中心对称,故选项C正确;在每个象限内,y的值随着x的值的增大而减小,故选项D不正确;故选:D.4.如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是()A.8、9B.8、8.5C.16、8.5D.16、14【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;故选:A.5.如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切【分析】求出两圆半径的和与差,再与圆心距比较大小,确定两圆位置关系.根据两圆的位置关系得到其数量关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.【解答】解:设圆心距为d,因为5﹣3=2,3+5=8,圆心距为7cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.6.▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OF,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.二.填空题(共12小题)7.计算:(x3)2÷(﹣x)2=x4.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则计算得出答案.【解答】解:(x3)2÷(﹣x)2=x6÷x2=x4.故答案为:x4.8.方程=2的根是x=﹣1.【分析】此题需把方程两边平方去根号后求解,然后把求得的值进行检验即可.【解答】解:两边平方得:3﹣x=4,x=﹣1.检验:当x=﹣1时,原方程的左边=2,右边=2,∴x=﹣1是原方程的根.故答案为:x=﹣1.9.不等式组的解集是﹣≤x≤6.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+4≥0,得:x≥﹣,解不等式x﹣2≤1,得:x≤6,则不等式组的解集为﹣≤x≤6,故答案为:﹣≤x≤6.10.已知正三角形的边心距为1,那么它的边长为2.【分析】根据题意,画出图形作AD⊥BC,BE⊥AC于点D和E,点O即为△ABC的外心,根据特殊角30度即可求出BD的值,进而可得三角形的边长.【解答】解:根据题意,画出图形,∵△ABC是正三角形,作AD⊥BC,BE⊥AC于点D和E,∴点O即为△ABC的外心,∴OD=1,∠DBO=30°,∴BD=,∴BC=2BD=2.故答案为:2.11.如果抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,那么a的取值范围是a <1.【分析】根据抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限可以确定不等式的开口方向,从而确定a的取值范围.【解答】解:∵抛物线y=(a﹣1)x2﹣1(a为常数)不经过第二象限,且该抛物线与y 轴交于负半轴,∴a﹣1<0,解得:a<1.故答案为:a<1.12.如果关于x的多项式x2﹣2x+k在实数范围内能分解因式,那么k的取值范围是k≤1.【分析】本题实际上求一元二次方程x2﹣2x+k在实数范围内有实数根时,k的取值范围.所以根据一元二次方程的根的判别式解答即可.【解答】解:∵二次三项式x2﹣2x+k在实数范围内能分解因式,∴一元二次方程x2﹣2x+k在实数范围内有实数根,∴△=4﹣4k≥0,解得,k≤1.故答案为:k≤1.13.从1,2,3,4四个数中任意取出2个数做加法,其和为偶数的概率是.【分析】列举出所有情况,看和为偶数的情况数占总情况数的多少即可.【解答】解:共12种情况,和为偶数的情况数有4种,所以概率为.故答案为.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问人数、物品的价格各是多少?”如果设共有x人,物品的价格为y元,那么根据题意可列出方程组为.【分析】根据“8×人数﹣多出的钱数=物品的价格和7×人数+差的钱数=物品的价格”列方程即可得.【解答】解:设共有x人,物品的价格为y元,根据题意,可列方程组为,故答案为:.15.甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中甲的成绩较稳定.【分析】利用方差的公式求得乙的方差,与甲的方差比较,方差较小的成绩稳定.【解答】解:乙的平均成绩为(7+8+10+6+9)÷5=8,方差为:[(7﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(9﹣8)2]=2,∵甲的方差为1.6,∴甲的方差较小,∴成绩较稳定的是甲,故答案为:甲.16.如图,已知在△ABC中,点D在边AC上,AD=2DC,=,=,那么=﹣+.(用含向量,的式子表示)【分析】利用三角形法则可知:=+,求出即可解决问题.【解答】解:∵AD=2DC,∴AD=AC,∴==,∴=+,∴=﹣+,故答案为﹣+.17.如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是1.【分析】先根据题意画出图形,连接BD、OD,设AM=x,根据AD2﹣AM2=OD2﹣OM2,列出方程,求出x,再根据OC=OA﹣AM﹣CM计算即可.【解答】解:根据题意画图如下:连接BD,与AC交与点M,∵四边形ABCD是菱形,∴∠AMD=∠DMC=90°,∠ACD=∠ACB,CD=CD,AM=CM,∴DM2=AD2﹣AM2,设AM=x,则DM2=(2)2﹣x2,连接OD、OB,在△OCD和△OCB中,,∴△OCD≌OCB(SSS),∴∠OCD=∠OCB,∴∠ACD+∠OCD=∠ACB+∠OCB=180°,∴OC与AC在一条直线上,∴△OMD是一个直角三角形,OM=OA﹣AM=5﹣x,∴DM2=OD2﹣OM2,=52﹣(5﹣x)2,∴(2)2﹣x2=52﹣(5﹣x)2,x=2,∴AM=CM=2,∴OC=OA﹣AM﹣CM=5﹣2﹣2=1.故答案为:1.18.如图,已知在△ABC中,∠C=90°,BC=2,点D是边BC的中点,∠ABC=∠CAD,将ACD沿直线AD翻折,点C落在点E处,连结BE,那么线段BE的长为.【分析】证△ABC∽△DAC,得出AC2=BC×CD=2,AC=,由勾股定理得出AD=,由折叠的性质得ED=CD=1,∠ADE=∠ADC,得出BD=ED,作DF⊥BE于F,则BF=EF,∠BDF=∠EDF,证△BDF∽△DAC,求出BF=,即可得出答案.【解答】解:如图所示:∵BC=2,点D是边BC的中点,∴BD=CD=1,∵∠ABC=∠CAD,∠C=∠C,∴△ABC∽△DAC,∴AC:CD=BC:AC,∴AC2=BC×CD=2×1=2,∴AC=,∴AD===,由折叠的性质得:ED=CD=1,∠ADE=∠ADC,∴BD=ED,作DF⊥BE于F,则BF=EF,∠BDF=∠EDF,∴∠BDF+∠ADC=×180°=90°,∵∠ADC+∠DAC=90°,∴∠BDF=∠DAC,又∵∠DFB=∠C=90°,∴△BDF∽△DAC,∴=,即=,∴BF=,∴BE=2BF=;故答案为:.三.解答题(共5小题)19.如图,在梯形ABCD中,AD∥BC,AD=2,BC=5,∠BAC=45°,cos∠ACB=(1)求线段AC的长;(2)联结BD,交对角线AC于点O,求∠ADO的余切值.【分析】(1)如图,过点B作BE⊥AC于点E,根据已知条件和cos∠ACB=可得,CE =3,AE=BE=4,进而可求AC的长;(2)结合(1)和AD∥BC,可得=,得AO和OC的长,从而可求OE的长,进而得∠ADO的余切值即为∠BOE的余切值.【解答】解:(1)如图,过点B作BE⊥AC于点E,∴∠AEB=90°,∵∠BAC=45°,∴AE=BE,∵cos∠ACB=,即=,∵BC=5,∴CE=3,∴BE==4,∴AE=BE=4,∴AC=AE+EC=4+3=7.答:线段AC的长为7;(2)∵AD∥BC,∴=,∴=,解得AO=2,∴OC=5,∴OE=OC﹣CE=5﹣3=2,∴==,∵∠ADO=∠BOE,∴cot∠ADO=cot∠BOE=.∴∠ADO的余切值即为∠BOE的余切值为.20.如图,反映了甲、乙两名自行车爱好者同时骑车从A地到B地进行训练时行驶路程y (千米)和行驶时间x(小时)之间关系的部分图象,根据图象提供的信息,解答下列问题:(1)求乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B地,求A、B两地之间的距离.【分析】(1)根据函数图象中的数据,可以求得乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式;(2)根据函数图象中的数据,可以分别求得甲的速度和乙开始的速度,然后设出A、B 两地之间的距离,再根据甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B地,可以列出相应的方程,从而可以得到A、B两地之间的距离.【解答】解:(1)设乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式为y=kx+b,,解得,,即乙的行驶路程y和行驶时间x(1≤x≤3)之间的函数解析式是y=10x+20;(2)设A、B两地之间的距离为S千米,甲的速度为60÷3=20(千米/时),乙开始的速度为30÷1=30(千米/时),,解得,S=80,答:A、B两地之间的距离是80千米.21.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)连结BD,交EF于点Q,求证:DQ⋅BC=CE⋅DF.【分析】(1)作EM⊥BC于点M,可证EM∥AB,可得∠ABE=∠BEM,∠BAC=∠CEM,由角的数量关系可得∠CEM=45°=∠BAC,可证AB=BC,可得结论;(2)通过证明△BCE∽△FDQ,可得,可得结论.【解答】证明:(1)如图,作EM⊥BC于点M,∵四边形ABCD是矩形,∴AB⊥BC,∴EM∥AB,∴∠ABE=∠BEM,∠BAC=∠CEM,∵∠ABE+∠CEF=45°,∴∠BEM+∠CEF=45°,∵BE⊥EF,∴∠CEM=45°=∠BAC,∴∠BAC=∠ACB=45°,∴AB=BC,∴矩形ABCD是正方形;(2)如图,∵∠BEF+∠BCF+∠EFC+∠EBC=360°,∴∠EBC+∠EFC=180°,且∠EFC+∠QFD=180°,∴∠DFQ=∠EBC,∵四边形ABCD是正方形,∴∠ACB=∠BDC=45°,∴△BCE∽△FDQ,∴,∴BC•DQ=CE•DF.22.如图,在平面直角坐标系xOy中,已知抛物线y=x2+mx+n经过点A(2,﹣2),对称轴是直线x=1,顶点为点B,抛物线与y轴交于点C.(1)求抛物线的表达式和点B的坐标;(2)将上述抛物线向下平移1个单位,平移后的抛物线与x轴正半轴交于点D,求△BCD 的面积;(3)如果点P在原抛物线上,且在对称轴的右侧,联结BP交线段OA于点Q,=,求点P的坐标.【分析】(1)先根据对称轴求出m,再将点A坐标代入抛物线解析式中求出能,得出抛物线解析式,最后配成顶点式,即可得出结论;(2)先求出点D坐标,进而求出直线CD解析式,得出点E坐标,再用面积公式求解即可得出结论;(3)设出点P坐标,构造出△PMQ∽△PNB,得出=,表示出QM=(a2﹣2a+1),PM=(a﹣1),进而表示出Q(a+,a2﹣a﹣),代入直线OA中,即可得出结论.【解答】解:(1)∵抛物线y=x2+mx+n的对称轴是直线x=1,∴﹣=1,∴m=﹣2,∴抛物线解析式为y=x2﹣2x+n,∵抛物线过点(2,﹣2),∴4﹣2×2+n=﹣2,∴n=﹣2,∴抛物线的解析式为y=x2﹣2x﹣2=(x﹣1)2﹣3,∴顶点B的坐标为(1,﹣3);(2)如图1,由平移知,平移后的抛物线解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∵点D在x正半轴上,∴D(3,0),针对于抛物线y=x2﹣2x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),∴直线CD的解析式为y=x﹣2,记直线CD与直线x=1的交点为E,则E(1,﹣),∴S△BCD=BE•|x D﹣x C|=×|﹣﹣(﹣3)|×3=;(3)如图2,设P(a,a2﹣2a﹣2),过点P作PN垂直于直线x=1于点N过点Q作QM⊥PN于M,∴QM∥NN,∴△PMQ∽△PNB,∴=,∵,∴=,∵PN=a﹣1,BN=a2﹣2a﹣2+3=a2﹣2a+1,∴,∴QM=(a2﹣2a+1),PM=(a﹣1),∴MN=PN﹣PM=(a﹣1),点Q与点B的纵坐标之差的绝对值为(a2﹣2a+1),∴Q(a+,a2﹣a﹣),∵A(2,﹣2),∴直线OA的解析式为y=﹣x,∵点Q在线段OA上,∴a++a2﹣a﹣=0,∴a=﹣3(舍)或a=4,∴P(4,6).23.已知AB是⊙O的一条弦,点C在⊙O上,联结CO并延长,交弦AB于点D,且CD =CB.(1)如图1,如果BO平分∠ABC,求证:AB=BC;(2)如图2,如果AO⊥OB,求AD:DB的值;(3)延长线段AO交弦BC于点E,如果△EOB是等腰三角形,且⊙O的半径长等于2,求弦BC的长.【分析】(1)证明△OBA≌△OBC即可解决问题.(2)如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.首先证明∠CDB=∠CBD =75°,解直角三角形求出AD,BD(用a表示)即可解决问题.(3)因为∠OEB=∠C+∠COE>∠OBE,推出OE≠OB,分两种情形:如图3﹣1中,当BO=BE时,如图3﹣2中,当EO=EB时,分别求解即可解决问题.【解答】(1)证明:如图1中,∵BO平分∠ABC,∴∠ABO=∠CBO,∵OB=OA=OC,∴∠A=∠ABO,∠C=∠OBC,∴∠A=∠C,∵OB=OB,∴△OBA≌△OBC(AAS),∴AB=BC.(2)解:如图2中,作DM⊥OB于M,DN⊥OA于N,设OM=a.∵OA⊥OB,∴∠MON=∠DMO=∠DNO=90°,∴四边形DMON是矩形,∴DN=OM=a,∵OA=OB,∠AOB=90°,∴∠A=∠ABO=45°,∵OC=OB,CD=CB,∴∠C=∠OBC,∠CDB=∠CBD,∵∠C+∠CDB+∠CBD=180°,∴∠C=30°,∴∠CDB=∠CBD=75°,∵∠DMB=90°,∴∠MDB=∠DBM=45°,∴DM=BM,∠ODM=30°,∴DM=OM=a,DN=DM=a,AD=DN=a,∴==.(3)解:如图3﹣1中,当BO=BE时,∵CD=CB,∴∠CDB=∠CBD,∴∠A+∠AOD=∠OBA+∠OBC,∵∠A=∠ABO,∴∠AOD=∠OBC=∠C,∵AOD=∠COE,∴∠C=∠COE=∠CBO,∵∠C=∠C,∴△OCE∽△BCO,∴=,∴=,解得EC=﹣1+或﹣1﹣(舍弃),∴BC=+1.如图3﹣2中,当EO=EB时,同法可证△OEB是等腰直角三角形,∴EO=EB=EC=OB=,∴BC=2,∵∠OEB=∠C+∠COE>∠OBE,∴OE≠OB,综上所述,BC的值为+1或2.。
【2020二模汇编】23题【1闵行区】23. 如图,已知在ABCD 中,AE BC ⊥,垂足为E ,CE AB =,点F 为CE 的中点,点G 在线段CD 上,联结DF ,交AG 于点M ,交EG 于点N ,且DFC EGC ∠=∠.(1)求证:CG DG =;(2)求证:2CG GM AG =⋅.【2宝山区】23. 如图,E 、F 分别是正方形ABCD 的边DC 、CB 的中点,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,联结AQ 、DF .(1)求证:AE DF ⊥;(2)设1CEQ SS =,2AED S S =,3EAQ S S =,求证:123S S S +=.【3崇明区】23. 如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH AB ⊥,垂足为点H ,交AC 于点E ,联结HO 并延长交CD 于点G .(1)求证:12DHO BCD ∠=∠; (2)求证:2HG AE DE CG ⋅=⋅.【4金山区】23. 如图,已知C 是线段AB 上的一点,分别以AC 、BC 为边在线段AB 同侧作正方形ACDE 和正方形CBGF ,点CBGF 在CD 上,联结AF 、BD ,BD 与FG 交于点M ,点N 是边AC 上的一点,联结EN 交AF 于点H .(1)求证:AF BD =;(2)如果AN GM AC GF=,求证:AF EN ⊥.【5长宁区】23. 如图,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点F 与点C 、D 不重合),BE EF ⊥,且45ABE CEF ∠+∠=︒.(1)求证:四边形ABCD 是正方形;(2)联结BD ,交EF 于点Q ,求证:DQ BC CE DF ⋅=⋅.【6浦东区】23. 已知,如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点E ,过点E 作AC 垂线交边BC 于点F ,与AB 的延长线相交于点M ,且AB AM AE AC ⋅=⋅.求证:(1)四边形ABCD 是矩形;(2)2DE EF EM =⋅.【7徐汇区】23. 已知,如图,在ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,BE DG =,BF DH =.(1)求证:四边形EFGH 是平行四边形;(2)当AB BC =,且BE BF =时,求证:四边形EFGH 是矩形.【8嘉定区】23. 已知,△ABC ,AB AC =,90BAC ∠=︒,点D 是边BC 的中点,点E 在边AB 上(点E 不与点A 、B 重合),点F 在边AC 上,联结DE 、DF .(1)如图1,当90EDF ∠=︒时,求证:BE AF =;(2)如图2,当45EDF ∠=︒时,求证:22DE BE DF CF=.【9静安区】23. 已知,如图,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE AB =,联结DE 、AC ,点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .(1)求证:BG GF =;(2)如果2AC AB =,点F 是DE 的中点,求证:2AH GH BH =⋅.【10青浦区】23. 如图,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的两个外角的平分线, 12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .(1)求证:△:ABE △FDA ;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.【11奉贤区】23. 已知如图,在梯形ABCD 中,CD ∥AB ,90DAB ∠=︒,对角线AC 、BD 相交于点E ,AC ⊥BC ,垂足为点C ,且2BC CE CA =⋅.(1)求证:AD DE =;(2)过点D 作AC 的垂线,交AC 于点F ,求证:2CE AE AF =⋅.【12松江区】23. 如图,已知AB 、AC 是⊙O 的两条弦,且AO 平分∠BAC ,点M 、N 分别在弦AB 、AC 上,满足AM = CN .(1)求证:AB = AC ;(2)联结OM 、ON 、MN ,求证:MN OM AB OA=.【13黄浦区】23. 已知,如图,圆O 是△ABC 的外接圆,AO 平分BAC ∠.(1)求证:△ABC 是等腰三角形;(2)当4OA =,6AB =,求边BC 的长.【参考答案】23.(1)证明略;(2)37BC =.【14虹口区】23. 如图,在△ABC 中,AB AC =,点D 在边BC 上,联结AD ,以AD 为一边作△ADE ,满足AD AE =,DAE BAC ∠=∠,联结EC .(1)求证:CA 平分DCE ∠;(2)如果2AB BD BC =⋅,求证:四边形ABDE 是平行四边形.。
2020年上海市普陀区中考数学二模试卷2020.05 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1. 下列计算中,正确的是(A) –22 = 4(B) 1612 = 8(C) 3–1 = –3(D)(12)–2 = 42. 下列二次根式中,与√2a (a> 0)属同类二次根式的是(A)√2a2(B) √4a(C)√8a3(D)√4a23. 关于函数y =–2x,下列说法中错误的(A)函数的图像在第二、四象限;(B) y的值随x的值增大而增大;(C) 函数的图像与坐标轴没有交点; (D)函数的图像关于原点对称.4. 如图1,矩形ABCD中,对角线AC、BD交于点O,如果OB=4,∠AOB=60°,那么矩形ABCD的面积等于(A) 8(B) 16(C) 8 √3(D) 16√35. 一个事件的概率不可能是(A) 1.5(B) 1(C) 0.5(D) 06. 如图2,已知A、B、C、D四点都在⊙O上,OB⊥AC,BC=CD,在下列四个说法中,①⌒AC=2⌒CD;②AC=2CD;③OC⊥BD;④∠AOD=3∠BOC,正确的个数是(A) 1个 (B) 2个 (C) 3个 (D) 4个二、填空题7. 计算: a (3a)2 = __________8. 函数y = 1x+1的定义域是__________9. 方程√5x= –x的解是__________.10. 已知一个样本1、3、2、5、x的平均数是3,那么x =__________.11. 如果把二次方程x2–xy–2y2 = 0化成两个一次方程,那么所得的两个一次方程分别是__________12. 已知一件商品的进价为 a 元,超市标价 b 元出售,后因季节原因超市将此商品打八折促销,如果促销后这件商品还有盈利,那么此时每件商品盈利__________元。
2020年上海市青浦区中考数学二模试卷2020.05一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1. (0)a a ≠的倒数是( ▲ )(A )a ;(B )a -;(C )1a; (D )1a-. 2.计算2(2)x -的结果,正确的是( ▲ )(A )22x ; (B )22x -;(C )24x ;(D )24x -.3.如果反比例函数ky x=的图像分布在第二、四象限,那么k 的取值范围是( ▲ ) (A )0k >;(B )0k <;(C )0k ≥;(D )0k ≤.4.下列方程中,没有实数根的是( ▲ )(A ); (B ); (C );(D ).5. 为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是( ▲ ) (A )400名学生中每位学生是个体; (B )400名学生是总体;(C )被抽取的50名学生是总体的一个样本; (D )样本的容量是50.6.如图1,点G 是ABC ∆的重心,联结AG 并延长交BC 边于点D .设a AB =,b GD =,那么向量BC 用向量a 、b 表示为( ▲ )(A )32BC b a =-; (B )32BC b a =+;(C )62BC b a =-; (D )62BC b a =+.二、填空题:(本大题共12题,每题4分,满分48分)220x x -=2210x x --=2210x x -+=2220x x -+=图1【请将结果直接填入答题纸的相应位置上】 7. 计算:3a a ÷= ▲ .8. 在实数范围内因式分解:22m -= ▲ . 9.函数y 的定义域是 ▲ .10.不等式组1020.x x +≥⎧⎨->⎩,的解集是 ▲ .11.如果将直线3y x =平移,使其经过点(0,-1),那么平移后的直线表达式是 ▲ . 12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是 ▲ . 13.如果点D 、E 分别是ABC ∆的AB 、AC 边的中点,那么ADE ∆与ABC ∆的周长之比是 ▲ .14.已知点C 在线段AB 上,且012AC AB <<.如果⊙C 经过点A ,那么点B 与⊙C 的位置关系是 ▲ .15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如右表所示.估计该作物种子发芽的天数的平均数约为 ▲ 天.16.在ABC ∆中,3AB AC ==,2BC =,将ABC ∆绕着点B 顺时针旋转,如果点A 落在射线BC 上的点A '处.那么=AA ' ▲ .17.在Rt ABC ∆中,90o ACB ∠=,3AC =,4BC =.分别以A 、B 为圆心画圆,如果⊙A 经过点C ,⊙B 与⊙A 相交,那么⊙B 的半径r 的取值范围是 ▲ .18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似..分.割线...如图2、图3,直线CG 、DH 分别是两个不相似的Rt ABC ∆ 和Rt DEF ∆的相似分割线,CG 、DH 分别与斜边AB 、EF 交于 点G 、 H ,如果BCG ∆与DFH ∆相似,3AC =,5AB =,4DE =,8DF =,那么AG = ▲ .G CA图2HFED图3三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(本题满分10分)计算:2121182-⎛⎫- ⎪⎝⎭.20.(本题满分10分)解方程: 24211422x x x x -=---+.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在Rt ABC ∆中,90ACB ∠=,4AC BC ==,点D 在边BC 上,且3BD CD =,DE AB ⊥,垂足为点E ,联结CE .(1)求线段AE 的长; (2)求ACE ∠的余切值.22.(本题满分10分,第(1)小题3分,第(2)小题7分)某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y (米)与出发的时间x (分)之间的关系如图5中OAABCDE图4图5—AB 折线所示.(1)用文字语言描述点A 的实际意义; (2)求甲、乙两人的速度及两人相遇时x 的值.23.(本题满分12分,第(1)小题7分,第(2)小题5分) 如图6,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的两个外角的平分线,12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .(1)求证:ABE ∆∽FDA ∆;(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图7,在平面直角坐标系xOy 中,二次函数243y a x a x =-+ 的图像与x 轴正半轴交于点A 、B ,与y 轴相交于点C ,顶点为D ,且tan 3∠=CAO .(1)求这个二次函数的解析式;(2)点P 是对称轴右侧抛物线上的点,联结CP ,交对称轴于点F ,当图6GFEDCB A H:2:3CDFFDPSS=时,求点P 的坐标;(3)在(2)的条件下,将△PCD 沿直线MN 翻折,当点P 恰好与点O 重合时,折痕MN 交轴于点M ,交轴于点N ,求 OM ON的值.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图8,已知AB 是半圆O 的直径,6AB =,点C 在半圆O 上.过点A 作AD ⊙OC ,垂足为点D ,AD 的延长线与弦BC 交于点E ,与半圆O 交于点F (点F 不与点B 重合).(1)当点F 为BC 的中点时,求弦BC 的长; (2)设OD x =,DE AEy =,求与的函数关系式;(3)当△AOD 与△CDE 相似时,求线段OD 的长.x y y x OABCDEFOABCDE F图7备用图2020年上海市青浦区中考数学二模试卷答案解析版一、选择题1.a(a≠0)的倒数是()A. aB. ﹣aC. 1aD.1a-【答案】C 【解析】分析】一般地,11(0)a aa•=≠,就说a(a≠0)的倒数是1a.据此即可得出答案.【详解】解:11(0) a aa•=≠,∴a(a≠0)的倒数是1a,故选:C.【点睛】本题考查的是倒数的定义,掌握倒数的定义是解题的关键.2.计算(﹣2x)2的结果是()A. 2x2B. ﹣2x2C. 4x2D. ﹣4x2【答案】C【解析】【分析】根据积的乘方法则计算即可.【【详解】解:(﹣2x)2=4x2.故选:C.【点睛】本题考查积的乘方计算,掌握计算法则正确计算是解题关键.3.如果反比例函数y=kx的图象在二、四象限,那么k的取值范围是()A. k>0B. k<0C. k≥0D. k≤0【答案】B【解析】【分析】根据反比例函数图象的性质:当k<0时,反比例函数图象位于第二、四象限.【详解】解:⊙图象在二、四象限,⊙k<0.故选:B.【点睛】本题考查反比例函数的图像性质,掌握反比例函数的性质,利用数形结合思想解题是关键.4.下列方程中,没有实数根的是()A. x2﹣2x=0B. x2﹣2x﹣1=0C. x2﹣2x+1 =0D. x2﹣2x+2=0【答案】D【解析】【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、⊙=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、⊙=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、⊙=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、⊙=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.5.为了解某校初三400名学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,下列说法正确的是()A. 400名学生中每位学生是个体B. 400名学生是总体C. 被抽取的50名学生是总体的一个样本D. 样本的容量是50【答案】D【解析】【分析】总体是所有调查对象的全体;样本是所抽查对象的情况;所抽查对象的数量;个体是每一个调查的对象.【详解】解:A.400名学生中每位学生的体重是个体,故本选项不合题意;B.400名学生的体重是总体,故本选项不合题意;C.被抽取的50名学生的体重是总体的一个样本,故本选项不合题意;D.样本的容量是50,符合题意;故选:D.【点睛】本题考查了统计的有关知识,解决此题的关键是掌握总体、样本、样本容量、个体的定义.6.如图,点G是⊙ABC的重心,联结AG并延长交BC边于点D.设AB a=,GD b=,那么向量BC用向量a、b表示为()A. 32BC b a=+=- D. 62 =- B. 32BC b aBC b a=+ C. 62BC b a【答案】C【解析】【分析】G是⊙ABC的重心,推出AG=2DG,推出AD=3DG,利用三角形法则求出BD即可解决问题.的【详解】解:⊙G是⊙ABC重心,⊙AG=2DG,⊙AD=3DG,⊙AD=3GD=3b,⊙BD=BA+AD=﹣a+3b,DB=BD,⊙BC=2BD=6b﹣2a,故选:C.【点睛】此题考查三角形的重心,平面向量,三角形法则,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题7.计算:3a a÷=__________.【答案】2a.【解析】【分析】同底数幂相除,底数不变,指数相减【详解】解:原式=312-=.a a故答案为2a.8.在实数范围内分解因式x2-2=__________________.【答案】)(x【解析】分析:把2写成2,然后运用平方差公式分解即可.详解:原式= x2-2=x2-2+.=(x x+.故答案为(x x点睛:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.9.函数y =________.【答案】x≥-3 【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 详解:根据题意得:x +3≥0,解得:x ≥﹣3. 故答案为x ≥﹣3.点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑: (1)当函数表达式是整式时,定义域可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.10.不等式组1020x x +≥⎧⎨->⎩的整数解是_____.【答案】﹣1、0、1 【解析】 【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.【详解】1020x x +≥⎧⎨->⎩,解不等式10x +≥得:1x ≥-, 解不等式20x ->得:2x <,∴不等式组的解集为12x -≤<,不等式组的整数解为-1,0,1.故答案为-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.11.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是_____.【答案】y=3x﹣1【解析】【分析】根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,﹣1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.12.从2,3,4,5,6这五个数中任选一个数,选出的这个数是素数的概率是_____.【答案】3 5【解析】【分析】这五个数中任选一个数共有5种等可能结果,其中选出的这个数是素数的有2、3、5这3种结果,根据概率公式求解可得.【详解】解:从2,3,4,5,6这五个数中任选一个数共有5种等可能结果,其中选出的这个数是素数的有2、3、5这3种结果, 所以选出的这个数是素数的概率是35, 故答案为:35. 【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.13.如果点D 、E 分别是⊙ABC AB 、AC 边的中点,那么⊙ADE 与⊙ABC 的周长之比是_____. 【答案】1:2 【解析】 【分析】根据中位线的定理即可求出答案.【详解】解:⊙点D 、E 分别是⊙ABC 的AB 、AC 边的中点, ⊙DE 是⊙ABC 的中位线, ⊙12DE AD AE BC AB AC ===, ⊙ADE ABCL L=DE AD AE BC AB AC++++=12 故答案为:1:2.【点睛】本题考查中位线,解题的关键是熟练运用中位线的性质定理,本题属于基础题型. 14.已知点C 在线段AB 上,且0<AC <12AB .如果⊙C 经过点A ,那么点B 与⊙C 的位置的关系是_____.【答案】点B在⊙C外【解析】【分析】直接根据点与圆的位置关系即可得出结论.【详解】解:如图,⊙点C在线段AB上,且0<AC<1AB,2⊙BC>AC,⊙点B在⊙C外,故答案为:点B在⊙C外.【点睛】本题考查的是点与圆的位置关系,熟知设⊙O的半径为r,点P到圆心的距离OP=d,当d>r时点P在圆外;当d<r时点P在圆内是解答此题的关键.15.随机选取50粒种子在适宜的温度下做发芽天数的试验,试验的结果如表所示.估计该作物种子发芽的天数的平均数约为_____天.【答案】1.8【解析】【分析】利用加权平均数的公式计算可得.【详解】估计该作物种子发芽的天数的平均数约为115230351.850⨯+⨯+⨯=(天)故答案为:1.8.【点睛】本题考查了加权平均数的公式,熟记公式是解题关键.16.在⊙ABC中,AB=AC=3,BC=2,将⊙ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A'处.那么AA'=_____.【答案】【解析】【分析】作AH⊙BC于H,如图,利用等腰三角形的性质得BH=CH=12BC=1,利用勾股定理可计算出AH=,再根据旋转的性质得BA′=BA=3,则HA′=2,然后利用勾股定理可计算出AA′的长.【详解】解:作AH⊙BC于H,如图,⊙AB=AC=3,BC=2,⊙BH=CH=12BC=1,⊙AH⊙⊙ABC绕着点B顺时针旋转,如果点A落在射线BC上的点A'处,⊙BA′=BA=3,⊙HA′=2,在Rt⊙AHA′中,AA′故答案为【点睛】此题考查旋转的性质,等腰三角形的性质,解题关键在于掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17.在Rt⊙ABC中,⊙ACB=90°,AC=3,BC=4.分别以A、B为圆心画圆,如果⊙A经过点C,⊙B与⊙A相交,那么⊙B的半径r的取值范围是_____.【答案】2<r<8【解析】【分析】根据勾股定理求出斜边AB,根据⊙A经过点C求出⊙A的半径为3,再求出⊙B的半径范围即可.【详解】解:在Rt⊙ABC中,⊙ACB=90°,AC=3,BC=4,由勾股定理得:AB=5,⊙⊙A经过点C,⊙AD=AC=3,⊙BD=2,⊙⊙B与⊙A相交,⊙⊙B的半径r的取值范围是2<r<8,故答案为:2<r<8.【点睛】本题考查了圆与圆的位置关系,勾股定理等知识点,能求出BD的长是解此题的关键.18.小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt⊙ABC和Rt⊙DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果⊙BCG与⊙DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=_____.【答案】3【解析】【分析】先由勾股定理得出BC的值,再由⊙BCG⊙⊙DFH列出比例式,设AG=x,用含x的式子表示出DH;按照相似分割线可知,⊙AGC⊙⊙DHE,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x值即可.【详解】解:⊙Rt⊙ABC,AC=3,AB=5,⊙由勾股定理得:BC=4,⊙⊙BCG⊙⊙DFH,⊙BGDH=BCDF,已知DF=8,设AG=x,则BG=5﹣x,⊙5 xDH=48,⊙DH=10﹣2x,⊙⊙BCG⊙⊙DFH,⊙⊙B=⊙FDH,⊙BGC=⊙CHF,⊙⊙AGC=⊙DHE,⊙⊙A+⊙B=90°,⊙EDH+⊙FDH=90°,⊙⊙A =⊙EDH , ⊙⊙AGC⊙⊙DHE ,⊙AG DH =ACDE, 又DE =4,⊙102-xx =34,解得:x =3,经检验,x =3是原方程的解,且符合题意. ⊙AG =3. 故答案为:3.【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的判定及性质是解决此题的关键. 三、解答题19.计算:2121|1|82-⎛⎫- ⎪⎝⎭.【答案】3 【解析】 【分析】直接利用绝对值的意义、二次根式的性质、分数指数幂的性质以及负指数指数幂分别化简得出答案.2121182-⎛⎫-+ ⎪⎝⎭14=-+14=-3=.【点睛】本题考查了实数的混合运算,涉及到了绝对值的意义、二次根式的性质、分数指数幂的性质以及负指数指数幂等知识点,灵活运用相关知识点是解题的关键,体现了数学运算的核心素养.20.解方程:24211422xx x x.【答案】x=1.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:4x﹣2x﹣4=x2﹣4﹣x+2,即x2﹣3x+2=0,解得:x=1或x=2,经检验x=2是增根,所以,分式方程的解为x=1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.如图,在Rt⊙ABC中,⊙ACB=90°,AC=BC=4,点D在边BC上,且BD=3CD,DE⊙AB,垂足为点E,联结CE.(1)求线段AE长;(2)求⊙ACE的余切值.【答案】(1(2)3 5【解析】【分析】(1)根据锐角三角函数定义即可求出AE的长;(2)过点E作EH⊙AC于点H.根据等腰直角三角形的性质可得EH=AH的值,再根据三角函数即可求出⊙ACE的余切值.【详解】解:(1)⊙BC=4,BD=3CD,⊙BD=3.⊙AB=BC,⊙ACB=90°,⊙⊙A=⊙B=45°.⊙DE⊙AB,⊙在Rt⊙DEB中,cosB=BEBD.⊙BE在Rt⊙ACB中,AB,⊙AE的(2)如图,过点E 作EH⊙AC 于点H .⊙在Rt⊙AHE 中,cosA =2AH AE =, AH=AE•cos45°=52, ⊙CH =AC−AH =4−52=32, ⊙EH=AH=52, ⊙在Rt⊙CHE 中,cot⊙ECB=35CH EH =, 即⊙ECB 的余切值是35. 【点睛】此题考查解直角三角形、等腰直角三角形,解决本题的关键是掌握锐角三角函数定义.22.某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y (米)与出发的时间x (分)之间的关系如图中OA ﹣AB 折线所示. (1)用文字语言描述点A 的实际意义; (2)求甲、乙两人的速度及两人相遇时x 的值.【答案】(1)20分钟时,甲乙两人相距500米;(2)甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x的值为24【解析】【分析】(1)根据题意结合图象解答即可;(2)根据图象分别求出两人的速度,再根据题意列方程解答即可.【详解】解:(1)点A的实际意义为:20分钟时,甲乙两人相距500米.(2)根据题意得,1500==7520V甲(米/分),1000==5020V乙(米/分),依题意,可列方程:75(x﹣20)+50(x﹣20)=500,解这个方程,得x=24,答:甲的速度是每分钟75米,乙的速度是每分钟50米,两人相遇时x的值为24.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.23.如图,在平行四边形ABCD中,BE、DF分别是平行四边形的两个外角的平分线,⊙EAF =12⊙BAD,边AE、AF分别交两条角平分线于点E、F.(1)求证:⊙ABE⊙⊙FDA;(2)联结BD、EF,如果DF2=AD•AB,求证:BD=EF.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据角平分线的定义得到⊙HDF=12⊙HDC.根据平行四边形的性质得到AB⊙CD.求得⊙BAD=⊙CDH.等量代换得到⊙BAE=⊙F,同理⊙DAF=⊙E,于是得到结论;(2)作AP平分⊙DAB交CD于点P,由角平分线的定义得到⊙DAP=12⊙BAD,求得⊙HDF =⊙DAP,推出DF⊙AP,同理BE⊙AP,根据相似三角形的性质得到BE=DF,根据平行四边形的性质即可得到结论.【详解】解:(1)⊙⊙EAF=12⊙BAD,⊙⊙DAF+⊙BAE=12⊙BAD,⊙DF平分⊙HDC,⊙⊙HDF=12⊙HDC,又⊙四边形ABCD是平行四边形,⊙AB⊙CD,⊙⊙BAD=⊙CDH,⊙⊙HDF=⊙EAF,⊙⊙HDF =⊙DAF+⊙BAE , 又⊙⊙HDF =⊙DAF+⊙F , ⊙⊙BAE =⊙F , 同理:⊙DAF =⊙E , ⊙⊙ABE⊙⊙FDA ;(2)作AP 平分⊙DAB 交CD 于点P ,⊙⊙DAP =12⊙BAD , ⊙⊙HDF =12⊙CDH ,且⊙BAD =⊙CDH ⊙⊙HDF =⊙DAP , ⊙DF⊙AP , 同理:BE⊙AP , ⊙DF⊙BE , ⊙⊙ABE⊙⊙FDA , ⊙=AD DFBE AB, 即BE•DF =AD•AB , 又⊙DF 2=AD•AB ,⊙BE=DF,⊙四边形DFEB是平行四边形,⊙BD=EF.【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.24.如图,在平面直角坐标系xOy中,二次函数y=ax2﹣4ax+3的图象与x轴正半轴交于点A、B,与y轴相交于点C,顶点为D,且tan⊙CAO=3.(1)求这个二次函数的解析式;(2)点P是对称轴右侧抛物线上点,联结CP,交对称轴于点F,当S⊙CDF:S⊙FDP=2:3时,求点P的坐标;(3)在(2)的条件下,将⊙PCD沿直线MN翻折,当点P恰好与点O重合时,折痕MN交x轴于点M,交y轴于点N,求OMON的值.【答案】(1)y=x2﹣4x+3;(2)(5,8);(3)8 5【解析】【分析】的(1)在Rt⊙AOC 中,tan⊙CAO =OCOA=3,求出点A 的坐标,即可求解; (2)利用2=3CDF FDPS CG SPQ =,即可求解; (3)证明⊙ONM =⊙POH ,则8tan tan 5OM PH ONM POM ON OH ∠=∠===. 【详解】解:(1)⊙二次函数y =ax 2﹣4ax+3的图象与y 轴交于点C , ⊙点C 的坐标为(0,3), ⊙OC =3,连接AC ,在Rt⊙AOC 中,tan⊙CAO =OCOA=3, ⊙OA =1,将点A (1,0)代入y =ax 2﹣4ax+3,得a ﹣4a+3=0, 解得:a =1.所以,这个二次函数的解析式为 y =x 2﹣4x+3;(2)过点C 作CG⊙DF,过点P 作PQ⊙DF ,垂足分别为点G 、Q .⊙抛物线y =x 2﹣4x+3的对称轴为直线x =2, ⊙CG =2,⊙2=3CDF FDPS CG SPQ , ⊙PQ =3,⊙点P 的横坐标为5,⊙把x =5代入y =x 2﹣4x+3,得 y =8, ⊙点P 的坐标为(5,8);(3)过点P 作PH⊙OM ,垂足分别为点H ,⊙点P 的坐标为(5,8),⊙OH=5,PH=8,⊙将⊙PCD沿直线MN翻折,点P恰好与点O重合,⊙MN⊙OP,⊙⊙ONM+⊙NOP=90°,又⊙⊙POH+⊙NOP=90°,⊙⊙ONM=⊙POH,⊙OM PH8 tan ONII tan POMON OH5∠==∠==.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、图象的翻折、面积的计算等,具有一定的综合性,难度适中.25.如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊙OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).(1)当点F为BC的中点时,求弦BC的长;(2)设OD=x,DEAE=y,求y与x的函数关系式;(3)当⊙AOD与⊙CDE相似时,求线段OD的长.【答案】(1)(2)y=36x-;(3)32【解析】【分析】(1)连结OF,交BC于点H.得出⊙BOF=⊙COF.则⊙AOC=⊙COF=⊙BOF=60°,可求出BH,BC的长;(2)连结BF.证得OD⊙BF,则33DE xDF x-=+,即33DE xAD x-=+,得出36DE xAE-=,则得出结论;(3)分两种情况:⊙当⊙DCE=⊙DOA时,AB⊙CB,不符合题意,舍去,⊙当⊙DCE=⊙DAO时,连结OF,证得⊙OAF=30°,得出OD=1322OA=,则答案得出.【详解】解:(1)如图1,连结OF,交BC于点H.⊙F是BC中点,⊙OF⊙BC,BC=2BH.⊙⊙BOF=⊙COF.⊙OA=OF,OC⊙AF,⊙⊙AOC=⊙COF,⊙⊙AOC=⊙COF=⊙BOF=60°,在Rt⊙BOH中,sin⊙BOH=BHOB=⊙AB=6,⊙OB=3,⊙BH⊙BC=2BH=(2)如图2,连结BF.⊙AF⊙OC,垂足为点D,⊙AD=DF.又⊙OA=OB,⊙OD⊙BF,BF=2OD=2x.⊙32DE CD x EF BF x-==,⊙33DE x DF x-=+,即33DE x AD x-=+,⊙36 DE x AE-=,⊙y=36x -.(3)⊙AOD和⊙CDE相似,分两种情况:⊙当⊙DCE=⊙DOA时,AB⊙CB,不符合题意,舍去.⊙当⊙DCE=⊙DAO时,连结OF.⊙OA=OF,OB=OC,⊙⊙OAF=⊙OFA,⊙OCB=⊙OBC.⊙⊙DCE=⊙DAO,⊙⊙OAF=⊙OFA=⊙OCB=⊙OBC.⊙⊙AOD=⊙OCB+⊙OBC=2⊙OAF,⊙⊙OAF=30°,⊙OD=13 22 OA .即线段OD的长为32.【点睛】本题属于圆综合题,考查了垂径定理,勾股定理,直角三角形的性质,圆周角定理,相似三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造基本图形解决问题.备用图图8。
2020年上海市浦东新区中考数学二模试卷一、选择题(共6个小题)1.下列各数是无理数的是()A.B.C.D.0.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.一次函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限4.如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°5.在梯形ABCD中,AD∥BC,那么下列条件中,不能判断它是等腰梯形的是()A.AB=DC B.∠DAB=∠ABC C.∠ABC=∠DCB D.AC=DB6.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C 内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12B.18<r<25C.1<r<8D.5<r<8二、填空题(本大题共12题,每题4分,满分48分)7.函数的定义域是.8.方程=x的根是.9.不等式组的解集是.10.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为.11.一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是.12.如果点A(3,y1)、B(4,y2)在反比例函数y=的图象上,那么y1y2.(填“>”、“<”或“=”)13.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为名.14.已知向量与单位向量的方向相反,||=3,那么向量用单位向量表示为.15.如图,AB∥CD,如果∠B=50°,∠D=20°,那么∠E=.16.在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5,那么旗杆的高位米.(用含α的三角比表示)17.在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D、E分别在边AB、AC上.如果D为AB中点,且=,那么AE的长度为.18.在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,D是BC边上一点,沿直线AD翻折△ABD,点B落在点E处,如果∠ABE=45°,那么BD的长为.三、解答题(本大题共7题,满分78分)19.计算:(﹣1)0+|1﹣|+()﹣1+8.20.先化简,再求值:÷﹣,其中a=+2.21.已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.22.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?23.已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB•AM=AE•AC.求证:(1)四边形ABCD是矩形;(2)DE2=EF•EM.24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C(0,3),对称轴是直线x=1.(1)求抛物线的表达式;(2)直线MN平行于x轴,与抛物线交于M、N两点(点M在点N的左侧),且MN =AB,点C关于直线MN的对称点为E,求线段OE的长;(3)点P是该抛物线上一点,且在第一象限内,联结CP、EP,EP交线段BC于点F,当S△CPF:S△CEF=1:2时,求点P的坐标.25.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.参考答案一、选择题(本大题共6题,每题4分,满分24分)1.下列各数是无理数的是()A.B.C.D.0.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是无理数;B.,是整数,属于有理数;C.是分数,属于有理数;D.是循环小数,属于有理数.故选:A.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】各项化简后,利用同类二次根式定义判断即可.解:与是同类二次根式的是,故选:C.3.一次函数y=﹣2x+3的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限【分析】根据一次函数的性质即可求得.解:∵一次函数y=﹣2x+3中,k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限.故选:D.4.如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可求得边数,然后代入内角和公式求解即可.解:这个多边形的边数是360÷72=5,所以内角和为(5﹣2)×180°=540°故选:B.5.在梯形ABCD中,AD∥BC,那么下列条件中,不能判断它是等腰梯形的是()A.AB=DC B.∠DAB=∠ABC C.∠ABC=∠DCB D.AC=DB【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.解:A、∵AD∥BC,AB=DC,∴梯形ABCD是等腰梯形,故本选项错误;B、根据∠DAB=∠ABC,不能推出四边形ABCD是等腰梯形,故本选项正确;C、∵∠ABC=∠DCB,∴BD=BC,∴四边形ABCD是等腰梯形,故本选项错误;D、∵AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项错误.故选:B.6.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆外切,且点D在圆C 内,点B在圆C外,那么圆A的半径r的取值范围是()A.5<r<12B.18<r<25C.1<r<8D.5<r<8【分析】首先根据点D在⊙C内,点B在⊙C外,求得⊙C的半径是大于5而小于12;再根据勾股定理求得AC=13,最后根据两圆外切的位置关系得到其数量关系.解:∵在矩形ABCD中,AB=5,BC=12,∴AC==13,∵点D在⊙C内,点B在⊙C外,∴⊙C的半径R的取值范围为:5<R<12,当⊙A和⊙C外切时,圆心距等于两圆半径之和是13,设⊙C的半径是R c,即R c+r=13,又∵5<R c<12,则r的取值范围是1<r<8.故选:C.二、填空题(本大题共12题,每题4分,满分48分)7.函数的定义域是x≠1.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得自变量x的取值范围.解:根据题意,有x﹣1≠0,解可得x≠1.故答案为x≠1.8.方程=x的根是1.【分析】此题需把方程两边平方去根号后求解,然后把求得的值进行检验即可得出答案.解:两边平方得:3﹣2x=x2,整理得:x2+2x﹣3=0,(x+3)(x﹣1)=0,解得:x1=﹣3,x=1,检验:当x=﹣3时,原方程的左边≠右边,当x=1时,原方程的左边=右边,则x=1是原方程的根.故答案为:1.9.不等式组的解集是﹣6≤x<.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x+5≥﹣1,得:x≥﹣6,解不等式2x<5,得:x<,则不等式组的解集为﹣6≤x<,故答案为:﹣6≤x<.10.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k值为3.【分析】根据判别式的意义得到△=(﹣2)2﹣4k=0,然后解关于k的一元一次方程即可.解:根据题意得△=(﹣2)2﹣4k=0,解得k=3.故答案为:3.11.一个不透明的口袋中有五个完全相同的小球,分别标号为1、2、3、4、5,从中随机抽取一个小球,其标号是素数的概率是.【分析】从袋子中随机抽取1个小球共有5种等可能结果,其中抽出的标号是素数的有2、3、5这3种结果,再利用概率公式可得.解:从标号为1、2、3、4、5的5个小球中随机抽取1个小球共有5种等可能结果,其中抽出的标号是素数的有2、3、5这3种结果,所以从中随机抽取一个小球,其标号是素数的概率是,故答案为:.12.如果点A(3,y1)、B(4,y2)在反比例函数y=的图象上,那么y1>y2.(填“>”、“<”或“=”)【分析】反比例函数y=的图象在一、三象限,在每个象限内,y随x的增大而减小,判断出y的值的大小关系.解:∵k=2>0,∴反比例函数y=的图象在一、三象限,且在每个象限内y随x的增大而减小,∵A(3,y1)、B(4,y2)同在第一象限,且3<4,∴y1>y2,故答案为>.13.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为300名.【分析】用整体1减去乒乓球、羽毛球、足球所占的百分比,求出篮球所占的百分比,再用该学校1500名学生乘以篮球所占的百分比即可得出答案.解:根据题意得:1500×(1﹣16%﹣28%﹣36%)=300(名),答:该学校1500名学生中选择篮球项目的学生约为300名;故答案为:300.14.已知向量与单位向量的方向相反,||=3,那么向量用单位向量表示为﹣3.【分析】根据向量的定义,确定模的大小,以及方向即可.解:∵向量与单位向量的方向相反,||=3,∴=﹣3,故答案为﹣3.15.如图,AB∥CD,如果∠B=50°,∠D=20°,那么∠E=30°.【分析】根据平行线的性质得出∠BCD=50°,利用三角形外角性质解答即可.解:∵AB∥CD,∴∠BCD=∠B=50°,∵∠D=20°,∴∠E=∠BCD﹣∠D=50°﹣20°=30°,故答案为:30°.16.在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5,那么旗杆的高位(1.5+15tanα)米.(用含α的三角比表示)【分析】由题意得,在直角三角形中,知道了已知角的邻边求对边,用正切值计算即可.解:根据题意可得:旗杆比仪器高15tanα,测角仪高为1.5米,故旗杆的高为(1.5+15tanα)米.故答案为:(1.5+15tanα)17.在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D、E分别在边AB、AC上.如果D为AB中点,且=,那么AE的长度为5或.【分析】先求出DE的长,分两种情况讨论,利用相似三角形的性质和等腰三角形的性质可求解.解:∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵D为AB中点,∴AD=4,∵,∴∴DE=3,如图,∠ADE=∠ABC=90°时,∴△ADE∽△ABC,∴∴AE=5,如图,∠ADE≠∠ABC时,取AC中点H,连接DH,过点D作DF⊥AC于F,∵点D是AB中点,点H是AC的中点,∴DH=BC=3,AH=HC=5,DH∥BC,∴∠ADH=∠ABC=90°,∵S△ADH=×AH×DF=×AD×DH,∴5×DF=12,∴DF=,∴FH===,∵DE=DH,DF⊥AC,∴EF=FH=,∴AE=AH﹣﹣=,故答案为:5或.18.在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,D是BC边上一点,沿直线AD翻折△ABD,点B落在点E处,如果∠ABE=45°,那么BD的长为2.【分析】过D作DF⊥AB于F,根据折叠可得∠ADF=∠DAF=45°,设DF=AF=x,则BF=x,BD=2x,根据AB=2,即可得到x的值,进而得出BD的长.解:如图所示,过D作DF⊥AB于F,∵Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=,∴AB=2,∠ABC=30°,由折叠可得,AB=AE,∠BAD=∠EAD,∴∠ABE=∠AEB=45°,∴∠BAE=90°,∴∠BAD=∠BAE=45°,∴∠ADF=∠DAF=45°,∴AF=DF,设DF=AF=x,则BF=x,BD=2x,∵AB=AF+BF,∴2=x+x,解得x=﹣1,∴BD=2x=2,故答案为:2.三、解答题(本大题共7题,满分78分)19.计算:(﹣1)0+|1﹣|+()﹣1+8.【分析】直接利用绝对值的性质、负整数指数幂的性质、分数指数幂的性质分别化简得出答案.解:原式=1+﹣1+3+2=5.20.先化简,再求值:÷﹣,其中a=+2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.解:原式=•﹣=﹣=,当a=+2时,原式===.21.已知:如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=16,点O为斜边AB的中点,以O为圆心,5为半径的圆与BC相交于E、F两点,联结OE、OC.(1)求EF的长;(2)求∠COE的正弦值.【分析】(1)作OM⊥EF于M,如图,根据垂径定理得到EM=FM,利用三角形中位线性质得到OM=AC=4,然后利用勾股定理计算出EM,从而得到EF的长;(2)利用CE=OE=5得到∠OEC=∠OCE,在利用勾股定理计算出OC=4,然后利用正弦的定义求出sin∠OCM,从而得到∠COE的正弦值.解:(1)作OM⊥EF于M,如图,则EM=FM,∵∠ACB=90°,∴OM⊥BC,∴OM=AC=×8=4,在Rt△OEM中,EM==3,∴EF=2EM=6;(2)CM=BC=8,∴CE=8﹣3=5,∴CE=OE,∴∠OEC=∠OCE,在Rt△OCM中,OC==4,∴sin∠OCM===,∴∠COE的正弦值为.22.学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?【分析】根据题意表示出科普类图书和文学类图书的平均价格,再利用购买科普类图书的数量比购买文学类图书数量少100本得出等式求出答案.解:设科普类图书平均每本的价格是x元,则文学类图书平均每本的价格为(x﹣5)元,根据题意可得:=﹣100,解得:x=20,经检验得:x=20是原方程的根,答:科普类图书平均每本的价格是20元.23.已知:如图,在平行四边形ABCD中,对角线AC与BD相交于点E,过点E作AC的垂线交边BC于点F,与AB的延长线交于点M,且AB•AM=AE•AC.求证:(1)四边形ABCD是矩形;(2)DE2=EF•EM.【分析】(1)根据相似三角形的性质与判定可知∠AME=∠ACB,从而可得∠ACB+∠BAC=90°,所以▱ABCD是矩形.(2)由(1)可知:DE=EC,AE=EC,易证∠CME=∠AME=∠ECB,所以△CEF∽△MEC,所以,从而得证.解:(1)∵AB•AM=AE•AC,∴=,∵∠CAB=∠CAB,∴△ACB∽△AME,∴∠AME=∠ACB,由于∠AME+∠BAC=90°,则∠ACB+∠BAC=90°,∴▱ABCD是矩形.(2)由(1)可知:DE=EC,AE=EC,∵ME⊥AC,∴ME平分∠AMC,∴∠CME=∠AME=∠ECB,∵∠MEC=∠FEC=90°,∴△CEF∽△MEC,∴,∴EC2=EF•EM,即DE2=EF•EM24.在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c与x轴交于点A和点B(点A在点B的左侧),与y轴交于点C(0,3),对称轴是直线x=1.(1)求抛物线的表达式;(2)直线MN平行于x轴,与抛物线交于M、N两点(点M在点N的左侧),且MN =AB,点C关于直线MN的对称点为E,求线段OE的长;(3)点P是该抛物线上一点,且在第一象限内,联结CP、EP,EP交线段BC于点F,当S△CPF:S△CEF=1:2时,求点P的坐标.【分析】(1)根据对称轴为直线x=1求出b=2,即可求解;(2)由抛物线的对称性知,QM=QN=MN=,则点N(,),即MN在直线y=上,即可求解;(3)S△CPF:S△CEF=1:2,即=,而△PP′F∽△ECF,则,即,即可求解.解:(1)由题意得:﹣,解得:b=2,∵抛物线与y轴交于点C(0,3),故c=3,故抛物线的表达式为:y=﹣x2+2x+3;(2)对于y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A、B的坐标分别为:(﹣1,0)、(3,0),则AB=4,MN=AB=3,如图1,作抛物线的对称轴交MN于点Q,由抛物线的对称性知,QM=QN=MN=,则点N的横坐标为1+=,故点N(,),即MN在直线y=上,则点C关于MN的对称点E的坐标为:(0,),即OE=;(3)过点P作PP′∥OC交BC于点P′,设直线BC的表达式为:y=mx+n,则,解得:,故直线BC的表达式为:y=﹣x+3,设点P(a,﹣a2+2a+3),则点P′(a,﹣a+3),则PP′=(﹣a2+2a+3)﹣(﹣a+3)=﹣a2+3a,∵S△CPF:S△CEF=1:2,即=,∵PP′∥CE,∴△PP′F∽△ECF,∴,即,解得:a=或,故点P的坐标为:(,)或(,).25.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE=x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.【分析】(1)根据菱形的性质得AB=BC,而∠B=60°,则可判定△ABC为等边三角形,得到∠BAC=60°,AC=AB,易得∠ACF=60°,∠BAE=∠CAF,然后利用“ASA”可证明△AEB≌△AFC,得出AE=AF,则结论可得出;(2)过点A作AH⊥BC于点H,求出AE,证明△BAE∽△CEG,得出,则可得出答案;(3)证明△COE∽△CEA,由比例线段可得出答案.【解答】(1)证明:∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACF=60°,∵∠EAF=60°,即∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF,∴△AEF为等边三角形;(2)解:过点A作AH⊥BC于点H,∵△AEF为等边三角形,∴AE=EF=,∠AEF=60°,∵∠ABH=60°,∴,BH=HC=1,∴EH=|x﹣HC|=|x﹣1|,∴EF==,∵∠AEF=∠B=60°,∴∠CEG+∠AEB=∠AEB+∠BAE=120°,∴∠CEG=∠BAE,∵∠B=∠ACE=60°,∴△BAE∽△CEG,∴,∴,∴y=EG=(0<x<2),(3)解:∵AB=2,△ABC是等边三角形,∴AC=2,∴OA=OC=1,∵EG=EO,∴∠EOG=∠EGO,∵∠EGO=∠ECG+∠CEG=60°+∠CEG,∠CEA=∠CEG+∠AEF=60°+∠CEG,∴∠EGO=∠CEA,∴∠EOG=∠CEA,∵∠ECA=∠OCE,∴△COE∽△CEA,∴,∴CE2=CO•CA,∴x2=1×2,∴x=(x=﹣舍去),即x=.。
2020-2021学年上海市各区九年级中考⼆模数学试卷精选汇编:综合计算专题九年级中考⼆模数学试卷精选汇编综合计算宝⼭区、嘉定区21.(本题满分10分,第(1)⼩题5分,第(2)⼩题5分)如图4,在梯形ABCD 中,AD ∥BC ,?=∠90BAD ,AD AC =. (1)如果BAC ∠?=∠-10BCA ,求D ∠的度数;(2)若10=AC ,31cot =∠D ,求梯形ABCD 的⾯积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分∵BAC ∠?=∠-10BCA∴BAC ∠?=∠-10CAD …………………1分∵?=∠90BAD∴BAC ∠?=∠+90CAD∴?=∠40CAD …………………1分∵AD AC =∴D ACD ∠=∠ …………………1分∵?=∠+∠+∠180CAD D ACD图4DCB A图4 DCB AH∴?=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂⾜为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CHAH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分∴6=HC ,8=AH ,10=AD ………………1分∵?=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平⾏四边形∴8==AH BC ………1分∴梯形ABCD 的⾯积546)810(21)(21=?+=?+=CH BC AD S ………1分长宁区21.(本题满分10分,第(1)⼩题4分,第(2)⼩题6分)如图,在等腰三⾓形ABC 中,AB=AC ,点D 在BA 的延长线上,BC=24,135sin =∠ABC .(1)求AB 的长;(2)若AD=6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)⼩题4分,第(2)⼩题6分)ADB第21题图解:(1)过点A 作AE ⊥BC ,垂⾜为点E⼜∵AB=AC ∴BC BE 21= ∵BC=24 ∴ BE=12 (1分)在ABE Rt ?中,?=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k ,∴55==k AE , 1313==k AB (2分)(2)过点D 作DF ⊥BC ,垂⾜为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ?=∠=∠90DFB AEB ∴ DF AE // ∴BDABBF BE DF AE == ⼜∵ AE=5,BE=12,AB=13,∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ?中,?=∠90DFC ,542156cot ===∠DF CF DCB (1分)崇明区21.(本题满分10分,第(1)、(2)⼩题满分各5分)已知圆O 的直径12AB =,点C 是圆上⼀点,且30ABC ∠=?,点P 是弦BC 上⼀动点,过点P 作PD OP ⊥交圆O 于点D .(1)如图1,当PD AB ∥时,求PD 的长;(2)如图2,当BP 平分OPD ∠时,求PC 的长.21.(本题满分10分,每⼩题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥∴90DPO =?∠∵PD AB ∥∴180DPO POB +=?∠∠∴90POB =?∠ ……1分⼜∵30ABC =?∠,6OB =∴30OP OB tan =?=g………………………………………………1分∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分(2)过点O 作OH BC ⊥,垂⾜为H(第21题图1)ABOPCD (第21题图2)OABDPC∵OH BC ⊥∴90OHB OHP ==?∠∠∵30ABC =?∠,6OB =∴132OH OB ==,30BH OB cos =?=g ……………………2分∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分∵BP 平分OPD ∠∴1452BPO DPO ==?∠∠∴453PH OH cot =?=g……………………………………………1分∴3PC CH PH =-= ………………………………………1分奉贤区21.(本题满分10分,每⼩题满分各5分)已知:如图6,在△ABC 中,AB=13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂⾜为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值;(2) 求BF CF的值.图6ABD EF21、(1)56;(2)58;黄浦区21.(本题满分10分)如图,AH是△ABC的⾼,D是边AB上⼀点,CD与AH交于点E.已知AB=AC=6,cosB=23,AD∶DB=1∶2.(1)求△ABC的⾯积;(2)求CE∶DE.21. 解:(1)由AB=AC=6,AH⊥BC,得BC=2BH.—————————————————————————(2分)在△ABH中,AB=6,cosB=23,∠AHB=90°,得BH=2643=,226425-=————————————(2分)则BC=8,所以△ABC⾯积=1258852=——————————————(1分)(2)过D作BC的平⾏线交AH于点F,———————————————(1分)由AD ∶DB=1∶2,得AD ∶AB=1∶3,则31CE CH BH AB DE DF DF AD ====. ——————————————(4分)⾦⼭区21.(本题满分10分,每⼩题5分)如图5,在矩形ABCD 中,E 是BC 边上的点,AE=BC ,DF ⊥AE ,垂⾜为F .(1)求证:AF=BE ;(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.21.解:(1)∵四边形ABCD 是矩形,∴AD=BC ,AD ∥BC ,∠B=90°,∴∠DAF=∠AEB ,……………………………………………………………………(1分)∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠AFD=∠EBA=90°,………………………(2分)∴△ADF ≌△EAB ,∴AF=EB ,………………………………………………………(2分)(2)设BE=2k ,EC=k ,则AD=BC=AE=3k ,AF=BE=2k ,…………………………(1分)∵∠ADC=90°,∠AFD=90°,∴∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,ABCDFE图5∴∠CDF=∠DAF…………………………………………………………………(2分)在Rt△ADF中,∠AFD=90°,=∴cot∠CDF=cot∠DAF=5AFDF==.………………………………(2分)静安区21.(本题满分10分,第(1)⼩题满分5分,第(2)⼩题满分5分)已知:如图,边长为1的正⽅形ABCD中,AC 、DB交于点H.DE平分∠ADB,交AC于点E.联结BE并延长,交边AD于点F.(1)求证:DC=EC;(2)求△EAF的⾯积.21.(本题满分10分, 第(1)⼩题5分,第(2)⼩题5分)解:(1)∵正⽅形ABCD,∴DC=BC=BA=AD, ∠BAD=∠ADC=∠DCB=∠CBA=90°第21题图AH=DH=CH=BH, AC ⊥BD,∴∠ADH=∠HDC=∠DCH=∠DAE= 45°. …………(2分)⼜∵DE 平分∠AD B ∴∠ADE=∠EDH∵∠DAE+∠ADE=∠DEC, ∠EDH+∠HDC=∠EDC …………(1分)∴∠EDC=∠DEC …………(1分)∴DC=EC …………(1分)(2)∵正⽅形ABCD ,∴AD ∥BC,∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =?? ………………………………(1分)∵AB=BC=DC=EC=1,AC=2,∴AE=12- …………………………(1分)Rt △BHC 中, BH=22BC=22, ∴在△BEC 中,BH ⊥EC, 4222121=??=BEC S ……………………(2分)∴2)12(42-=?AEF S , ∴4423)223(42-=-?=AEF S …………(1分)闵⾏区21.(本题满分10分,其中第(1)⼩题4分,第(2)⼩题6分)已知⼀次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第⼀象限内作直⾓三⾓形ABC ,且∠BAC = 90o,1tan 2ABC ∠=.(1)求点C 的坐标;(2)在第⼀象限内有⼀点M (1,m ),且点M 与点C 位于直线AB 的同侧,使得ABC ABM S S ??=2求点M 的坐标.21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分)∴AB =1分)∵90BAC ∠=o ,1tan 2ABC ∠=,∴AC =.过C 点作CD ⊥x 轴于点D ,易得OBA DAC ??∽.…………………(1分)∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分)(2)11522ABC S AB AC ?===.………………………………(1分)∵2ABM ABC S S ??=,∴52ABM S ?=.……………………………………(1分)∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分)分别过点A 、B 作直线1x =的垂线,垂⾜分别是点F 、G ,∴AF+BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ??=+=?+?=+1152222ME OA ME =?=??=…………………(1分)∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=o ,点D 在边BC 上,DE ⊥AB ,点E 为垂⾜,7AB =,45DAB ∠=o ,3tan 4B =. (1)求DE 的长;(2)求CDA ∠的余弦值. 21.解:(1)∵DE ⊥AB ,∴?=∠90DEA⼜∵45DAB ∠=o ,∴AE DE =. ················· (1分)在Rt △DEB 中,?=∠90DEB ,43tan =B ,∴43=BE DE . ······· (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ··············· (2分)∴3=DE . ··························· (1分)(2)在Rt △ADE 中,由勾股定理,得23=AD . ············ (1分)同理得5=BD . ························· (1分)在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ····· (1分)∴53=CD . ··························· (1分)A BCDE 图7∴102cos ==∠AD CD CDA . ···················· (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)⼩题,每⼩题5分)如图5,在Rt △ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边AC 于点D ,延长BD ⾄点E ,且BD=2DE ,联结AE .(1)求线段CD 的长;(2)求△ADE 的⾯积.21.解:(1)过点D 作DH ⊥AB ,垂⾜为点H . ················ (1分)∵BD 平分∠ABC ,∠C=90°,∴DH = DC=x , ························ (1分)则AD=3-x .∵∠C=90°,AC=3,BC=4,∴AB=5. ··············· (1分)∵sin ∠==HD BCBAC AD AB,∴435=-x x , ························(1分)∴43=x . ··························· (1分)(2)1141052233===V ABD S AB DH . ···············(1分) ED CBA图5AB∵BD=2DE ,∴2==V V ABD ADE S BDS DE, ····················· (3分)∴1015323==V ADE S . ·····················(1分)松江区21.(本题满分10分, 每⼩题各5分)如图,已知△ABC 中,∠B=45°,1tan 2C =, BC=6.(1)求△ABC ⾯积;(2)AC 的垂直平分线交AC 于点D ,交BC 于点E. 求DE 的长.21.(本题满分10分, 每⼩题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分在Rt ABC ?中,∠B=45°设AH =x ,则BH=x ………………………………1分在Rt AHC ?中,1tan 2AH C HC == (第21题图)DACBE∴HC=2x ………………………………………………………1分∵BC=6∴x+2x=6 得x=2∴AH=2…………………………………………………………1分∴162ABC S BC AH ?=??=……………………………………1分(2)由(1)得AH=2,CH=4在Rt AHC ?中,AC =2分∵DE 垂直平分AC ∴12CD AC == ED ⊥AC …………………………………………………1分在Rt EDC ?中,1tan 2ED C CD ==……………………………1分∴DE =………………………………………………1分徐汇区21. 如图,在Rt ABC ?中,90C ∠=?,3AC =,4BC =,AD 平分BAC ∠交BC 于点D . (1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,⽤尺规作图的⽅法确定点O 的位置并求出的⊙O 半径. (保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)⼩题满分3分,第(2)⼩题满分7分)已知,如图5,在梯形ABCD中,DC//AB, AD=BC, BD平分∠ABC,∠A=600求:(1)求∠CDB的度数(2)当AD=2时,求对⾓线BD的长和梯形ABCD的⾯积。
2020-2021学年上海市中考二模数学试卷有答案初中毕业生学业模拟考试数学试卷(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列各根式中与3是同类二次根式的是……………………………………………()(A )9;(B )31;(C(D )30.2.下列运算中,正确的是…………………………………………………………………()(A )325x x x +=;(B )32x x x -=;(C )326x x x ?=;(D )32x x x ÷=.3.不等式组?≤>+103x x 的解集在数轴上表示正确的是…………………………………()4.已知一组数据123,,x x x 的平均数和方差分别为6和2,则数据1231,1,1x x x +++的平均数和方差分别是……………………………………………………………………………()(A )6和2;(B )6和3;(C )7和2;(D )7和3.5.顺次连结等腰梯形的各边中点所得到的四边形(A );(B ).(C )(D )是……………………………………()(A )平行四边形;(B )菱形;(C )矩形;(D )正方形.6.已知在△ABC 中,AB=AC=13,BC=10,如果以A 为圆心r 为半径的⊙A 和以BC为直径的⊙D相交,那么r的取值范围……………………………………………………………()(A )313r <<;(B )517r <<;(C )713r <<;(D )717r <<.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.因式分解:24a -= .81=的解为 .9.如果一元二次方程220x x a ++=有两个不相等的实数根,那么a 的取值范围是. 10.函数y =23x-中自变量x 的取值范围是_______. 11.将抛物线221y x =-向右平移2个单位,再向上平移2个单位所得抛物线的表达式是.12.如果反比例函数21k y x-=的图像在每个象限内y 随x 的增大而减小,那么k 的取值范围是.13.在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是.14.为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图所示). 如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有名.15.已知在△ABC 中,AB a AC b ==u u u r u u u r r r ,,M 是边BC 上的一点,:1:2BM CM =,用向量a ρ、b r表示AM u u u u r = .16.一公路大桥引桥长100米,已知引桥的坡度3:1=i ,那么引桥的铅直高度为米(结果保留根号).17.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C=90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”32%其他16%音乐12%美术%体育(第14题图)CABD (第18题图)长等于 .18.如图,在Rt △ABC 中,90ACB ∠=?,AC=4,BC=3,点D 为AB 的中点,将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A '处,点D 落在点D '处,则D B '长为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)11()24-20.(本题满分10分)解方程:213221x x x x +-=+.21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,已知在△ABC 中,AB=AC ,8BC =,tan 3ABC ∠=,AD ⊥BC 于D,(第21题图)O 是AD 上一点,OD=3,以OB 为半径的⊙O 分别交AB 、AC 于E 、F .求:(1)⊙O 的半径;(2)BE 的长.22.(本题满分10分,第(1)小题4分,第(2)小题6分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA 和OB 分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数1w (张)和每个无人售票窗口售出的车票数2w (张)关于售票时间t (小时)的函数图象.(1)求1w (张)与t (小时)的函数解析式;(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?23.(本题满分12分,每小题6分)如图,在正方形ABCD 中,E 是边CD 上一点,AF AE 交CB 的延长线于小时)(第22题图)(第23题图)(第24题图)点F ,联结DF ,分别交AE 、AB 于点G 、P. (1)求证:AE=AF ;(2)若∠BAF=∠BFD,求证:四边形APED 是矩形.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B (1)求这个二次函数的解析式;(2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下方的一点,且?ABP 的面积为10,求点P(第25题图1)D ABFCE(第25题图2)DABFCEB(第25题备用图)25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)在ABC ?中,AC=25,35AB =,4tan 3A =,点D 为边AC 上一点,且AD=5,点E 、F 分别为边AB 上的动点(点F 在点E 的左边),且EDF A ∠=∠.设y AF x AE ==,.(1)如图1,当DF AB ⊥ 时,求AE 的长;(2)如图2,当点E 、F在边AB上时,求函数的定义域;的函数关系式,并写出关于x y (3)联结CE ,当相似时,和ADF DEC ??求x 的值.初中毕业生学业模拟考试答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 45 6 答案BDACBD二、填空题 (本大题共12题,每题4分,满分48分)7、(2)(2)a a +-;8、x=1 ;9、a<1; 10、x ≠3 ; 11、22(2)1y x =-+ ;12、12k >;13、12 ;14、2400; 15、2133a b +r r;16、 17; 18 .19、解:原式=………………………………(8分)=2- …………………………………………………………(2分)20、解:设21x y x+=………………………………………(1分) 原方程化为232y y-= …………………………(1分)2230y y --=……………………………………(2分)解得123,1y y ==- ………………………………(2分)当213x x+=时解得1x = …………………………(1分)当211x x+=-时解得13x =- …………………………(1分)经检验1x =,13x =-都是原方程的根…………………………(1分)所以原方程的根为1x =,13x =-…………………………(1分) 21、解:(1)∵AB=AC, AD ⊥BC ∴BD=CD=4…………………………(2在RT BOD ?中∵OD=3∴OB=5…………………………(2分)(2)过O 点作,AB H OH AB ⊥交于又∵OH 过圆心O ∴BH=EH ……………………………………………(1分)∵在RT ABD ?中tan 3ADABD BD∠==,∴AD =12, AB=104……………………………………………(1分)(第21题图)∵OD=3 ∴AO=9∵,OAH BAD OHA ADB ∠=∠∠=∠ ∵AOH ?∽ABD ?∴AH AOAD AB=∴12AH =∴AH =2分)∴BH =……………………………………………………………………(1分)∴BE =……………………………………………………………………(1分)22、(1)设kt w =1(0≠k )………………………………………………………(1分)把240,3==w t 代入解得80=k …………………………………………………(2分)所以t w 801=…………………………………………………………………………(1分)(2)设当天开放无人售票窗口x 个,普通售票窗口x 21个………………………(1分)由题意得240018021240=+?x x ………………………………………………………(3分)解得8=x …………………………………………………………………………………(1分)答:当天开放无人售票窗口8个.………………………………………………………(1分)23、∵四边形ABCD 是正方形,∴090=∠=∠=∠DAB ABC ADE ,AB AD =,AD //BC ,AB //CD ………… (3分)∵AE AF ⊥∴090=∠EAF ∴BAE DAE ∠=∠…………………………………(1分)∴∴ABF ADE ………………………………………………………………… (1分)∴AF=AE ………………………………………………… ( 1分)2) ∵BFD BAF ∠=∠,∠DAE=∠BAF ∴∠BFP=∠EAD …(2分)∴AD //BC ∴∠ADF=∠CFD ∴∠ADF=∠DAG ∴GA=DG …………………(2分)∵∠AGP=∠DGE∴DGE AGP ………………………………………………(1分)∴DE AP =又∵AP //ED ∴四边形APED 是平行四边形………………………………(2分)∵∠ADE=900, ∴四边形APED矩形……………………………………………………………………(1分)24.解:(1)由直线5+-=x y 得点B(0,5),A(5,0),…………………………(1分)将A 、B 两点的坐标代入c bx x y ++=2,得 ?=++=05255c b c ………… (1分)解得??=-=56c b …………………………………………………………………(1分)∴抛物线的解析式为562+-=x x y ………………………………………(1分)(2)过点C 作轴x CH ⊥交x 轴于点H把562+-=x x y 配方得2(3)4y x =--∴点C(3,-4),…………………(1分)∴CH=4,AH=2,AC=52∴OC=5,…………………(1分)∵OA=5∴OA=OC ∴OCA OAC ∠=∠………………………(1分)OCA ∠sin =552524sin ===∠AC CH OAC ………………………(1分)(3)过P 点作PQ ⊥x 轴并延长交直线5+-=x y 于Q 设点P 56,(2+-m mm ),Q(m,-m+5))56(52+--+-=m m m PQ =m m 5-2+…………………(1分)∵PQA PQB ABP S S S += ∴)(2121212121h h PQ h PQ h PQ S ABP +??=??+??= …………………(1分)∴5)5(21102?+-=m m ∴4,121==m m …………………(1分)∴P(1,0)(舍去),P (4,-3)…………………(1分)25.(1)∵DF AB ⊥,∴90AFD ∠=? ,∴90A ADF ∠+∠=?∵EDF A ∠=∠,∴90EDF ADF ∠+∠=?,即90ADF ∠=?……(1分)在090,5Rt ADE ADE AD ?∠==中,,34tan =A ∴203DE = ………………………………………………………………(1分)∴253AE = ……………………………………………………………………(1分)(2)过点D 作G AB AB DG 于交,⊥ ∵ADEEDF ∠=∠,AEDDEF ∠=∠∴EDF∽EAD ?…………(1分)∴EDAEEF ED =∴EF AE ED ?=.2…………………………………………(1分)∴090,10RT AGD AGD AD ?∠==中,,34tan =A ∴86DG AG ==,∴6EG x =-∴2224x-3)DE =+(……………………(1分)∴)(3(422y x x x -?=-+)∴xy 256-=……………………………………………………………………(1分)(2535)6x ≤≤)…………………………………………………………………(1分)(3)∵A AFD EDF EDC ∠+∠=∠+∠,且EDF A ∠=∠.∴AFD EDC ∠=∠…………………………………………………………………(2分)01当时CED A ∠=∠∵EDF A ∠=∠,又∵FDE CED ∠=∠ ∴DF //CE ∴AE AF AC AD =∴x y =255∵x y 256-=∴x x=)25-65(5,2521==x x ………………………………………………………………(2分)02当时DCE A ∠=∠∵A EDF ∠=∠,∴ECD ?∽DAF ? ∴AD CE AF CD =∴520x y =∵x y 256-=∴x x=)25-65(∴6125=x ………………………………………………………………(2分)综上当相似时,和ADF DEC ??5,2521==x x 6125=x .。
上海市浦东新区2020年中考数学二模试卷(解析版)一、选择题:(本大题共6题,每题4分,满分24分)1.2020的相反数是()A.B.﹣2020 C.﹣D.20202.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣14.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,156.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|=.8.不等式x﹣1<2的解集是.9.分解因式:8﹣2x2=.10.计算:3()+2(﹣2)=.11.方程的根是.12.已知函数f(x)=,那么f()=.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为米.14.正八边形的中心角等于度.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为.17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.三、解答题:(本大题共7题,满分78分)19.(10分)计算:2sin45°﹣20200++()﹣1.20.(10分)解方程:.21.(10分)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.22.(10分)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.(12分)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.24.(12分)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.25.(14分)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.2020年上海市浦东新区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.2020的相反数是()A.B.﹣2020 C.﹣D.2020【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2020的相反数是﹣2020.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.已知一元二次方程x2+3x+2=0,下列判断正确的是()A.该方程无实数解B.该方程有两个相等的实数解C.该方程有两个不相等的实数解D.该方程解的情况不确定【考点】根的判别式.【分析】把a=1,b=3,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=3,c=2,∴△=b2﹣4ac=32﹣4×1×2=1>0,∴方程有两个不相等的实数根.故选C.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.下列函数的图象在每一个象限内,y随着x的增大而增大的是()A.y=﹣B.y=x2﹣1 C.y= D.y=﹣x﹣1【考点】反比例函数的性质;一次函数的性质;二次函数的性质.【分析】分析四个选项中得函数解析式,根据系数的正负结合各函数的性质即可得出其增减性,由此即可得出结论.【解答】解:A、y=﹣中k=﹣1<0,∴函数y=﹣的图象在第二、四象限内y随着x的增大而增大;B、y=x2﹣1中a=1>0,∴函数y=x2﹣1的图象在第二、三象限内y随着x的增大而减小,在第一、四象限内y随着x的增大而增大;C、y=﹣中k=1>0,∴函数y=的图象在第一、三象限内y随着x的增大而减小;D、y=﹣x﹣1中k=﹣1<0,b=﹣1<0,∴函数y=﹣x﹣1的图象在第二、三、四象限内y随着x的增大而减小.故选A.【点评】本题考查了反比例函数的性质、一次函数的性质以及二次函数的性质,解题的关键是逐项分析四个选项的增减性.本题属于基础题,难度不大,解决该题型题目时,熟悉各函数的性质及各函数的图象是解题的关键.4.如果从1、2、3这三个数字中任意选取两个数字,组成一个两位数,那么这个两位数是素数的概率等于()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这个两位数是素数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这个两位数是素数的有13,23,31共3种情况,∴这个两位数是素数的概率为:=.故选A.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5.下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是()A.15,17 B.14,17 C.17,14 D.17,15【考点】众数;折线统计图;中位数.【分析】根据中位数和众数的概念求解.把数据按大小排列,第4个数为中位数;17℃出现的次最多,为众数.【解答】解:17℃出现了2次,最多,故众数为17℃;共7个数据,从小到大排列为8,9,11,14,15,17,第4个数为14,故中位数为14℃.故选C.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数为数据中出现次数最多的数.6.如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么的值为()A.B.C.D.【考点】三角形的重心.【分析】延长AM交BC于点D,根据△ABC是等边三角形可知AD⊥BC,设AM=2x,则DM=x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.【解答】解:延长AM交BC于点D,∵△ABC是等边三角形,∴AD⊥BC.设AM=2x,则DM=x,∴AD=3x,∴AB===2x.∵△ABC和△AMN都是等边三角形,∴△ABC∽△AMN,∴=()2=()2=.故选B.【点评】本题考查的是三角形的重心,熟知重心到顶点的距离与重心到对边中点的距离之比为2:1是解答此题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:|﹣1|=.【考点】有理数的减法;绝对值.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.不等式x﹣1<2的解集是x<3.【考点】解一元一次不等式.【分析】解不等式x﹣1<2,即可得到不等式x﹣1<2的解集,本题得以解决.【解答】解:x﹣1<2两边同时加1,得x﹣1+1<2+1x<3,故答案为:x<3.【点评】本题考查解一元一次不等式,解题的关键是会解一元一次不等式的方法.9.分解因式:8﹣2x2=2(2+x)(2﹣x).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.【解答】解:原式=2(4﹣x2)=2(2+x)(2﹣x).故答案为:2(2+x)(2﹣x).【点评】本题考查的是提取公因式法与公式法的综合运用,熟记平方差公式是解答此题的关键.10.计算:3()+2(﹣2)=﹣﹣.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:3()+2(﹣2)=3﹣3+2﹣4=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的运算法则.注意掌握去括号法则是解此题的关键.11.方程的根是x=﹣4.【考点】无理方程.【分析】9的算术平方根是3,故5﹣x=9,x=﹣4.【解答】解:因为算术平方根的被开方数是非负数,根据题意可得,5﹣x=9,解得:x=﹣4.故本题答案为:x=﹣4.【点评】记准算术平方根的被开方数是非负数这一要求,是解决这类问题的关键.12.已知函数f(x)=,那么f()=3.【考点】函数值.【分析】将x=代入计算即可.【解答】解:f()====3.故答案为:3.【点评】本题主要考查的是求函数值,掌握二次根式的性质是解题的关键.13.如图,传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,则物体从A到B所经过的路程为18米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义得出AC的长,进而利用勾股定理得出AB的长.【解答】解:∵传送带和地面所成的斜坡的坡度为1:,它把物体从地面送到离地面9米高的地方,∴可得:BC=9m,则=,解得:AC=9,则AB===18(m).故答案为:18.【点评】此题主要考查了坡角的定义,根据题意得出AC的长是解题关键.14.正八边形的中心角等于45度.【考点】正多边形和圆.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.在开展“国学诵读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于6小时的人数是720.【考点】条形统计图;用样本估计总体.【分析】用所有学生数乘以样本中课外阅读时间不少于6小时的人数所占的百分比即可.【解答】解:估计该校1200名学生一周的课外阅读时间不少于6小时的人数是:1200×=720(人),故答案为:720.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比.16.已知:⊙O1、⊙O2的半径长分别为2和R,如果⊙O1与⊙O2相切,且两圆的圆心距d=3,则R的值为1或5.【考点】圆与圆的位置关系.【分析】由于⊙O1与⊙O2相切,则分两圆内切和外切讨论得到R+2=3或R﹣2=3,然后解两个一次方程即可.【解答】解:∵⊙O1与⊙O2相切,∴R+2=3或R﹣2=3,∴R=1或R=5.故答案为1或5.【点评】本题考查了圆与圆的位置关系:设两圆的圆心距为d,两圆半径分别为R、r,当两圆外离⇔d>R+r;两圆外切⇔d=R+r;两圆相交⇔R﹣r<d<R+r(R≥r);两圆内切⇔d=R ﹣r(R>r);两圆内含⇔d<R﹣r(R>r).17.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=4.【考点】解二元一次方程组;有理数的混合运算.【分析】已知等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a与b 的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.18.在Rt△ABC中,∠ACB=90°,BC=15,AC=20.点D在边AC上,DE⊥AB,垂足为点E,将△ADE沿直线DE翻折,翻折后点A的对应点为点P,当∠CPD为直角时,AD的长是.【考点】翻折变换(折叠问题).【分析】设AD=x,再根据折叠的性质得∠PDE=∠ADE=90°,∠1=∠A,PD=AD=x,于是可判断点P在边AC上,所以PC=20﹣2x,然后利用等角的余角相等得到∠1=∠3,则∠A=∠3,则可判断Rt△BCP∽Rt△ABC,利用相似比可计算出x.【解答】解:如图,设AD=x,在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=25,∵DE⊥AB,∴∠AED=∠ACB=90°,∵△ADE沿DE翻折得到△PDE,∴∠PED=∠AED=90°,∠1=∠A,PD=AD=x,∴CD=20﹣x,∵∠CPD=90°,∴∠1+∠2=90°,∠A+∠B=90°,∴∠2=∠B,∴PC=BC=15,∵CD2=CP2+PD2,即(20﹣x)2=152+x2,∴x=,∴AD=.故答案为:.【点评】此题主要考查了图形的翻折变换,以及勾股定理的应用,关键是掌握翻折后哪些线段是对应相等的.三、解答题:(本大题共7题,满分78分)19.(10分)(2020•浦东新区二模)计算:2sin45°﹣20200++()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣1+2+2=1+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2020•浦东新区二模)解方程:.【考点】解分式方程;解一元二次方程-因式分解法.【分析】本题的最简公分母是(x+2)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x+2)(x﹣2),得x(x﹣2)+(x+2)2=8,x2﹣2x+x2+4x+4=8,整理得x2+x﹣2=0.解得x1=﹣2,x2=1.经检验,x2=1为原方程的根,x1=﹣2是增根(舍去).∴原方程的根是x=1.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解;(2)解分式方程一定注意要代入最简公分母验根.21.(10分)(2020•浦东新区二模)如图,AB是⊙O的弦,C是AB上一点,∠AOC=90°,OA=4,OC=3,求弦AB的长.【考点】垂径定理.【分析】首先过点O作OD⊥AB于D,应用直角三角形的性质和三角函数的求法,求出AD 的长度是多少;然后应用垂径定理,求出弦AB的长是多少即可.【解答】解:如图,过点O作OD⊥AB于D,,∵OA2+OC2=AC2,∴AC2=42+32=25,∴AC=5.在Rt△AOC中,cos∠OAC==,在Rt△ADO中,cos∠OAD=,∴==,∴AD=×4=.∵OD⊥AB,∴AB=2AD=2×=.【点评】此题主要考查了垂径定理的应用,直角三角形的性质和三角函数的求法,要熟练掌握.22.(10分)(2020•浦东新区二模)某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)直接利用每吨的成本×生产吨数=总成本为210万元,进而得出等式求出答案.【解答】解:(1)设函数解析式为:y=kx+b,将(0,10),(40,6)分别代入y=kx+b 得:,解得:,所以y=﹣x+10(0≤x≤40);(2)由(﹣x+10)x=210,解得:x1=30,x2=70,由于0≤x≤40,所以x=30,答:该产品的生产数量是30吨.【点评】此题主要考查了一次函数的应用,正确利用待定系数法求出一次函数解析式是解题关键.23.(12分)(2020•浦东新区二模)如图,已知:四边形ABCD是平行四边形,点E在边BA的延长线上,CE交AD于点F,∠ECA=∠D(1)求证:△EAC∽△ECB;(2)若DF=AF,求AC:BC的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形、∠ECA=∠D可得∠ECA=∠B,∠E为公共角可得△EAC∽△ECB;(2)由CD∥AE、DF=AF可得CD=AE,进而有BE=2AE,根据△EAC∽△ECB得,即:=,可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠ECA=∠D,∴∠ECA=∠B,∵∠E=∠E,∴△EAC∽△ECB;(2)∵四边形ABCD是平行四边形,∴CD∥AB,即:CD∥AE∴,∵DF=AF∴CD=AE,∵四边形ABCD是平行四边形,∴AB=CD,∴AE=AB,∴BE=2AE,∵△EAC∽△ECB,∴,∴,即:=,∴.【点评】本题主要考查相似三角形的判定与性质及平行四边形的性质,熟练掌握相似形的对应边成比例和平行四边形的性质是关键.24.(12分)(2020•浦东新区二模)如图,二次函数y=ax2﹣4ax+2的图象与y轴交于点A,且过点B(3,6).(1)试求二次函数的解析式及点A的坐标;(2)若点B关于二次函数对称轴的对称点为点C,试求∠CAB的正切值;(3)若在x轴上有一点P,使得点B关于直线AP的对称点B1在y轴上,试求点P的坐标.【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征.【分析】(1)把B(3,6)代入y=ax2﹣4ax+2,求出a的值,得到二次函数的解析式,进而求出点A的坐标;(2)先求出抛物线的对称轴,根据对称性得出C点坐标,求出BC=2,AB=5,tan∠CBA=,过点C作CH⊥AB于点H,再求出CH=,AH=,根据正切函数定义即可求出∠CAB 的正切值;(3)由AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7),设P(x,0)根据PB=PB1,分B1的坐标为(0,﹣3)或(0,7)两种情况利用勾股定理求得x值.【解答】解:(1)∵二次函数y=ax2﹣4ax+2的图象过点B(3,6),∴6=9a﹣12a+2,解得a=﹣,所以二次函数的解析式为y=﹣x2+x+2,∵二次函数y=﹣x2+x+2的图象与y轴交于点A,∴点A的坐标为(0,2);(2)∵y=﹣x2+x+2=﹣(x﹣2)2+,∴对称轴为直线x=2,∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC=2,AB==5,tan∠CBA=,过点C作CH⊥AB于点H,则CH=,BH=,AH=,∴tan∠CAB==;(3)由题意,AB=AB1=5,从而点B1的坐标为(0,﹣3)或(0,7).设P(x,0).①如果点B1(0,7),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+72,解得x=﹣,即P(﹣,0);②如果点B1′(0,﹣3),∵点B关于直线AP的对称点B1在y轴上,∴PB=PB1,即(x﹣3)2+62=x2+32,解得x=6,即P(6,0);综上所述,所求点P的坐标为(﹣,0)或(6,0).【点评】本题主要考查待定系数求二次函数解析式、解直角三角形、勾股定理等,求二次函数解析式是基础,构建直角三角形求三角函数值是基本做法,通过勾股定理得出点坐标间联系是关键.25.(14分)(2020•浦东新区二模)如图,Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB的中点,点E为边AC上的一个动点.联结DE,过点E作DE的垂线与边BC交于点F,以DE,EF为邻边作矩形DEFG.(1)如图1,当AC=8,点G在边AB上时,求DE和EF的长;(2)如图2,若,设AC=x,矩形DEFG的面积为y,求y关于x的函数解析式;(3)若,且点G恰好落在Rt△ABC的边上,求AC的长.【考点】四边形综合题.【分析】(1)根据勾股定理求出AB,根据相似三角形的判定定理得到△ADE∽△ACB,根据相似三角形的性质求出DE和BG,求出EF;(2)作DH⊥AC于H,根据相似三角形的性质得到y关于x的函数解析式;(3)根据点G在边BC上和点G在边AB上两种情况,根据相似三角形的性质解答.【解答】解:(1)∵∠ACB=90°,BC=6,AC=8,∴AB==10,∵D为斜边AB的中点,∴AD=BD=5,∵DEFG为矩形,∴∠ADE=90°,∴∠ADE=∠C,又∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,DE=,∵△ADE∽△FGB,∴=,则BG=,∴EF=DG=AB﹣AD﹣BG=;(2)如图2,作DH⊥AC于H,∴DH∥BC,又AD=DB,∴DH=BC=3,∵DH⊥AC,∠C=90°,∠DEF=90°,∴△DHE∽△ECF,∴==,∴EC=2DH=6,EH=x﹣6,∴DE2=32+(x﹣6)2=x2﹣6x+45,∴y=DE•EF=2DE2=x2﹣12x+90,(3)如图3,当点G在边BC上时,∵,DE=3,∴EF=,∴AC=9,如图4,当点G在边AB上时,设AD=DB=a,DE=2b,EF=3b,∵△ADE∽△FGB,∴=,即=,整理得,a2﹣3ab﹣4b2=0,解得,a=4b,a=﹣b(舍去),∴AD=2DE,∵△ADE∽△ACB,∴AC=2BC=12,综上所述,点G恰好落在Rt△ABC的边上,AC的长为9或12.【点评】本题的是矩形的性质、勾股定理的应用、相似三角形的判定和性质、二次函数解析式的求法以及三角形中位线定理,掌握相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键,注意分情况讨论思想的运用.。
2020年上海市杨浦区中考数学二模试卷2020.05一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.2020的相反数是(A )2020;(B )2020-;(C )12020; (D )12020-. 2.下列计算中,正确的是(A )248a a a ⋅=; (B )347=a a ();(C )44=ab ab (); (D )633=a a a ÷.3.如果将一张长方形纸片折成如图的形状,那么图中∠1与∠2的数量关系是(A )∠1=2∠2; (B )∠1=3∠2;(C )∠1+∠2=180°;(D )∠1+2∠2=180°.4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d 的取值范围是(A )03d <<;(B )07d <<; (C )37d <<;(D )03d <≤.5.如果正十边形的边长为a ,那么它的半径是(A )sin36a︒; (B )cos36a︒;(C )2sin18a︒;(D )2cos18a︒.6.已知在四边形ABCD 中,AB//CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形的是 (A )AD =BC ,AC=BD ; (B )AC=BD ,∠BAD =∠BCD ; (C )AO=CO ,AB=BC ; (D )AO=OB ,AC=BD .二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.分解因式:2mx -6my = ▲ . 8.函数y中,自变量x 的取值范围是 ▲ .9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是 ▲ . 10.一组数据:2,2,5,5,6,那么这组数据的方差是 ▲ .第3题图1211.不等式组21021x x -+<⎧⎨-⎩≤的解集是 ▲ . 12x =的解是 ▲ .13.已知关于x 的一元二次方程2210mx x -+=有两个不相等的实数根,那么m 的取值范围是 ▲ .14.在ABC △中,D 、E 分别在边AB 、AC 上,DE BC ∥,DE 经过ABC △的重心,如果AB m =,AC n =,那么DE = ▲ .(用m 、n 表示) 15.如图,已知在5×5的正方形网格中,点A 、B 、C 在小正方形的顶点上,如果小正方形的边长都为1,那么点C 到线段AB 所在直线的距离是 ▲ .16.如图,已知在平面直角坐标系中,点A 在x 轴正半轴上,点B 在第一象限内,反比例函数xky =的图像经过OAB △的顶点B 和边AB 的中点C ,如果OAB △的面积为6,那么k 的值是 ▲ .17.定义:对于函数y=f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n -m =k (b -a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =-3x ,当1≤x ≤3时,-9≤y ≤-3,则-3-(-9)=k (3-1),求得k =3,所以函数y =-3x 为“3级函数”.如果一次函数y =2x -1(1≤x ≤5)为“k 级函数”,那么k 的值是 ▲ . 18.如图,已知在平行四边形ABCD 中,AB =10,BC =15,tan ∠A =43,点P 是边AD 上一点,联结PB ,将线段PB 绕着点P 逆时针旋转90︒得到线段PQ ,如果点Q 恰好落在平行四边形ABCD 的边上,那么AP 的值是 ▲ .三、 解答题(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:21232++22+2a a a a a+÷-(),其中15+=a . ABC D第18题图第15题图ABC第16题图①②20.(本题满分10分)解方程组:22+2123+20.x y x xy y =⎧⎨-=⎩,21.(本题满分10分,第(1)小题5分,第(2)小题5分) 如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB (弧所对的弦的长)为8米,拱高CD (弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB 上升到EF 时,从点E 测得桥顶D 的仰角为α,且3cot =α,求水面上升的高度.22.(本题满分10分)某社区为了加强居民对新型冠状病毒肺炎防护知识的了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下:收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 70 80 95第21题图ABCDFE75 100 90整理数据(每组数据可含最低值,不含最高值)分析数据(1)填空:a = ▲ ,b = ▲ ,c = ▲ ,d = ▲ ; (2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在 ▲ (分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为 ▲ 人.23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,已知在正方形ABCD 中,对角线AC 与BD 交于点O ,点M 在线段OD 上,联结AM 并延长交边DC 于点E ,点N 在线段OC 上,且ON=OM ,联结DN 与线段AE 交于点H ,联结EN 、MN .(1)如果EN //BD ,求证:四边形DMNE 是菱形; (2)如果EN ⊥DC ,求证:2AN NC AC =⋅.(分) 100频率第22题图第22题表第23题图ADCH MONE B24.(本题满分12分,每小题4分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(-3,0)和点B (3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D 恰好落在x轴上,求直线AP的截距;(3)在第(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在△ABC 中,∠ACB =90°,AC =4,BC =8,点P 是射线AC 上一点(不与点A 、C 重合),过P 作PM AB ,垂足为点M ,以M 为圆心,MA 长为半径的⊙M 与边AB 相交的另一个交点为点N ,点Q 是边BC 上一点,且CQ = 2CP ,联结NQ .(1)如果⊙M 与直线BC 相切,求⊙M 的半径长;(2)如果点P 在线段AC 上,设线段AP =x ,线段NQ =y ,求y 关于x 的函数解析式及定义域;(3)如果以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,求线段AP 的长.备用图ACB第25题图QP A C MBN2020年上海市杨浦区中考数学二模试卷答案解析版一.选择题(共6小题)1.2020的相反数是()A. 2020B. ﹣2020C.12020D.12020【答案】B【解析】【分析】直接利用相反数的定义得出答案.【详解】解:2020的相反数是:﹣2020.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列计算中,正确的是()A. a2•a4=a8B. (a3)4=a7C. (ab)4=ab4D. a6÷a3=a3【答案】D【解析】【分析】直接利用积的乘方、幂的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.【详解】A.a2•a4=a2+4=a6,故此选项计算错误,B.(a3)4=a3×4=a12,故此选项计算错误,C.(ab)4=a4b4,故此选项计算错误,D.a6÷a3=a6-3=a3,故此选项计算正确.故选D.【点睛】此题主要考查了积的乘方、幂的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是()A. ∠1=2∠2B. ∠1=3∠2C. ∠1+∠2=180°D. ∠1+2∠2=180°【答案】A【解析】【分析】由折叠可得,∠2=∠ABC,再根据平行线的性质,即可得出∠1=∠ABD=2∠2.【详解】解:如图,由折叠可得,∠2=∠ABC,又∠2+∠ABC=∠ABD,即:∠ABD=2∠2,∵AB∥CD,∴∠1=∠ABD(两直线平行,内错角相等),∴∠1=∠ABD=2∠2故选:A.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d的取值范围是()A. 0<d<3B. 0<d<7C. 3<d<7D. 0≤d<3【答案】D【解析】【分析】本题直接告诉了两圆的半径及两圆的位置的关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.【详解】解:由题意知,两圆内含,则0≤d<5-2(当两圆圆心重合时圆心距为0),即如果这两圆内含,那么圆心距d 的取值范围是0≤d <3, 故选:D .【点睛】本题主要考查圆与圆的位置关系,①外离,则d >R+r ;②外切,则d=R+r ;③相交,则R-r <d <R+r ;④内切,则d=R-r ;⑤内含,则d <R-r . 5.如果正十边形的边长为a ,那么它的半径是( )A.sin 36a︒B.cos36a︒C.2sin18a︒D.2cos18a︒【答案】C 【解析】 【分析】如图,画出图形,在直角三角形OAM 中,直接利用三角函数即可得到OA. 【详解】如图,正十边形的中心角∠AOB=360°÷10=36°,AB=a ∴∠AOM=∠BOM=18°,AM=MB=12a ; ∴OA=AM sin OAM ∠=218asin ︒故选C.【点睛】本题考查三角函数,能够画出图形,找到正确的三角函数关系是解题关键. 6.已知在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形的是( )A. AD =BC ,AC =BDB. AC =BD ,∠BAD =∠BCDC. AO =CO ,AB =BCD. AO =OB ,AC =BD【答案】B 【解析】【分析】根据矩形的判定方法,一一判断即可解决问题.【详解】解:A、AB∥DC,AD=BC,无法得出四边形ABCD是平行四边形,故无法判断四边形ABCD是矩形.故错误;B、∵AB∥CD,∴∠BAD+∠ABC=∠ADC+∠BCD=180°,∵∠BAD=∠BCD,∴∠ABC=∠ADC,∴得出四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确;C、∵AO=CO,AB=BC,∴BD⊥AC,∠ABD=∠CBD,∵AB∥CD,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD,∴AB=CD,∴四边形ABCD是菱形,无法判断四边形ABCD是矩形.故错误;D、AO=OB,AC=BD无法判断四边形ABCD是矩形,故错误;故选:B.【点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.二.填空题(共12小题)7.分解因式:2mx-6my=__________.【答案】2m(x-3y)【解析】试题分析:对于因式分解的题目.如果有公因式,我们首先都需要提取公因式,然后利用公式法或十字相乘法进行因式分解.原式=2m(x-3y).考点:因式分解.8.函数x的取值范围是____________________.【答案】x>1【解析】【分析】根据被开方数不能为负数,以及分母不能为零,列出不等式解不等式即可.【详解】根据题意得:x-1≥0,且x-1≠0解得x>1故填x>1【点睛】本题考查自变量的取值范围,正确列出不等式是解题关键.9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是_____.【答案】4 7【解析】【分析】根据素数定义,先找到素数的个数,让素数的个数除以数的总数即为所求的概率.【详解】解:∵1,2,3,4,5,6,7这7个数有4个素数是2,3,5,7;∴抽到素数的概率是47.故答案为:47.【点睛】本题考查的是概率公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn;找到素数的个数为易错点.10.一组数据:2,2,5,5,6,那么这组数据的方差是_____.【答案】14 5【解析】【分析】根据题意先求出这组数的平均数是4,再根据方差公式求解即可【详解】解:∵x=15(2+2+5+5+6)=4,∴S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2]=15[(4﹣2)2+(4﹣2)2+(4﹣5)2+(4﹣5)2+(4﹣6)2]=145,故答案为:145.【点睛】本题考查了方差:一般地设n个数据,x1,x2,…,x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.不等式组21021xx-+<⎧⎨-⎩的解集是_____.【答案】132x <【解析】【分析】先求出各个不等式的解集,再求它们的公共解集即为不等式组得解集.【详解】解:21021xx-+<⎧⎨-⎩①②,解不等式①,得12 x>;解不等式②,得x≤3;所以原不等式组的解集为:13 2x<≤,故答案为:132x <. 【点睛】此题主要考查了解一元一次不等式(组),关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 12.x =的根是__________. 【答案】2 【解析】 【分析】本题可先对方程两边平方,得到x+2=x 2,再对方程进行因式分解即可解出本题. 【详解】原方程变形为:x+2=x 2即x 2−x−2=0 ∴(x−2)(x+1)=0 ∴x=2或x=−1 ∵x=−1时不满足题意. ∴x=2. 故答案为2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.13.已知关于x 的一元二次方程 2210mx x -+=有两个不相等的实数根,则m 的取值范围是___.【答案】1m <且0m ≠ 【解析】 【分析】由二次项系数非零结合根的判别式△>0,即可得出关于m 的一元一次不等式组,解之即可得出结论.【详解】∵关于x 的一元二次方程mx 2-2x+1=0有两个不相等的实数根,∴()20240m m ≠⎧⎪⎨--⎪⎩=>, 解得:m <1且m≠0. 故答案为1m <且0m ≠.【点睛】本题考查了根的判别式、一元二次方程的定义以及解一元一次不等式组,根据二次项系数非零结合根的判别式△>0列出关于m 的一元一次不等式组是解题的关键.14.在△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC ,DE 经过△ABC 的重心,如果AB =π,AC n =,那么DE =_____.(用π、n 表示) 【答案】2233n π-【解析】 【分析】由DE ∥BC 推出AD :AB =AG :AF =DE :BC =2:3,推出DE =23BC ,求出 BC 即可解决问题.【详解】解:如图设G 是重心,作中线AF .∵DE ∥BC ,∴AD :AB =AG :AF =DE :BC =2:3, ∴DE =23BC , ∵BC BA AC =+ ∴BC n π=-, ∴()222333DE n n ππ=-=- 故答案为:2233n π-. 【点睛】本题考查三角形的重心、平行线的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,已知在5×5的正方形网格中,点A 、B 、C 在小正方形的顶点上,如果小正方形的边长都为1,那么点C 到线段AB 所在直线的距离是_____.【答案】355【解析】 【分析】根据题意,连接AD 、AC ,作CE ⊥AD 于点E ,由每个小正方形的边长为1,利用勾股定理,可以得到AC 、CD 、AD 的长,然后即可得到△ACD 的形状,再利用等积法,即可求得CE 的长.【详解】解:连接AD 、AC ,作CE ⊥AD 于点E ,∵小正方形的边长都为1, ∵AD=224225+=,AC=223332+=,CD=22112+=∵()()()22225322=+,即AD 2=AC 2+CD 2∴△ACD 是直角三角形,∠ACD =90°, ∴22AC CD AD CE⋅⋅=, 即32225=22CE⨯⨯, 解得,CE =35, 即点C 到线段AB 所在直线的距离是35, 故答案为:355.【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答. 16.如图,已知在平面直角坐标系中,点A 在x 轴正半轴上,点B 在第一象限内,反比例函数y =kx的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.【答案】4【解析】【分析】过B作BD⊥OA于点D,设点B(m,n),根据△OAB的面积为6,可以求得A点坐标,而点C是AB的中点,即可表示出C点坐标,再将点B、C坐标同时代入反比例函数解析式,即可求解.【详解】解:过B作BD⊥OA于D,∵点B在反比例函数kyx=的图象上,∴设B(m,n),∵△OAB的面积为6,∴12 OAn=,∴A(12n,0),∵点C是AB的中点,∴C(122mnn+,2n),∵点C在反比例函数kyx=的图象上,∴12=22mn nmnn+⋅,∴4mn=,∴4k=.故答案为4.【点睛】本题目考查反比例函数,难度一般,正确作出辅助线,设出点B的坐标,是顺利解题的关键.17.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为“k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为“3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为“k级函数”,那么k的值是_____.【答案】2【解析】【分析】先根据一次函数的性质求出对应的y的取值范围,再根据k级函数的定义解答即可.【详解】解:∵一次函数y=2x﹣1,1≤x≤5,∴1≤y≤9,∵一次函数y=2x﹣1(1≤x≤5)为“k级函数”,∴9-1=k(5-1),解得:k=2;故答案为:2.【点睛】本题是新定义试题,主要考查了对“k级函数”的理解和一次函数的性质,正确理解“k级函数”的概念、熟练掌握一次函数的性质是解题关键.18.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=43,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP的值是_____.【答案】6或10【解析】【分析】分情况解答:当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x,通过证明△PBE≌△QPF,得出PE=QF=x,DF=x﹣1,由tan∠FDQ=tan A=4 3=FQDF,即可得出AP的值;当点Q落在AD上时,得出∠APB=∠BPQ=90°,由tan A=43,即可得出AP的值;当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF是矩形.由tan A=BEAE=43,可得出△BPQ是等腰直角三角形,此时求出BQ不满足题意,舍去.【详解】解:如图1中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.在Rt△AEB中,∵tan A=BEAE=43,AB=10,∴BE=8,AE=6,∵将线段PB绕着点P逆时针旋转90°得到线段PQ,∴∠BPQ=90°,∴∠EBP+∠BPE=∠BPE+∠FPQ=90°,∴∠EBP=∠FPQ,∵PB=PQ,∠PEB=∠PFQ=90°,∴△PBE≌△QPF(AAS),∴PE=QF=x,EB=PF=8,∴DF=AE+PE+PF﹣AD=x﹣1,∵CD∥AB,∴∠FDQ=∠A,∴tan ∠FDQ =tan A =43=FQ DF, ∴1xx =43, ∴x =4, ∴PE =4, ∴AP =6+4=10;如图2,当点Q 落在AD 上时,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ , ∴∠BPQ =90°, ∴∠APB =∠BPQ =90°, 在Rt △APB 中,∵tan A =AP BP =43,AB =10, ∴AP =6;如图3中,当点Q 落在直线BC 上时,作BE ⊥AD 于E ,PF ⊥BC 于F .则四边形BEPF 是矩形.在Rt △AEB 中,∵tan A =BE AE =43,AB =10, ∴BE =8,AE =6, ∴PF =BE =8,∵△BPQ 是等腰直角三角形,PF ⊥BQ , ∴PF =BF =FQ =8,∴PB =PQ =2,BQ 2=16>15(不合题意舍去),综上所述,AP 的值是6或10, 故答案为:6或10.【点睛】本题主要考查旋转的性质,由正切求边长,正确画出图形,分情况解答是解题的关键.三.解答题(共7小题) 19.先化简,再求值:(1222a a ++-)÷2322a a a++,其中a. 【答案】2a a -【解析】 【分析】先根据分式的混合运算法则化简,再把a 的值代入化简后的式子计算即可.【详解】解:原式=()()()()22232222a a a a a a a -+++÷+-+ =()()()2322232a a a a a a ++⨯+-+=2aa -. 当a【点睛】本题考查了分式的化简求值和二次根式的除法运算,属于基本题型,熟练掌握分式的混合运算法则和分母有理化方法是解题关键. 20.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩ 【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩ 【解析】 【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y )(x−2y )=0.∴x−y=0或x−2y=0,原方程组可化为212x yx y+=⎧⎨-=⎩,21220x yx y+=⎧⎨-=⎩,解这两个方程组,得原方程组的解为:114 4x y =⎧⎨=⎩,2263xy=⎧⎨=⎩.【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.21.如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.【答案】(1)桥拱所在圆的半径长为5米;(2)水面上升的高度为1米【解析】【分析】(1)根据点D是AB中点,DC AB⊥知C为AB中点,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,在Rt△ACO中,由勾股定理求出半径.(2)设OD与EF相交于点G,联结OE,由EF∥AB,OD⊥AB,得到OD⊥EF,进而找出EG=3DG,设水面上升的高度为x米,即CG=x,则DG=2﹣x,在Rt△EGO中根据勾股定理求出x即可.【详解】解:(1)∵点D是AB中点,DC AB⊥,∴AC=BC,DC经过圆心,设拱桥的桥拱弧AB所在圆的圆心为O,∵AB=8,∴AC=BC=4,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,∵OD ⊥AB , ∴∠ACO =90°,在Rt △ACO 中,∵OA 2=AC 2+OC 2, ∴R 2=(R ﹣2)2+42, 解之得R =5.答:桥拱所在圆的半径长为5米. (2)设OD 与EF 相交于点G ,联结OE , ∵EF ∥AB ,OD ⊥AB , ∴OD ⊥EF ,∴∠EGD =∠EGO =90°, 在Rt △EGD 中,cot 3EGDGα== , ∴EG =3DG ,设水面上升的高度为x 米,即CG =x ,则DG =2﹣x , ∴EG =6﹣3x ,在Rt △EGO 中,∵EG 2+OG 2=OE 2, ∴(6﹣3x )2+(3+x )2=52,化简得 x 2﹣3x +2=0,解得 x 1=2(舍去),x 2=1, 答:水面上升的高度为1米.【点睛】此题是关于圆的综合性试题,包含的知识点有解直角三角形,勾股定理,解一元二次方程等,有一定难度.22.某社区为了加强居民对新型冠状病毒肺炎防护知识的了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下: 收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 8580 100 75 60 90 70 80 95 75 100 90整理数据(每组数据可含最低值,不含最高值)分组(分)频数频率60~70 4 0.170~80 a b80~90 10 0.2590~100 c d100~110 8 0.2分析数据(1)填空:a=,b=,c=,d=;(2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在(分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为人.【答案】(1)6,0.15,12,0.3;(2)见解析;(3):90~100;(4)400【解析】【分析】(1)根据数据找出a,c再求出相应的b,d.(2)根据(1)画图即可.(3)从直方图中直接找出频率最高者即为所求.(4)总数乘以频率即可.【详解】解:(1)由题意可知:第二组的频数a=6,第四组的频数c=12,∴第二组的频率为:6÷40=0.15,第四组的频率为:12÷40=0.3.故答案为:6,0.15,12,0.3;(2)如下图即为补全的频率分布直方图;(3)由此估计该社区居民在线答卷成绩在90~100(分)范围内的人数最多.故答案为:90~100;(4)800×(0.3+0.2)=400(人).答:如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为400人.故答案为:400.【点睛】此题考查数据的收集,包含频率的计算,画直方图等,难度一般.23.如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.(1)如果EN∥BD,求证:四边形DMNE是菱形;(2)如果EN⊥DC,求证:AN2=NC•AC.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据正方形性质及ON=OM,求出MN∥CD,进而得出四边形DMNE是平行四边形,在证明出△AOM≌△DON即可得到平行四边形DMNE是菱形;(2)根据MN∥CD得到AN AMNC ME=,再由EN⊥DC得到EN∥AD,AC DCAN DE=,再由AB∥DC,得到AM ABME DE=,即可得到AN ACNC AN=,即为所求.【详解】证明:(1)如图1,∵四边形ABCD是正方形,∴OA=OB=OC=OD,AC⊥BD,∵ON=OM,∴ON OM OC OD=,∴MN∥CD,又∵EN∥BD,∴四边形DMNE是平行四边形,在△AOM和△DON中,∵∠AOM=∠DON=90°,OA=OD,OM=ON,∴△AOM≌△DON(SAS),∴∠OMA=∠OND,∵∠OAM+∠OMA=90°,∴∠OAM+∠OND=90°∴∠AHN=90°.∴DN⊥ME,∴平行四边形DMNE是菱形;(2)如图2,∵MN∥CD,∴AN AM NC ME=,∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∠ADC=90°,∴AD⊥DC,又∵EN⊥DC,∴EN∥AD,∴AC DC AN DE=,∵AB∥DC,∴AM AB ME DE=,∴AN AC NC AN=,∴AN2=NC•AC.【点睛】此题考查正方形相关知识,主要是利用平行线分线段成比例求解,难度较大.24.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B (3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x 轴上,求直线AP 的截距;(3)在(2)小题的条件下,如果点E 是y 轴正半轴上一点,点F 是直线AP 上一点.当△EAO 与△EAF 全等时,求点E 的纵坐标.【答案】(1)211433y x x =-++;(2)32;(3)3352+或5﹣6【解析】 【分析】(1)把(3,0)A -和点(3,2)B 代入抛物线的解析式,列方程组,可得结论;(2)如图1,根据对称的性质得5AD AC ==,可得2OD =,设OH a =,则4HC HD a ==-,在Rt HOD ∆中,根据勾股定理得222HD OH OD =+,列方程可得结论;(3)分两种情况:先说明AOE ∆是直角三角形,所以EAF ∆也是直角三角形,根据90EFA ∠=︒,画图,由勾股定理列方程可解答.【详解】解:(1)抛物线24y ax bx =++过点(3,0)A -和点(3,2)B ,∴93409342a b a b -+=⎧⎨++=⎩,解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴211433y x x =-++;(2)如图1,连接AC ,DH , 点C 关于直线AP 的对称点D ,AD AC =∴,211433y x x =-++与y 轴交于点(0,4)C ,与x 轴交于点(3,0)A -,5AC ∴=, 5AD ∴=,∴点(2,0)D ,设直线AP 与y 轴交于点H ,则HC HD =,设OH a =,则4HC HD a ==-, 在Rt HOD ∆中,222HD OH OD =+,222(4)2a a ∴-=+,∴32a =, ∴直线AP 的截距为32; (3)点E 是y 轴正半轴上一点,AOE ∴∆是直角三角形,且90AOE ∠=︒当EAO ∆与EAF ∆全等时,存在两种情况:①如图2,当90EFA AOE ∠=∠=︒,EFA AOE ∆≅∆,EF OA ∴=,AHO EHF ∠=∠,90AOH EFH ∠=∠=︒,()AOH EFH AAS ∴∆≅∆,AH EH ∴=,由(2)知:32OH =, 32EH AH OE ∴==-, Rt AHO ∆中,222AH AO OH =+,22233()3()22OE ∴-=+,解得:335OE +=或335-(舍), ∴点E 的纵坐标是3352+;②如图3,当90EFA AOE ∠=∠=︒,EFA EOA ∆≅∆,3AF AO ∴==,EF OE =,Rt AHO ∆中,223353()2AH =+=,353FH ∴=-,32EH OE =-,Rt EFH ∆中,由勾股定理得:222EH FH EF =+,222335()(3)2OE OE ∴-=-+, 解得:356OE =-,∴点E 的纵坐标是356-;综上,点E 的纵坐标是335+或356-. 【点睛】本题是一道二次函数综合题,解答本题的关键是掌握二次函数的性质,对称的性质:对称轴是对称点连接的垂直平分线,三角形全等的性质和判定,当三角形全等不确定边的对应关系时,先确定三角形的特殊性,如直角三角形或等腰三角形等条件,再进一步分情况讨论.25.如图,已知在△ABC 中,∠ACB =90°,AC =4,BC =8,点P 是射线AC 上一点(不与点A 、C 重合),过P 作PM ⊥AB ,垂足为点M ,以M 为圆心,MA 长为半径的⊙M 与边AB 相交的另一个交点为点N ,点Q 是边BC 上一点,且CQ =2CP ,联结NQ . (1)如果⊙M 与直线BC 相切,求⊙M 的半径长;(2)如果点P 在线段AC 上,设线段AP =x ,线段NQ =y ,求y 关于x 的函数解析式及定义域;(3)如果以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,求线段AP 的长.【答案】(1)55-;(2)2221220y x x =-+(0<x <4);(3)52或112. 【解析】 【分析】(1)先根据勾股定理求得45AB =,设⊙M 的半径长为R ,则45BM R =-,过M 作MH ⊥BC ,垂足为点H ,根据相似三角形的对应边成比例得到MB MH AB AC =,最后根据⊙M 与直线BC 相切,即MA =MH ,即可求解;(2)设AP =x ,得到CP =4﹣x ,CQ =8﹣2x ,BQ =2x ,过Q 作QG ⊥AB ,垂足为点G ,根据三角函数可得4525BG QG x x ==,,根据PM ⊥AB ,5cosA AM AC AP AB ===,得到52565MA AN NG 45x x x ===-,,,最后在Rt △QNG 中,根据勾股定理即可求解;(3)当点P 在线段AC 上,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO ,则MO ⊥EN ,根据以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,PM ⊥AB ,MA =MN ,得到PN =P A ,∠P AN =∠ANE ,再根据∠ACB =90°,得到∠P AN +∠B =90°,∠NMO =∠B ,连接AQ ,根据 M 、O 分别是线段AN 、NQ 的中点,得到MO ∥AQ ,∠NMO =∠BAQ ,∠BAQ =∠B , QA =QB ,在Rt △QAC 中,根据勾股定理得,QA 2=AC 2+QC 2即可求解;当点P 在线段AC 的延长112上,即11x 2=. 【详解】(1)解:如图1,在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =8,∴22AB 4845=+=设⊙M 半径长为R ,则BM 45R =过M 作MH ⊥BC ,垂足为点H ,∴MH ∥AC ,∴△BHM ∽△BCA , ∴MB MH AB AC = ∵⊙M 与直线BC 相切,∴MA =MH ,∴45445R R -= ∴R 55=-,即M 的半径长为55-;(2)如图2,∵AP =x ,∴CP =4﹣x ,∵CQ =2CP ,∴CQ =8﹣2x ,∴BQ =BC ﹣CQ =8﹣(8﹣2x )=2x ,过Q 作QG ⊥AB ,垂足为点G ,∵cos BG BC B BQ AB==, ∴245BG x =, ∴5BG 5x =同理:25 QG x =∴∠AMP =90°,∴cosA AM AC AP AB ===∵AP =x ,∴MA AN x x ==,∴NG 5x = 在Rt △QNG 中,根据勾股定理得,QN 2=NG 2+QG 2,∴222y ⎛⎫⎫=+ ⎪⎪⎝⎭⎭∴y =0<x <4);(3)当点P 在线段AC 上,如图3,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO ,则MO ⊥EN ,∴∠NMO +∠ANE =90°,∵以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,即P 、E 、N 在同一直线上,又∵PM ⊥AB ,MA =MN ,∴PN =P A ,∴∠P AN =∠ANE ,∵∠ACB =90°,∴∠P AN +∠B =90°,∴∠NMO =∠B ,连接AQ ,∵M 、O 分别是线段AN 、NQ 的中点,∴MO ∥AQ ,∴∠NMO =∠BAQ ,∴∠BAQ =∠B ,在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2,∴(2x)2=42+(8﹣2x)2,∴5 x2 =同理:当点P在线段AC的延长112上,11x2=即线段AP的长为52或112.【点睛】此题考查圆的综合题,涉及到相似三角形的判定和性质、解直角三角形,还涉及到了分类讨论的思想,熟练掌握各知识点的融会贯通是解题关键.。
2020年上海市二模试卷数学试卷一、选择题(本大题共6小题,共24分)1. 拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( )A. 324×105B. 32.4×106C. 3.24×107D. 0.32×1082. 如果关于x 的方程x −m +2=0(m 为常数)的解是x =−1,那么m 的值是( )A. m =3B. m =−3C. m =1D. m =−13. 将抛物线y =x 2−2x −1向上平移1个单位,平移后所得抛物线的表达式是( )A. y =x 2−2xB. y =x 2−2x −2C. y =x 2−x −1D. y =x 2−3x −14. 现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是S 甲2、S 乙2,如果S 甲2>S 乙2,那么两个队中队员的身高较整齐的是( )A. 甲队B. 乙队C. 两队一样整齐D. 不能确定5. 已知|a ⃗ |=1,|b ⃗ |=3,而且b ⃗ 和a ⃗ 的方向相反,那么下列结论中正确的是( ) A. a ⃗ =3b ⃗ B. a ⃗ =−3b ⃗ C. b ⃗ =3a ⃗ D. b ⃗ =−3a ⃗6. 对于一个正多边形,下列四个命题中,错误的是 ( )A. 正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B. 正多边形是中心对称图形,正多边形的中心是它的对称中心C. 正多边形每一个外角都等于正多边形的中心角D. 正多边形每一个内角都与正多边形的中心角互补二、填空题(本大题共12小题,共48分) 7. 计算:a 6÷a 3=______.8. 分解因式:2a 2−4a =______.9. 已知关于x 的方程x 2+3x −m =0有两个相等的实数根,则m 的值为______. 10. 不等式组{x +1≥0x −1<1的解集是______.11. 方程√2x −1=1的根是______. 12. 已知反比例函数y =2k+1x的图象经过点(2,−1),那么k 的值是______.13. 不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为______.14. 在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是______分.15. 在Rt △ACB 中,∠C =90°,AC =3,BC =3√3,以点A 为圆心作圆A ,要使B 、C两点中的一点在圆A 外,另一点在圆A 内,那么圆A 的半径长r 的取值范围是______. 16. 如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,过点O 的线段EF 与AD 、BC 分别交于点E 、F ,如果AB =4,BC =5,OE =32,那么四边形EFCD 的周长为______.17. 各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S =a +12b −1,其中a 表示多边表内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图格点多边形的面积是______.18. 如图,点M 的坐标为(3,2),点P 从原点O 出发,以每秒1个单位的速度沿y 轴向上移动,同时过点P 的直线l 也随之上下平移,且直线l 与直线y =−x 平行,如果点M 关于直线l 的对称点落在坐标轴上,如果点P 的移动时间为t 秒,那么t 的值可以是______.三、计算题(本大题共1小题,共10分)19. 计算:(−2018)0+(12)−2−12+tan60∘+√(3−π)2.四、解答题(本大题共6小题,共68分) 20. 解方程:16x 2−4=x+2x−2−1x+2.21. 如图已知:△ABC 中,AD 是边BC 上的高、E 是边AC 的中点,BC =11,AD =12,DFGH 为边长为4的正方形,其中点F 、G 、H 分别在AD 、AB 、BC 上. (1)求BD 的长度; (2)求cos ∠EDC 的值.22.某乒乓球馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元;暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设打乒乓x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请根据函数图象,写出选择哪种消费方式更合算.23.如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果PA=PE,求证:△APB≌△EPC.24.在平面直角坐标系xOy中,如图,抛物线y=mx2−2x+n(m、n是常数)经过点A(−2,3)、B(−3,0),与y轴的交点为点C.(1)求此抛物线的表达式;(2)点D为y轴上一点,如果直线BD和直线BC的夹角为15°,求线段CD的长度;(3)设点P为此抛物线的对称轴上的一个动点,当△BPC为直角三角形时,求点P的坐标.25.在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.答案和解析1.【答案】C【解析】解:32400000=3.24×107元.故选:C.用科学记数法表示较大的数时,一般形式为a×10−n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10−n,其中1≤|a|<10,确定a与n的值是解题的关键.2.【答案】C【解析】解:把x=−1,代入方程关于x的方程x−m+2=0(m为常数)得:−1−m+2=0,解得:m=1,故选:C.理解一元一次的解和解一元一次方程的概念是解此题的关键.本题考查了一元一次方程两个概念,重点是理解一元一次方程的解和会解一元一次方程.3.【答案】A【解析】解:∵将抛物线y=x2−2x−1向上平移1个单位,∴平移后抛物线的表达式y=x2−2x−1+1,即y=x2−2x.故选:A.根据向上平移纵坐标加求得结论即可.本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.4.【答案】B【解析】【分析】根据方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2>S乙2,∴两个队中队员的身高较整齐的是:乙队.故选:B.5.【答案】D【解析】解:∵|a |=1,|b⃗|=3,而且b⃗ 和a⃗的方向相反,∴b⃗=−3a,故选:D.根据平面向量的性质即可解决问题.本题考查平面向量的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】B【解析】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选:B.利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.7.【答案】a3【解析】解:a6÷a3=a6−3=a3.故应填a3.根据同底数幂相除,底数不变指数相减计算即可.本题主要考查同底数幂的除法运算性质,熟练掌握运算性质是解题的关键.8.【答案】2a(a−2)【解析】解:2a2−4a=2a(a−2).故答案为:2a(a−2).观察原式,找到公因式2a,提出即可得出答案.本题考查了因式分解的基本方法一---提公因式法.本题只要将原式的公因式2a提出即可.9.【答案】−94【解析】解:∵关于x的方程x2+3x−m=0有两个相等的实数根,∴△=32−4×1×(−m)=0,解得:m=−94,故答案为:−94.根据方程有两个相等的实数根得出△=0,求出m的值即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac的关系是解答此题的关键.10.【答案】−1≤x<2【解析】解:{x+1≥0 ①x−1<1 ②由①得:x≥−1,由②得:x<2,∴不等式组的解集为−1≤x<2.故答案为−1≤x<2.分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的解法,不等式组取解集的方法为:同大取大;同小取小;大小小大去中间;大大小小无解.11.【答案】1【解析】解:两边平方得2x−1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.本题思路是两边平方后去根号,解方程.平方时可能产生增根,要验根.12.【答案】k=−32【解析】解:∵反比例函数y=2k+1x的图象经过点(2,−1),∴−1=2 k+12∴k=−32;故填k=−32.根据点的坐标与函数解析式的关系,将点的坐标代入,可以得到−1=2 k+12,然后解方程,便可以得到k的值.本题侧重考查利用待定系数法求函数的解析式的方法,可以结合代入法进行解答13.【答案】14【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.用红色小球的个数除以球的总个数即可得.【解答】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为26+2=28=14,故答案为:14.14.【答案】95【解析】解:∵95分出现了4次,出现的次数最多,∴这组数据的众数是95分;故答案为:95.根据众数的定义即众数是一组数据中出现次数最多的数据,即可得出答案.此题考查了众数,熟练掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.15.【答案】3<r<6【解析】解:∵Rt△ACB中,∠C=90°,AC=3,BC=3√3,∴AB=6,如果以点A为圆心作圆,使点C在圆A内,则r>3,点B在圆A外,则r<6,因而圆A半径r的取值范围为3<r<6.故答案为3<r<6;熟记“设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”即可求解,本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.16.【答案】12【解析】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF(AAS),∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故答案为:12.根据平行四边形的性质知,AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE和∠COF是对顶角相等,根据全等三角形的性质得到OF=OE=1.5,CF=AE,所于是得到结论.本题利用了平行四边形的性质,由已知条件先证出△OAE≌△OCF,再全等三角形的性质,转化边的关系后再求解.17.【答案】6【解析】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴格点多边形的面积S=a+12b−1=4+12×6−1=6.故答案为:6.分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+12b−1,即可得出格点多边形的面积.本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.18.【答案】2或3(答一个即可)【解析】解:设直线l:y=−x+b.如图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.由直线l:y=−x+b可知∠PDO=∠OPD=45°,∴∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,−1).∵M(3,2),F(0,−1),∴线段MF中点坐标为(32,1 2 ).直线y=−x+b过点(32,12),则=−32+b,解得:b=2,∴t=2.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=−x+b过点(2,1),则1=−2+b,解得:b=3,∴t=3.故点M关于l的对称点,当t=2时,落在y轴上,当t=3时,落在x轴上.故答案为:2或3(答一个即可).找出点M关于直线l在坐标轴上的对称点E、F,如图所示.求出点E、F的坐标,然后分别求出ME、MF中点坐标,最后分别求出时间t的值.考查了一次函数的图象与几何变换.注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.19.【答案】解:原式=1+4−2+√3π−3=π+√3.【解析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:方程两边同乘以(x+2)(x−2)得:16=(x+2)2−(x−2),整理得:x2+3x−10=0,解此方程得:x1=−5,x2=2,经检验x1=−5是原方程的解,x2=2是增根(舍去),所以原方程的解是:x=−5.【解析】先把分式方程转化成整式方程,求出方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.21.【答案】解:(1)∵四边形DFGH为顶点在△ABD边长的正方形,且边长为4,∴GF//BD,GF=DF=4,∴GFBD =AFAD,∵AD=12,∴AF=8,则4BD =812,解得:BD=6;(2)∵BC=11,BD=6,∴CD=5,在直角△ADC中,AC2=AD2+DC2,∴AC=13,∵E是边AC的中点,∴ED=EC,∴∠EDC=∠ACD,∴cos∠EDC=cos∠ACD=513.【解析】(1)由四边形DFGH为边长为4的正方形得GFBD =AFAD,将相关线段的长度代入计算可得;(2)先求出CD、AC的长,再由E是边AC的中点知ED=EC,据此得∠EDC=∠ACD,再根据余弦函数的定义可得答案.本题主要考查正方形的性质,解题的关键是掌握正方形的性质、勾股定理、三角函数的应用及直角三角形的性质等.22.【答案】解:(1)由题意可得,选择银卡消费时,y与x之间的函数关系式为:y=10x+150,选择普通票消费时,y与x之间的函数关系式为:y=20x;(2)当10x+150=20x时,得x=15,当10x+150=600时,得x=45,答:当打球次数不足15次时,选择普通票最合算,当打球次数介于15次到45次之间时,选择银卡最合算,当打球次数超过45次时,选择金卡最合算,当打球次数恰为15次时,选择普通票或银卡同为最合算,当打球次数恰为45次时,选择金卡或银卡同为最合算.【解析】(1)根据题意可以直接写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)根据函数图象和(1)中的函数解析式可以分别求得普通票消费和银卡消费相等的情况,银卡消费和金卡消费相等的情况,再根据图象即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.【答案】证明:(1)由折叠得到EC垂直平分BP,设EC与BP交于Q,∴BQ=EQ∵E为AB的中点,∴AE=EB,∴EQ为△ABP的中位线,∴AF//EC,∵AE//FC,∴四边形AECF为平行四边形;(2)∵AF//EC,∴∠APB=∠EQB=90°,由翻折性质∠EPC=∠EBC=90°,∠PEC=∠BEC,∵E为直角△APB斜边AB的中点,且AP=EP,∴△AEP为等边三角形,∠BAP=∠AEP=60°,∠CEP=∠CEB=180°−60°2=60°,在△ABP和△EPC中,{∠BAP=∠CEP ∠APB=∠EPC AP=EP,∴△ABP≌△EPC(AAS).【解析】(1)由折叠的性质得到BE=PE,EC与PB垂直,根据E为AB中点,得到AE= EB=PE,利用三角形内一边上的中线等于这条边的一半的三角形为直角三角形,得到∠APB为90°,进而得到AF与EC平行,再由AE与FC平行,利用两对边平行的四边形为平行四边形即可得证;(2)根据三角形AEP 为等边三角形,得到三条边相等,三内角相等,再由折叠的性质及邻补角定义得到一对角相等,根据同角的余角相等得到一对角相等,再由AP =EB ,利用AAS 即可得证.此题考查全等三角形的判定与性质,折叠的性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.【答案】解:(1)依题意得:{4m +4+n =39m +6+n =0, 解得:{m =−1n =3, ∴抛物线的表达式是y =−x 2−2x +3.(2)∵抛物线y =−x 2−2x +3与y 轴交点为点C ,∴点C 的坐标是(0,3),又点B 的坐标是(−3,0),∴OC =OB =3,∠CBO =45°,∴∠DBO =30°或60°.在直角△BOD 中,DO =BO ⋅tan ∠DBO ,∴DO =√3或3√3,∴CD =3−√3或3√3−3.(3)由抛物线y =−x 2−2x +3得:对称轴是直线x =−1,根据题意:设P(−1,t),又点C 的坐标是(0,3),点B 的坐标是(−3,0),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10, ①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10,解之得:t =−2,②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2,解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18,解之得:t 1=3+√172,t 2=3−√172.综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172)或(−1,3−√172).【解析】(1)将点A 和点B 坐标代入解析式求解可得;(2)先求出点C 坐标,从而得出OC =OB =3,∠CBO =45°,据此知∠DBO =30°或60°,依据DO =BO ⋅tan ∠DBO 求出得DO =√3或3√3,从而得出答案;(3)设P(−1,t),知BC 2=18,PB 2=4+t 2,PC 2=t 2−6t +10,再分点B 、点C 和点P 为直角顶点三种情况分别求解可得.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等腰三角形的性质、两点间的距离公式及直角三角形的性质等知识点.25.【答案】解:(1)过点O 作ON//BC 交AM 于点N ,如图1∴AOAB =ONBM,ONMC=OECE,∵AO=BO=12AB∴AOAB=ONBM=12∵点M是弦BC的中点∴BM=MC∴OECE =ONBM,∴OE:CE=1:2;(2)联结OM,如图2∵点M是弦BC的中点,OM经过圆心O ∴OM⊥BC,∠OMC=90°,∵AM⊥OC,∴∠MEO=90°∴∠OMC=∠MEO=90°又∠MOC=∠EOM ∴△MOC∽△EOM;∴OMOE =OCOM,∵OE:CE=1:2∴OM=√33OC,∵OB=OC∴∠ABC=∠OCM在直角△MOC中,sin∠OCM=OMOC =√33∴sin∠ABC=√33;(3)探究一:如图3,过点D作DL⊥DF交BO于点L,取BC中点M,连接OM∵DF⊥OC,∴DL//OC,∴∠LDB=∠C=∠B ∴BL=DL,∵AB=10,AB:BC=5:4,∴BC=8,OC=5,∵BM=CM=4,∴cos∠OCM=MCOC=CHCD=45∵DL//OC,∴BLOB=BDBC设BD=x,则CD=8−x,∴BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),∵OH//DL,∴OHLD =OFFL,∴45x−7558=yy+5−58y;∴y关于x的函数解析式是y=207x−5定义域是74≤x<72,探究二:∵以O为圆心,OF为半径的圆经过D,∴OF=OD,∵DF⊥OC,∴OC垂直平分DF,FO=OL,∴y=5−58x,∴207x−5=5−58x,解得:x=11219,∴BD=11219.【解析】(1)如图1,过点O作ON//BC交AM于点N,根据三角形的中位线的性质得到ON=12BM,根据平行线分线段成比例定理即可得到结论;(2)如图1,连接OM,根据垂径定理得到OM⊥BC,根据余角的性质得到∠OME=∠MCE,根据相似三角形的性质得到ME2=OE⋅CE,设OE=x,则CE=2x,ME=√2x,解直角三角形即可得到结论;(3)探究一:如图2,过点D作DL⊥DF交BO于点L,根据平行线的性质得到∠LDB=∠C=∠B,根据等腰三角形的判定定理得到BL=DL,设BD=x,则CD=8−x,BL=DL=58x,CH=45(8−x),OH=OC−CH=5−45(8−x),根据平行线成线段成比例定理得到y=20x−357(其中74≤x<72);探究二:根据题意得到OF=OD,根据等腰三角形的性质得到DF⊥OC,根据直角三角形的性质得到FO=OL,列方程即可得到结论.本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.。
2020届上海各区初三数学二模1~18题汇编---Stu【2020二模汇编】1~18题【1闵行区】一. 选择题1. 在下列各式中,与213xy 是同类项的是()A. 2xyB. 2y x -C. 213xy +D. 2x y2. 方程230x -+=根的情况()A. 有两个不相等的实数根B. 有一个实数根C. 无实数根D. 有两个相等的实数根 3. 在平面直角坐标系中,反比例函数ky x=(0k ≠)图像在每个象限内,y 随着x 的增大而增大,那么它的图像的两个分支分别在()A. 第一、三象限B. 第二、四象限C. 第一、二象限D. 第三、四象限 4. 某同学参加射击训练,共发射8发子弹,击中的环数分别为5,3,7,5,6,4,5,5,则下列说法错误的是()A. 其平均数为5B. 其众数为5C. 其方差为5D. 其中位数为5 5. 顺次联结四边形ABCD 各边中点所形成的四边形是矩形,那么四边形ABCD 是() A. 平行四边形 B. 矩形 C. 菱形D. 等腰梯形 6. 下列命题中正确的个数是()① 过三点可以确定一个圆;② 直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5;③ 如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米;④ 三角形的重心到三角形三边的距离相等;A. 1个B. 2个C. 3个D. 4个二. 填空题7. 计算:252-+= 8. 化简:113a a-= 9. 不等式组2(3)14524x x x ->??+>-?的解集是10. 0=的解是11. 为了考察闵行区1万名九年级学生数学知识与能力测试的成绩,从中抽取50本试卷,每本试卷30份,那么样本容量是12. 如果向量AB uu u r与向量CD uuu r 方向相反,且||||5AB CD ==uu u r uu u r ,那么AB CD +=uu u r uu u r13. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,那么针头扎在阴影区域内的概率为(结果保留π)14. 把直线y x b =-+向左平移2个单位后,在y 轴上的截距为5,那么原来的直线解析式为15. 已知在梯形ABCD 中,AD ∥BC ,90ABC ∠=?,对角线AC 、BD 相交于点O ,且AC BD ⊥,如果:2:3AD BC =,那么:DB AC =16. 七宝琉璃玲珑塔(简称七宝塔),位于上海市七宝古镇的七宝教寺内,塔高47米,共7层,学校教师组织学生利用无人机实地勘测,如果无人机在飞行的某一高度时传回数据,测得塔顶的仰角为60°,塔底的俯角为45°,那么此时无人机距离地面的高度为米(结果保留根号)17. 已知点1(1,)y -,2(2,)y ,3(2,)y 在函数222y ax ax a =-+-(0a >)的图像上,那么1y 、2y 、3y 按由小到大的顺序排列是18. 如图,已知在△ABC 中,4AB AC ==,30BAC ∠=?,将△ABC 绕点A 顺时针旋转,使点B 落在点1B 处,点C 落在点1C 处,且1BB AC ⊥,联结1B C 和1CC ,那么△11B C C 的面积等于【2宝山区】一. 选择题1. 下列计算正确的是()A. ab b a -=B. 235a a a +=C. 32a a a ÷=D. 235()a a = 2. 关于x 的方程220x x k --=有实数根,则k 的值的范围是()A. 1k >-B. 1k ≥-C. 1k <-D. 1k ≤-3. 为备战奥运会,甲、乙、丙、丁四位优秀短跑选手参加训练,近期的10次百米测试平均成绩都是10.3秒,但他们的成绩的方差分别是0.020、0.019、0.021、0.022(单位:秒2),则这四人中发挥最稳定的是()A. 甲B. 乙C. 丙D. 丁 4. 下列四边形中,是中心对称但不是轴对称的图形是()A. 矩形B. 等腰梯形C. 正方形D. 平行四边形5. 如图,矩形EFGH 内接于△ABC ,且边FG 落在BC 上,如果AD BC ⊥,3BC =,2AD =,:2:3EF EH =,那么EH 的长为()A. 12B. 32C. 1213D. 26. 如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角△ABC ,使90BAC ∠=?,如果点B 的横坐标为x ,点C 的纵坐标为y ,那么表示y 与x 的函数关系的图像大致是()A. B. C. D.二. 填空题7. 计算:2020的相反数是 8. 计算:()()m n m n -+= 9. 分解因式:244a a -+= 10. 方程11x x +-=的解是11. 一组数据:3、12、8、12、20、9的众数为12. 一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是13. 如果抛物线2()(1)y x m m =-++的顶点在第二象限,那么m 的取值范围为 14. 如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图像经过点B ,则k 的值是15. 如图在平行四边形ABCD 中,如果AB a =uu u r r ,AD b =uuu r r ,那么向量AC uuu r为(用a r 和b r表示)16. 如图,点D 是△ABC 的边AB 上一点,如果ACD B ∠=∠,并且:AD AC =,那么:AD BD = 17. 将矩形ABCD 纸片折叠,使点A 与点C 重合,折痕为EF ,若4AB =,2BC =,那么线段EF 的长为18. 如图,在△A BC 中,5AB AC ==,3tan 4B =,将△ABC 绕点B 逆时针旋转,得到△11A BC ,当点1C 在线段CA 延长线上时△1ABC 的面积为【3崇明区】一. 选择题1. 下列二次根式是最简二次根式的是()A.B. C. D. 2. 如果a b >,那么下列结论中一定成立的是()A. 22a b ->-B. 22a b +>+C. 2ab b >D. 22a b >3. 已知一次函数(3)62y m x m =-++,如果y 随自变量x 的增大而减小,那么m 的取值范围为() A. 3m < B. 3m > C. 3m <- D. 3m >-4. 下列说法正确的是()A. 了解我区居民知晓“创建文明城区”的情况,适合全面调查B. 甲、乙两人跳高成绩的方差分别为23S =甲,24S =乙,说明乙的跳高成绩比甲稳定 C. 一组数据2,2,3,4的众数是2,中位数是2.5 D. 可能性是1%的事件在一次试验中一定不会发生5. 如果一个正多边形的外角为锐角,且它的余弦值是2,那么它是() A. 等边三角形 B. 正六边形 C. 正八边形 D. 正十二边形 6. 下列命题正确的是() A. 对角线相等的四边形是平行四边形 B. 对角线相等的四边形是矩形 C. 对角线互相垂直的平行四边形是菱形 D. 对角线互相垂直且相等的四边形是正方形二. 填空题7. 计算:323)a =( 8. 因式分解:39a a -=9. x =的解为10. 如果方程260x x m -+=没有实数根,那么m 的取值范围是11. 1-、13、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是12. 将抛物线22y x =+向右平移3个单位,再向上平移2个单位后,那么所得新抛物线的解析式为13. 已知点G 是△ABC 的重心,如果AB a =uu u r r ,AC b =uuu r r ,那么向量AG uuu r 用向量a r 和b r表示为14. 为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制成如下不完整的统计图表,根据图表信息,那么扇形图中表示C 的圆心角的度数为度15. 某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为元16. 如图,在△ABC 中,AB AC =,30A ∠=?,直线a ∥b ,点C 在直线b 上,直线a 交AB 于点D ,交AC 于点E ,如果145∠=?,那么2∠的度数是17. 如果将△ABC 沿BC 边上的中线AD 平移到△A B C '''的位置,已知△ABC 的面积为16,阴影部分三角形的面积为9,如果1AA '=,那么A D '的长为18. 如图,平面直角坐标系中,(8,0)A ,(8,4)B ,(0,4)C ,反比例函数ky x=在第一象限内的图像分别与线段AB 、BC 交于点F 、E ,联结EF ,如果点B 关于EF 的对称点恰好落在OA 边上,那么k 的值为【4金山区】一. 选择题1. 在下列各数中,无理数是()A.207 B. 3πC. D. 0.101001 2. 计算32()a 的结果是()A. aB. 5aC. 6aD. 9a 3. 一次函数23y x =-的图像在y 轴的截距是() A. 2 B.2- C. 3 D. 3-4. 某区对创建全国文明城区的满意程度进行随机调查,结果如图所示,据此可估计全区75万居民对创建全国文明城区工作不满意的居民人数为()A. 1.2万B. 1.5万C. 7.5万D. 66万5. 已知在△ABC 中,AD 是中线,设AB m =uu u r u r ,AD n =uuu r r ,那么向量BC uu u r 用向量m u r 、n r表示为()A. 22m n -u r rB. 22m n +u r rC. 22n m -r u rD. n m -r u r6. 如图,30MON ∠=?,P 是MON ∠的角平分线,PQ 平行ON 交OM 于点Q ,以P 为圆心半径为4的圆与ON 相切,如果以Q 为圆心半径为r 的圆与P e 相交,那么r 的取值范围是() A. 412r <<B. 212r <<C. 48r <<D. 4r >二. 填空题7. 分解因式:24a -=8. 某种冠状病毒的直径大约是0.00011毫米,数据0.00011用科学记数法法表示为9. x =的解是10. 如果关于x 的方程220x mx -+=有两个相等的实数根,那么m 的值是 11. 函数13y x=-的定义域是12. 从1,2,3,4,5,6,7,8,9,10这十个数字中任意选取一个数字,取到的数字是3的倍数的概率是13. 某学校九年级共有350名学生,在一次九年级全体学生参加的数学测试中,随机抽取50名学生的测试成绩进行抽样调查,绘制频率分布直方图如图所示,如果成绩不低于80分算优良,那么估计九年级全体学生在这次测试中成绩优良学生人数约是14. 上海市居民用户燃气收费标准如下表:x (立方米)的函数关系式是15. 四边形ABCD 中,对角线AC 、BD 相互垂直,4AC =,6BD =,顺次联结这个四边形中点所得的四边形的面积等于16. 我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为 17. 如图,在坡度为1:2.4的斜坡上有一棵与水平面垂直的树BC ,在斜坡底部A 处测得树顶C 的仰角为30°,AB 的长为65米,那么树高BC 等于米(保留根号)18. 如图,在△ABC 中,90C ∠=?,3AC =,4BC =,把△ABC 绕C 点旋转得到△A B C ''',其中点A '在线段AB 上,那么A B B ''∠的正切值等于【5长宁区】一. 选择题1. 下列实数中,无理数的是() A. 0 B.3 C. 3- D. 92. 下列单项式中,与2xy 是同类项的是()A. 2x yB. 22x yC. 22xyD. 3xy 3. 关于反比例函数2y x=,下列说法不正确的是() A. 点(2,1)--在它的图像上 B. 它的图像在第一、三象限 C. 它的图像关于原点中心对称 D. y 的值随着x 的值的增大而减小4. 如图是关于某班同学一周体育锻炼情况的统计图,那么该班学生这一周参加体育锻炼时间的众数、中位数分别是()A. 8、9B. 8、8.5C. 16、8.5D. 16、145. 如果两圆的半径长分别为5和3,圆心距为7,那么这两个圆的位置关系是() A. 内切 B. 外离 C. 相交 D. 外切6. 在平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能判定四边形AECF 一定为平行四边形的是()A. BE DF = B. AE CF = C. AF ∥CE D. BAE DCF ∠=∠二. 填空题7. 计算:322()()x x ÷-= 8. 方程32x -=的根为9. 不等式组3401212x x +≥??-≤??的解集是10. 已知正三角形的边心距为1,那么它的边长为11. 如果抛物线2(1)1y a x =--(a 为常数)不经过第二象限,那么a 的取值范围是 12. 如果关于x 的多项式在22x x m -+实数范围内能因式分解,那么实数m 的取值范围是13. 从1,2,3,4四个数中任意取两个数相加,其和为偶数的概率是14. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元,问人数、物品的价格各是多少?”,如果设共有x 人,物品的价格为y 元,那么根据题意可列出方程组为15. 已知甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6,乙的成绩(环)为7、8、10、6、9,那么这两位运动员中的成绩较稳定(填“甲”或“乙”)16. 如图,已知在△ABC 中,点D 在边AC 上,2AD DC =,AB a =uu u r r ,AC b =uuu r r ,那么BD =uu u r(用含向量a r 、b r的式子表示)17. 如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为的菱形,那么这个菱形不在圆上的顶点与圆心的距离是 18. 如图,已知在△ABC 中,90C ∠=?,2BC =,点D 是边BC 的中点,ABC CAD ∠=∠,将△ACD 沿直线AD 翻折,点C 落在点E 处,联结BE ,那么线段BE 的长为【6浦东区】一. 选择题1. 下列各数是无理数的是()A.B. C.227D. 0.1&2. )A.B. C.D. 3. 一次函数23y x =-+的图像经过()A. 第一、二、三象限B. 第二、三、四象限C. 第一、三、四象限D. 第一、二、四象限4. 如果一个正多边形的中心角等于72°,那么这个正多边形的内角和为()A. 360° B. 540° C. 720° D. 900°5. 在梯形ABCD 中,AD ∥BC ,那么下列条件中,不能判断它是等腰梯形的是()A. AB DC = B. DAB ABC ∠=∠ C. ABC DCB ∠=∠D. AC DB =6. 矩形ABCD 中,5AB =,12BC =,如果分别以A 、C 为圆心的两圆外切,且点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围是()A. 512r <<B. 1825r <<C. 18r <<D. 58r <<二. 填空题 7. 函数21-的定义域是8. x =的根是 9. 不等式组5125x x +≥??<?的解集是10. 如果关于x 的方程20x k -+=有两个相等的实数根,那么k 的值是11. 一个不透明的口袋中有五个完全相同的小球,分别标号1,2,3,4,5,从中随机摸出一个小球,其标号是素数的概率是12. 如果点1(3,)A y 、2(4,)B y 在反比例函数2y x=的图像上,那么1y 2y (填“>”、“<”或“=”) 13. 某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目,为了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为名14. 已知向量a r 与单位向量e r 的方向相反,||3a =r,那么向量a r 用单位向量e r 表示为15. 如图,AB ∥CD ,如果50B ∠=?,20D ∠=?,那么E ∠=16. 在地面上离旗杆底部15米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为1.5米,那么旗杆的高为(用含α的三角比表示)17. 在Rt △ABC 中,90ABC ∠=?,8AB =,6BC =,点D 、E 分别在边AB 、AC 上,如果D 为AB 中点,且AB BC=,那么AE 的长度为18. 如图,在Rt △ABC 中,90ACB ∠=?,60BAC ∠=?,BC =D 是BC 边上一点,沿直线AD 翻折△ABD ,点B 落在点E 处,如果45ABE ∠=?,那么BD 的长为【7徐汇区】一. 选择题1. 下列实数中,有理数是()A.2πB. C. 227 D.122. 下列二次根式中,最简二次根式是()A.B. C.D.3. 下列方程中,有实数根的是()A. 210x +=B. 210x -=C. 1=-D.101x =- 4. 关于抛物线的判断,下列说法正确的是()A. 抛物线的开口向上B. 抛物线的对称轴是直线1x =-C. 抛物线对称轴左侧部分是下降的D. 抛物线顶点到x 轴的距离是25. 如果从货船A 测得小岛B 在货船A 的北偏东30°方向500米处,那么从小岛B 看货船A 的位置,此时货船A 在小岛B 的()A. 南偏西30°方向500米B. 南偏西60°方向500米C. 南偏西30°方向D. 南偏西60°方向米 6. 下列命题中,假命题是()A. 顺次联结任意四边形四边中点所得的四边形是平行四边形B. 顺次联结对角线相等的四边形四边中点所得的四边形是菱形C. 顺次联结对角线互相垂直的四边形四边中点所得的四边形是矩形D. 顺次联结两组相邻互相垂直的四边形四边中点所得的四边形是矩形二. 填空题 7. 计算:11a b-= 8. 分解因式:223m m +-=9. 方程组22205x y x y -=??+=?的解是 10. 已知正比例函数y kx =(0k ≠)的函数值y 随着自变量x 的值增大而减少,那么符合条件的正比例函数可以是(只需写出一个)11. 如果关于x 的方程2340x x m ++=有两个相等的实数根,那么m 的值是12. 已知直线y kx b =+(0k ≠)与x 轴和y 轴的交点分别是(1,0)和(0,2)-,那么关于x 的不等式0kx b +<的解集是13. 如果从长度分别为2、4、6、7的四条线段中随机抽取三条线的,那么抽取的三条线段能构成三角形的概率是14. 如图,在△ABC 中,点D 在边AC 上,已知△ABD 和△BCD 的面积比是2:3,AB a =uu u r r ,AC b =uuu r r,那么向量BD uuu r(用向量a r 、b r 表示)是15. 如图,O e 的弦AB 和直径CD 交于点D ,且CD 平分AB ,已知8AB =,2CE =,那么O e 的半径长是16. 已知某种盆花,若每盆3株时,则平均每株盈利4元,若每盆增加1株,则平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?如果设每盆多植x 株,那么可以列出的方程是 17. 已知正三角形ABC 的半径长为R ,那么△ABC 的周长是(用含R 的式子表示)18. 如图,在ABCD Y 中,3AD =,5AB =,4sin 5A =,将ABCD Y 绕着点B 顺时针旋转θ(090θ?<。
【2020二模汇编】23题
【1闵行区】
23. 如图,已知在ABCD 中,AE BC ⊥,垂足为E ,CE AB =,点F 为CE 的中点,点G 在线段CD 上,联结DF ,交AG 于点M ,交EG 于点N ,且DFC EGC ∠=∠.
(1)求证:CG DG =;
(2)求证:2CG GM AG =⋅.
【2宝山区】
23. 如图,E 、F 分别是正方形ABCD 的边DC 、CB 的中点,以AE 为边作正方形AEHG ,HE 与BC 交于点Q ,联结AQ 、DF .
(1)求证:AE DF ⊥;
(2)设1CEQ S
S =,2AED S S =,3EAQ S S =,求证:123S S S +=.
【3崇明区】
23. 如图,已知四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH AB ⊥,垂足为点H ,交AC 于点E ,联结HO 并延长交CD 于点G .
(1)求证:12DHO BCD ∠=∠; (2)求证:2HG AE DE CG ⋅=⋅.
【4金山区】
23. 如图,已知C 是线段AB 上的一点,分别以AC 、BC 为边在线段AB 同侧作正方形ACDE 和正方形
CBGF ,
点CBGF 在CD 上,联结AF 、BD ,BD 与FG 交于点M ,点N 是边AC 上的一点,联结EN 交AF 于点H .
(1)求证:AF BD =;
(2)如果
AN GM AC GF
=,求证:AF EN ⊥.
【5长宁区】
23. 如图,已知四边形ABCD 是矩形,点E 在对角线AC 上,点F 在边CD 上(点F 与点C 、D 不重合),BE EF ⊥,且45ABE CEF ∠+∠=︒.
(1)求证:四边形ABCD 是正方形;
(2)联结BD ,交EF 于点Q ,求证:DQ BC CE DF ⋅=⋅.
【6浦东区】
23. 已知,如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点E ,过点E 作AC 垂线交边BC 于点F ,与AB 的延长线相交于点M ,且AB AM AE AC ⋅=⋅.
求证:(1)四边形ABCD 是矩形;
(2)2DE EF EM =⋅.
【7徐汇区】
23. 已知,如图,在ABCD 中,点E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,BE DG =,BF DH =.
(1)求证:四边形EFGH 是平行四边形;
(2)当AB BC =,且BE BF =时,求证:四边形EFGH 是矩形.
【8嘉定区】
23. 已知,△ABC ,AB AC =,90BAC ∠=︒,点D 是边BC 的中点,点E 在边AB 上(点E 不与点A 、B 重合),点F 在边AC 上,联结DE 、DF .
(1)如图1,当90EDF ∠=︒时,求证:BE AF =;
(2)如图2,当45EDF ∠=︒时,求证:22DE BE DF CF
=.
【9静安区】
23. 已知,如图,四边形ABCD 是平行四边形,延长BA 至点E ,使得AE AB =,联结DE 、AC ,点F 在线段DE 上,联结BF ,分别交AC 、AD 于点G 、H .
(1)求证:BG GF =;
(2)如果2AC AB =,点F 是DE 的中点,求证:2AH GH BH =⋅.
【10青浦区】
23. 如图,在平行四边形ABCD 中,BE 、DF 分别是平行四边形的两个外角的平分线, 12EAF BAD ∠=∠,边AE 、AF 分别交两条角平分线于点E 、F .
(1)求证:△:ABE △FDA ;
(2)联结BD 、EF ,如果2DF AD AB =⋅,求证:BD EF =.
【11奉贤区】
23. 已知如图,在梯形ABCD 中,CD ∥AB ,90DAB ∠=︒,对角线AC 、BD 相交于点E ,AC ⊥BC ,垂足为点C ,且2BC CE CA =⋅.
(1)求证:AD DE =;
(2)过点D 作AC 的垂线,交AC 于点F ,求证:2CE AE AF =⋅.
【12松江区】
23. 如图,已知AB 、AC 是⊙O 的两条弦,且AO 平分∠BAC ,点M 、N 分别在弦AB 、AC 上,满足AM = CN .
(1)求证:AB = AC ;
(2)联结OM 、ON 、MN ,求证:MN OM AB OA
=.
【13黄浦区】
23. 已知,如图,圆O 是△ABC 的外接圆,AO 平分BAC ∠.
(1)求证:△ABC 是等腰三角形;
(2)当4OA =,6AB =,求边BC 的长.
【14虹口区】
23. 如图,在△ABC 中,AB AC =,
点D 在边BC 上,联结AD ,以AD 为一边作△ADE ,满足AD AE =,DAE BAC ∠=∠,联结EC .
(1)求证:CA 平分DCE ∠;
(2)如果2AB BD BC =⋅,求证:四边形ABDE 是平行四边形.。